SIMULTANEOUS MONOTONE APPROXIMATION IN LOW-ORDER MEAN

Robert Huotari and Salem Sahab

Abstract

Suppose that $f, g \in L_{\infty}[0,1]$ have discontinuities of the first kind only. Using the measure, $\max \left\{\|f-h\|_{p},\|g-h\|_{p}\right\}$, of simultaneous L_{p} approximation, we show that the best simultaneous approximations, h_{p}, to f and g by nondecreasing functions converge uniformly as $p \rightarrow 1$. Part of the proof involves a discussion of discrete simultaneous approximation in a general context. We discuss the inheritance of properties of f and g by h_{p}, and of h_{p} by h_{1}.

1. Introduction

A context which calls for simultaneous approximation is that of fitting a multivariate function by a univariate function. For example if $f: A \times B \rightarrow \mathbb{R}$, then the problem is to approximate the set of univariate functions $\mathcal{F}:=\left\{f\left(x, y_{0}\right): y_{0} \in B\right\}$ by a single function $g: A \rightarrow \mathbb{R}$. In the present paper we shall restrict our attention to the case where \mathcal{F} consists of exactly two functions. In measuring the distance from g to \mathcal{F}, two norms must be used; their composition is called a vectorial norm.

When one considers the continuum of normed linear spaces $\left\{L_{p}(\Omega, \Sigma, \mu): 1 \leqslant p \leqslant\right.$ $\infty\}$, three vectorial norms present themselves as being most natural for measuring simultaneous approximation as p varies. The simultaneous L_{p}-distance from f and g to h could be calculated by $\left(\|f-h\|_{p}^{p}+\|g-h\|_{p}^{p}\right)^{1 / p}$, by $\left(\|f-h\|_{p}+\|g-h\|_{p}\right)$, or by $\max \left(\|f-h\|_{p},\|g-h\|_{p}\right)$. In the first of these vectorial norms, the theory of simultaneous approximation is strongly related to that of single approximation on $L_{p} \times$ L_{p}, and has been extensively studied $[15,16,17]$. The second norm has not, to our knowledge, been widely studied vis-a-vis the continuum of L_{p}-spaces, and is the subject of a planned future work. The third norm seems most natural for studying the uniform, as it relates to the L_{p}, simultaneous approximation operator, S_{p}; this study was begun in [8]. It is the norm used in the classical theory of Chebyschev centres [18] and provides the context in which the simultaneous approximation problem (for any compact set of approximations) is most naturally stated. In the present paper we continue the study of

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/92 \$A2.00+0.00.
this "max norm" in L_{p}-simultaneous approximation, with primary focus on small values of p, and on convex discrete and monotone continuous approximation of functions on a probability space.

Most of the results to be presented here relate to the continuity of S_{p}; for p fixed, and as p varies. In [8], it was shown, for a large class of approximating sets in the discrete case, and for the approximating set \mathcal{M} (nondecreasing functions on [0,1$]$) in the continuous case, that $S_{p}(f, g)$ converges as $p \rightarrow \infty$. In the present paper, we establish similar results for the case $p \rightarrow 1$. The existence of $\lim _{p \rightarrow 1} S_{p}(f, g)$ ameliorates the nonuniqueness of the 1-b.s.a. [10].

We begin with some definitions and notation. If $a, b \in \mathbb{R}$ (the set of all real numbers), let $a \vee b=\max (a, b)$ and $a \wedge b=\min (a, b)$. If $f, g: \mathbb{R} \rightarrow \mathbb{R}$, define $f \vee g$ by $(f \vee g)(t)=f(t) \vee g(t)$ and $f \wedge g$ by $(f \wedge g)(t)=f(t) \wedge g(t)$. Let (\mathcal{X}, d) be a metric space. If $\mathcal{K} \subset \mathcal{X}$ and $f, g, h \in \mathcal{X}$, let $d(f, g ; h)=d(f, h) \vee d(g, h)$, let $d(f ; \mathcal{K})=\inf _{h \in \mathcal{K}}\{d(f, h)\}$, and let $d(f, g ; \mathcal{K})=\inf _{h \in \mathcal{K}}\{d(f, g ; h)\}$. We say that $h^{*} \in \mathcal{K}$ is a best (respectively, best simultaneous) d-approximation to f (respectively, to f and g) from \mathcal{K} if $d\left(f, h^{*}\right)=d(f ; \mathcal{K})$ (respectively, $d\left(f, g ; h^{*}\right)=d(f, g ; \mathcal{K})$). In this case, we say that h^{*} is a d-b.a. to f (respectively, d-b.s.a. to f and g). If there is a unique d-b.s.a. to f and g from \mathcal{K}, we denote it by $S(f, g)$. In subsequent sections of this paper we shall specialise by letting $\mathcal{X}=L_{p}$, but for the present we shall stay in a general context to state two theorems which we have not seen in the literature. The first relates to the continuity of S and its proof is mutatis mutandis the same as that of (2.5) in [14].

Theorem 1. If \mathcal{K} is compact in ($\mathcal{X}, d)$ and, for every $f, g \in \mathcal{X}, S(f, g)$ is uniquely defined, then, for any $\varepsilon>0$ there exists $\delta>0$ such that $d\left(S\left(f^{\prime}, g^{\prime}\right), S(f, g)\right)<$ ε whenever $d\left(f, f^{\prime}\right)<\delta$ and $d\left(g, g^{\prime}\right)<\delta$.

Theorem 2. If d is induced by a norm and if h is a d-b.s.a. to f and g from \mathcal{K} but not a d-b.a. to f from \mathcal{K}, then $d(f, h) \leqslant d(g, h)$.

Proof: Suppose the theorem is false. Then $d(g, h)<d(f, h)$. Since h is not a d-b.a. to f, there exists $f^{*} \in \mathcal{K}$ such that $d\left(f, f^{*}\right)<d(f, h)$. For $\alpha \in \mathbb{R}$, let $H(\alpha)=(1-\alpha) h+\alpha f^{*}$, let $G(\alpha)=d(g, H(\alpha))$, and let $F(\alpha)=d(f, H(\alpha))$. Since d is induced by a norm, G and F are continuous. Thus, since $G(0)<F(0)$, there must be a $\beta>0$ such that $G(\beta)<F(\beta)$. Since F is convex and since $F(1)<F(0)$, $F(\beta)<F(0)$. Thus $G(\beta)<F(0)$. Let $h^{*}=H(\beta)$. By the last two inequalities,

$$
d\left(f, g ; h^{*}\right)<d(f, h)=d(f, g ; h)
$$

which is a contradiction.
Let $h^{*}=S(f, g), f^{*}=S(f, f)$, and $g^{*}=S(g, g)$. In [3], it was shown that if d is induced by an inner product, if \mathcal{K} is a linear subspace, and if $f^{*} \neq h^{*} \neq g^{*}$, then h^{*}
must be of the form
(i)

$$
h^{*}=\lambda f^{*}+(1-\lambda) g^{*},
$$

where $\lambda \in(0,1)$ is determined by the equation

$$
\begin{equation*}
d\left(f, h^{*}\right)=d\left(g, h^{*}\right) \tag{ii}
\end{equation*}
$$

If the requirement that \mathcal{K} be a linear subspace is removed, then (i) doesn't hold in general even if we are in Hilbert space. To show this, let $f=\{3,0,5,0,7,0\}$, $g=\{-3,1,0,-2,1,-1\}, w=(1 / 15)\{1,2,1,4,1,6\}$, and let $\mathcal{K}=\mathcal{M}$, the closed convex cone of nondecreasing n-tuples in $\ell_{2}^{n}(w)$. Then $f_{2}=\{1,1,1,1,1,1\}, g_{2}=$ $(-1 / 7)\{-21,6,6,6,5,5\}$ and $h_{2}=\{0,1 / 4,1,1,1,1\}$. A simple calculation shows that $\left\|f-h_{2}\right\|_{2}^{2}=\left\|g-h_{2}\right\|_{2}^{2}=569 / 120$, but there does not exist a $\lambda \in(0,1)$ for which $h_{2}=\lambda f_{2}+(1-\lambda) g_{2}$.

However, in the more general context of Theorem (2), (ii) does hold, and is proven in the following corollary. Geometrically speaking, the corollary says that if the relative Chebyschev centre of f and g is a nearest point to neither f nor g, then it is a relative "midpoint" of f and g.

Corollary 3. Suppose d is induced by a norm and \mathcal{K} is any convex subset of \mathcal{X}. If h is a d-b.s.a. to f and g from \mathcal{K}, but is a d-b.a. to neither f nor g, then $d(f, h)=d(g, h)$.

Corollary (3) can be generalised to the simultaneous approximation of n functions f^{1}, \ldots, f^{n} as follows. If $1 \leqslant i<j \leqslant n$, if h is a d-b.s.a. of $\left\{f^{1}, \ldots, f^{n}\right\}$, and if h is a d-b.a. to neither f^{i} nor f^{j}, then $d\left(f^{i}, h\right)=d\left(f^{j}, h\right)$. However, in some of the results stated below, we assume in an essential way that $n=2$.

In the remainder of this paper we shall assume that $\mathcal{X}=L_{p}(\Omega, \Sigma, \mu)$ (where (Ω, Σ, μ) is a probability space and $1 \leqslant p \leqslant \infty)$, that \mathcal{K} is an $\|\cdot\|_{1}$-closed convex subset of \mathcal{X}, and that $f, g \in L_{\infty}$. Let d_{p} be the metric induced by $\|\cdot\|_{p}$ and let p-b.s.a. and p-b.a. denote d_{p}-b.s.a. and d_{p}-b.a., respectively. For $1 \leqslant p \leqslant \infty$, let $\mu_{p}(f, g ; \mathcal{K})$ consist of every p-b.s.a. to f and g from \mathcal{K}. If $1<p<\infty$, then $\mu_{p}(f, g ; \mathcal{K})$ is a singleton [3], which we denote by $S_{p}(f, g)$ or by h_{p}. We denote $S_{p}(f, f)$ by f_{p}.

2. Discrete Simultaneous Approximation

In this section we assume that $\Omega=\{1,2, \ldots, n\}$, that $\Sigma=2^{n}$, that $\mu(\{i\})=$ $w_{i}>0\left(\right.$ where $\left.\sum_{i=1}^{n} w_{i}=1\right)$, and that \mathcal{K} is any $\|\cdot\|_{1}$-closed convex subset of $\mathcal{X}=\mathbb{R}^{n}$. The underlying norm is the weighted ℓ_{p} norm, defined by $\|h\|_{p}=\left(\sum_{i=1}^{n} w_{i}|h(i)|^{p}\right)^{1 / p}$, for $1 \leqslant p<\infty$, and $\|h\|_{\infty}=\max _{1 \leqslant i \leqslant n}\left(w_{i}|h(i)|\right)$.

We begin with a lemma that will be used in compactness arguments.

Lemma 4. The set $\mathcal{H}=\left\{h_{p}: 1<p<\infty\right\}$ is uniformly bounded. Thus, every sequence in \mathcal{H} has a convergent subsequence.

Proof: Let $z \in \mathcal{K}$ be fixed. For any $p \in(1, \infty),\left\|h_{p}\right\|_{p}-\|f\|_{p} \leqslant\left\|h_{p}-f\right\|_{p} \leqslant$ $d_{p}\left(f, g ; h_{p}\right) \leqslant d_{p}(f, g ; z) \leqslant d_{\infty}(f, g ; z)$ so $\left\|h_{p}\right\|_{p} \leqslant A:=\|f\|_{\infty}+d_{\infty}(f, g ; z)$ and, for $1 \leqslant i \leqslant n, w_{i}\left|h_{p}(i)\right|^{p} \leqslant A^{p}$. Since $w_{i} \leqslant 1$ and $p>1, w_{i}\left|h_{p}(i)\right| \leqslant w_{i}^{1 / p}\left|h_{p}(i)\right| \leqslant A$, so

$$
\left\|h_{p}\right\|_{\infty} \leqslant A \max \left\{w_{i}^{-1}: 1 \leqslant i \leqslant n\right\} .
$$

The second assertion follows from the fact that every bounded sequence in $\mathbb{R}^{\boldsymbol{n}}$ has a convergent subsequence.

One of our primary concerns is the continuity of h_{p} as a function of p. The following theorem establishes this continuity on the interval $(1, \infty)$.

Theorem 5. The function I : $((1, \infty),|\cdot|) \rightarrow\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right)$ defined by $\Pi(p)=h_{p}$ is continuous.

Proof: If the theorem is false, then there exist $p \in(1, \infty)$ and $p_{k} \rightarrow p$ such that $\lim _{k \rightarrow \infty}\left\|h_{p_{k}}-h_{p}\right\|_{\infty} \neq 0$. By (4), $\left\{h_{p_{k}}\right\}$ has a subsequence $\left\{h_{q_{k}}\right\}$ which converges to an element $h^{*} \neq h_{p}$. We now show that, to the contrary, it must be that $h^{*}=h_{p}$.

Let $\varepsilon>0$ be given. Since $\lim _{k \rightarrow \infty}\|z\|_{q_{k}}=\|z\|_{p}$ for every $z \in \mathbb{R}^{n}$, there exists N_{1} such that for every $k \geqslant N_{1}$ and for $z=f, g$,

$$
\left\|z-h_{p}\right\|_{p}-\varepsilon<\left\|z-h_{p}\right\|_{q_{k}}<\left\|z-h_{p}\right\|_{p}+\varepsilon
$$

By the definition of best simultaneous approximation, $d_{q_{k}}\left(f, g ; h_{q_{k}}\right) \leqslant d_{q_{k}}\left(f, g ; h_{p}\right)$ so, for every $k \geqslant N_{1}$,

$$
\begin{equation*}
d_{q_{k}}\left(f, g ; h_{q_{k}}\right) \leqslant d_{p}\left(f, g ; h_{p}\right)+\varepsilon \tag{i}
\end{equation*}
$$

By our assumption, there exists N_{2} such that, for every $k \geqslant N_{2},\left\|h_{q_{k}}-h^{*}\right\|_{\infty}<\varepsilon$ and, for $z=f, g$,
(ii)

$$
\begin{aligned}
\left\|z-h^{*}\right\|_{q_{k}} & \leqslant\left\|z-h_{q_{k}}\right\|_{q_{k}}+\left\|h_{q_{k}}-h^{*}\right\|_{q_{k}} \\
& \leqslant\left\|z-h_{q_{k}}\right\|_{q_{k}}+\eta\left\|h_{q_{k}}-h^{*}\right\|_{\infty} \\
& <\left\|z-h_{q_{k}}\right\|_{q_{k}}+\varepsilon .
\end{aligned}
$$

Let $N=N_{1} \vee N_{2}$. By (i) and (ii), for every $k \geqslant N$,

$$
d_{q_{k}}\left(f, g ; h^{*}\right)<d_{q_{k}}\left(f, g ; h_{q_{k}}\right)+\varepsilon \leqslant d_{p}\left(f, g ; h_{p}\right)+2 \varepsilon
$$

which implies that $d_{p}\left(f, g ; h^{*}\right)<d_{p}\left(f, g ; h_{p}\right)+2 \varepsilon$. Since ε is arbitrary and since h_{p} is the unique p-b.s.a. to f and g, it must be that $h^{*}=h_{p}$.

The following corollary is also related to continuity, but includes the endpoints, 1 and ∞. Its proof uses the continuity of $\|z\|_{p}$ as a function of p and the definition of $d_{p}(f, g ; \mathcal{K})$.

Corollary 6. The function D, defined by $D(p)=d_{p}(f, g ; \mathcal{K})$, is continuous on $[1, \infty]$.

The following technical lemma will be used in the proof that h_{p} converges as $p \downarrow 1$.
Lemma 7. Either (i) $\|g-h\|_{1} \leqslant\|f-h\|_{1}$ for every h in $\mu_{1}(f, g ; \mathcal{K})$ or (ii) $\|f-h\|_{1} \leqslant\|g-h\|_{1}$ for every h in $\mu_{1}(f, g ; \mathcal{K})$.

Proof: Suppose $h^{\prime}, h^{\prime \prime} \in \mu_{1}(f, g ; \mathcal{K}),\left\|g-h^{\prime}\right\|_{1}<\left\|f-h^{\prime}\right\|_{1}$ and $\left\|g-h^{\prime \prime}\right\|_{1}>$ $\left\|f-h^{\prime \prime}\right\|_{1}$. Let $h^{*}=\left(h^{\prime}+h^{\prime \prime}\right) / 2$. Then

$$
\begin{aligned}
d_{1}\left(f, g ; h^{*}\right) & =\left\|f-\left(h^{\prime}+h^{\prime \prime}\right) / 2\right\|_{1} \vee\left\|g-\left(h^{\prime}+h^{\prime \prime}\right) / 2\right\|_{1} \\
& \leqslant \frac{1}{2}\left[\left(\left\|f-h^{\prime}\right\|_{1}+\left\|f-h^{\prime \prime}\right\|_{1}\right) \vee\left(\left\|g-h^{\prime}\right\|_{1}+\left\|g-h^{\prime \prime}\right\|_{1}\right)\right] \\
& <\frac{1}{2}\left[\left(\left\|f-h^{\prime}\right\|_{1}+\left\|g-h^{\prime \prime}\right\|_{1}\right) \vee\left(\left\|f-h^{\prime}\right\|_{1}+\left\|g-h^{\prime \prime}\right\|_{1}\right)\right] \\
& \leqslant \frac{1}{2}\left[\left(2\left\|f-h^{\prime}\right\|_{1}\right) \vee\left(2\left\|g-h^{\prime \prime}\right\|_{1}\right)\right] \\
& =d_{1}\left(f, g ; h^{\prime}\right),
\end{aligned}
$$

a contradiction.
The proof of the following theorem is modelled after the proof of [10, Theorem 2]. Throughout the demonstration, we shall assume without loss of generality that (7i) holds. For $1 \leqslant i \leqslant n$ define $\lambda_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $\lambda_{i}(h)=h(i)-f(i)$. Let $\mathcal{K}_{1}=\mu_{1}(f, g ; \mathcal{K})$. Clearly \mathcal{K}_{1} is convex. We claim that
λ_{i} does not change sign on \mathcal{K}_{1}.
Indeed, for $x, y \in \mathcal{K}_{1}$ and $1 \leqslant i \leqslant n$, let $s=x-f$ and $t=y-f$. If $s(i)=a>0$ and $t(i)=-b<0$, let $z=(b s+a t) /(a+b)$. Then $z(i)=0$ and, for $k \neq i,|z(k)| \leqslant$ $(b|s(k)|+a|t(k)|) /(a+b)$, so

$$
\|z\|_{1}<\left(b\|s\|_{1}+a\|t\|_{1}\right) /(a+b)=\|s\|_{1}
$$

Let $x^{*}=(b x+a y) /(a+b)$. Since \mathcal{K}_{1} is convex, $x^{*} \in \mathcal{K}$. By the last inequality, $\left\|x^{*}-f\right\|_{1}<\|x-f\|_{1}$, so $d_{1}\left(f, g ; x^{*}\right)=\left\|x^{*}-f\right\|_{1}<\|x-f\|_{1}=d_{1}(f, g ; x)$. This proves (*).

Define $\boldsymbol{\gamma}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\gamma(r)= \begin{cases}|r| \ln |r|, & r \neq 0 \\ 0, & r=0\end{cases}
$$

For every $h \in \mathcal{K}$ and $1 \leqslant p<\infty$, let $F_{h}(p)=\|h-f\|_{p}^{p}$ and let

$$
\Gamma(h)=F_{h}^{\prime}(1)=\sum_{i=1}^{n}|h(i)-f(i)| \ln |h(i)-f(i)| .
$$

Since $\boldsymbol{\gamma}$ is strictly convex on $[0, \infty)$, (*) implies that Γ is strictly convex on \mathcal{K}_{1} and so has a unique minimiser; call it h_{1}.

In view of (4), to show that $\lim _{p \downarrow 1} h_{p}$ exists, it will suffice to exhibit a vector h such that, for every sequence $\left\{p_{k}\right\} \downarrow 1, \lim _{k \rightarrow \infty} h_{p_{k}}=h$. The following lemma is a first step in this exhibition.

Lemma 8. If $\left\{p_{k}: k \in \mathbb{N}\right\} \subset(1, \infty)$, if $p_{k} \downarrow 1$ and if $\left\|f-h_{p_{\boldsymbol{k}}}\right\|_{\boldsymbol{p}_{\boldsymbol{k}}} \geqslant\left\|g-h_{p_{\boldsymbol{k}}}\right\|_{\boldsymbol{p}_{\boldsymbol{k}}}$ for every $k \in \mathbb{N}$, then $\lim _{k \rightarrow \infty} h_{p_{k}}=h_{1}$.

Proof: If the lemma is false, then, by (4), there exists a sequence $\left\{q_{k}\right\} \subset\left\{p_{k}\right\}$ such that $q_{k} \downarrow 1$ and $h_{q_{k}} \rightarrow z \neq h_{1}$. Then

$$
\begin{equation*}
\Gamma(z)>\Gamma\left(h_{1}\right) \tag{i}
\end{equation*}
$$

If $r \geqslant 0$, then the function $\boldsymbol{p} \mapsto \boldsymbol{r}^{\boldsymbol{p}}$ is a convex function so the Mean Value Theorem implies that, for every $p>1, r \ln r \leqslant\left(r^{p}-r\right) /(p-1)$. Hence

$$
\begin{equation*}
\Gamma\left(h_{q_{k}}\right) \leqslant \frac{1}{q_{k}-1} \sum_{i=1}^{n}\left\{\left|h_{q_{i}}(i)-f(i)\right|^{q_{k}}-\left|h_{q_{k}}(i)-f(i)\right|\right\} . \tag{ii}
\end{equation*}
$$

Since $h_{q_{k}}$ is a q_{k}-b.s.a. to f and g from \mathcal{K}, we have $\left\|f-h_{q_{k}}\right\|_{q_{k}} \leqslant d_{q_{k}}\left(f, g ; h_{q_{k}}\right) \leqslant$ $d_{q_{k}}\left(f, g ; h_{1}\right)$. This, along with (7i) gives

$$
\begin{equation*}
\left\|f-h_{q_{k}}\right\|_{q_{k}} \leqslant\left\|f-h_{1}\right\|_{q_{k}} . \tag{iii}
\end{equation*}
$$

Since $h_{1} \in \mathcal{K}_{1}$ and (7i) holds, $\left\|f-h_{1}\right\|_{1}=d_{1}\left(f, g ; h_{1}\right) \leqslant d_{1}\left(f, g ; h_{q_{k}}\right)$. Since $\|z\|_{p}$ is a nondecreasing function of p for every z in $\mathbb{R}^{n},\left\|f-h_{1}\right\|_{1} \leqslant d_{\boldsymbol{q}_{k}}\left(f, g ; h_{q_{k}}\right)=$ $\left\|f-h_{q_{k}}\right\|_{q_{k}}$, that is,

$$
\begin{equation*}
\left\|f-h_{1}\right\|_{1} \leqslant\left\|f-h_{q_{k}}\right\|_{q_{k}} \tag{iv}
\end{equation*}
$$

By (ii), (iii), and (iv),

$$
\begin{equation*}
\Gamma\left(h_{q_{k}}\right) \leqslant \frac{1}{q_{k}-1} \sum_{i=1}^{n}\left\{\left|h_{1}(i)-f(i)\right|^{q_{k}}-\left|h_{1}(i)-f(i)\right|\right\} . \tag{v}
\end{equation*}
$$

As $k \rightarrow \infty$, the right hand side of (v) approaches $\Gamma\left(h_{1}\right)$ so $\Gamma(z) \leqslant \Gamma\left(h_{1}\right)$, which contradicts (i), and proves the lemma.

Theorem 9. The net $\left\{h_{p}: p>1\right\}$ converges as $p \downarrow 1$
Proof: Suppose first that there is an $\alpha>1$ such that

$$
\begin{equation*}
\left\|f-h_{p}\right\|_{p}<\left\|g-h_{p}\right\|_{p}, \quad p \in(1, \alpha) . \tag{i}
\end{equation*}
$$

In this case, if $p_{k} \downarrow 1$, then, without loss of generality, $\left\|f-h_{p_{k}}\right\|_{p_{k}}<\left\|g-h_{p_{k}}\right\|_{p_{k}}$ for every $k \in \mathbb{N}$, so (2) implies that $h_{p_{k}}=g_{p_{k}}$ and, by [10], $h_{p_{k}} \rightarrow g_{1}$, the natural best ℓ_{1}-approximation to g from \mathcal{K}, and the proof is complete.

Suppose (i) does not hold. Then there exists a sequence $\left\{p_{k}\right\}$ which satisfies the condition in Lemma 8, namely, $p_{k} \downarrow 1$ and $\left\|f-h_{p_{k}}\right\|_{p_{k}} \geqslant\left\|g-h_{p_{k}}\right\|_{p_{k}}$ for every $k \in \mathbb{N}$. If $q_{k} \downarrow 1$ and $\left\|f-h_{q_{k}}\right\|_{q_{k}}<\left\|g-h_{q_{k}}\right\|_{q_{k}}$, let $r_{k}=\sup \left\{p<q_{k}:\left\|f-h_{p}\right\|_{p} \geqslant\right.$ $\left.\left\|g-h_{p}\right\|_{p}\right\}$. We may assume without loss of generality that $\left\{r_{k}\right\} \subset\left\{p_{k}\right\}$. Then, by (5), $r_{k}<q_{k}$. By the Intermediate Value Theorem, $\left\|f-h_{p}\right\|_{p}<\left\|g-h_{p}\right\|_{p}$ for every p in $\left(r_{k}, q_{k}\right)$, and, by (2), $h_{p}=g_{p}$ for every $p \in\left(r_{k}, q_{k}\right)$. Thus (5) implies that $\lim _{p \downarrow r_{k}} g_{p}=\lim _{p \downarrow r_{k}} h_{p}=h_{r_{k}}$. Since $G(p)=g_{p}$ is continuous on ($1, \infty$) (the proof is similar to that of (5)), it must be that $h_{r_{k}}=g_{r_{k}}$. From the above considerations, we know that $h_{q_{k}} \rightarrow g_{1}$ and $h_{r_{k}} \rightarrow h_{1}$. But $h_{r_{k}}=g_{r_{k}} \rightarrow h_{1}$ so $h_{q_{k}} \rightarrow h_{1}$.

Thus, if (i) does not hold and if $q_{k} \downarrow 1$, then, without loss of generality, either $\left\{q_{k}\right\}=\left\{r_{k}\right\}$ or $\left\{q_{k}\right\}=\left\{r_{k}\right\} \cup\left\{s_{k}\right\}$, where, for every $k \in \mathbb{N},\left\|f_{r_{k}}-h_{r_{k}}\right\|_{r_{k}} \geqslant$ $\left\|g_{r_{k}}-h_{r_{k}}\right\|_{r_{k}}$ and $\left\|f_{\boldsymbol{a}_{k}}-h_{\varepsilon_{k}}\right\|_{s_{k}}<\left\|g_{\boldsymbol{s}_{k}}-h_{\varepsilon_{k}}\right\|_{\varepsilon_{k}}$. Since each of $\left\{h_{r_{k}}\right\}$ and $\left\{h_{\varepsilon_{k}}\right\}$ converges to h_{1}, so do $\left\{h_{q_{k}}\right\}$ and the net $\left\{h_{p}: p>1\right\}$. However, $\sup (f, g ; \mathcal{M})=\bar{h}=$ $\chi_{[0,1 / 2]}+\chi_{(1 / 2,1]}$ and $\inf (f, g ; \mathcal{M})=\underline{h}=\chi_{(1 / 2,1]}$ are not in $\mu_{1}(f, g ; \mathcal{M})$.

Combining (6) and (9), we have the following.
Corollary 10. The set $\mu_{1}(f, g ; \mathcal{K})$ is nonempty.

3. Simultaneous Monotone L_{p}-Approximation, $p \in[1, \infty]$

In this section we shall assume that $\Omega=[0,1]$, that Σ consists of all Lebesgue measurable subsets of Ω, and that μ is Lebesgue measure. Let $\mathcal{K}=\mathcal{M}$, the set of all nondecreasing extended real-valued functions on Ω and let $f, g \in L_{\infty}$ have at most discontinuities of the first kind. Let $M=\|f\|_{\infty} \vee\|g\|_{\infty}$.

Lemma 11. The set $\cup_{p=1}^{\infty} \mu_{p}(f, g ; \mathcal{M})$ is uniformly bounded by M.
Proof: If $h \in \mu_{p}(f, g ; \mathcal{M})$ but there is a $t \in(0,1)$ such that $h(t)>M$, then there is an $s \in(0,1)$ such that, for every $r>s, h(r)>M$. Let $h^{*}=h \wedge M$. Then $h^{*} \in \mathcal{M}$ and $d_{p}\left(f, g ; h^{*}\right)<d_{p}(f, g ; h)$, a contradiction. The case $\min h(t)<-M$ is treated similarly.

Lemma 12. If $1<p<\infty$ and $\mathcal{H} \subset \mathcal{M}$ is uniformly bounded by B, then there exist $h^{k} \in \mathcal{H}$ and $h \in \mathcal{M}$ such that $\|h\|_{\infty} \leqslant B$ and $\lim _{k \rightarrow \infty}\left\|h-h_{k}\right\|_{p}=0$.

Proof: By Helly's Theorem [12], there exist $h^{k} \in \mathcal{H}$ and $h \in \mathcal{M}$ such that $\|h\|_{\infty} \leqslant B$ and $h^{k} \rightarrow h$ pointwise on Ω. Thus, by the Lebesgue Dominated Convergence Theorem, $\left\{h^{i}\right\}$ converges to h in L_{p}.

In view of (11) we may, and will, assume that \mathcal{M} consists of all nondecreasing functions h such that $\|h\|_{\infty} \leqslant 2 M$. Thus, by (12), \mathcal{M} is a compact subset of L_{p} for $1<p<\infty$. By (1), S_{p} is a $\|\cdot\|_{p}$-continuous function of f and g. By a proof similar to that of (5), the following result can be obtained. If $q \in(1, \infty)$ then the function $\Pi:((1, q],|\cdot|) \rightarrow L_{q}$ defined by $\Pi(p)=h_{p}$ is a continuous function of p.

We now undertake to show that $\lim _{p \downarrow 1} h_{p}$ exists, so that the last result can be extended to $[1, q]$.

Theorem 13. The net $\left\{h_{p}\right\}$ converges uniformly as $p \downarrow 1$.
Proof: The length of the proof, and the fact that some of its waystations are of independent interest, warrant its division into several lemmas. We begin by showing that S_{p} is a monotone operator.

Lemma (i) Suppose that $f^{i}, g^{i} \in L_{p}, i=1,2,1<p<\infty$. If $f^{1} \leqslant f^{2}$ and $g^{1} \leqslant g^{2}$, then $S_{p} f^{1} g^{1} \leqslant S_{p} f^{2} g^{2}$.

Proof: Let $h^{i}=S_{p} f^{i} g^{i}, i=1,2, T_{1}=h^{1} \wedge h^{2}$ and $T_{2}=h^{1} \vee h^{2}$; let $a_{i}=$ $\left|f^{i}-h^{i}\right|, b_{i}=\left|g^{i}-h^{i}\right|, c_{i}=\left|f^{i}-T_{i}\right|$ and $d_{i}=\left|g^{i}-T_{i}\right|, i=1,2$. By [11, Lemma 2],
so

$$
\begin{aligned}
& a_{2}^{p}+a_{1}^{p} \geqslant c_{2}^{p}+c_{1}^{p} \quad \text { and } \quad b_{2}^{p}+b_{1}^{p} \geqslant d_{2}^{p}+d_{1}^{p}, \\
& a_{2}^{p} \vee b_{2}^{p} \geqslant c_{2}^{p} \vee d_{2}^{p} \quad \text { or } \quad a_{1}^{p} \vee b_{1}^{p} \geqslant c_{1}^{p} \vee d_{1}^{p} .
\end{aligned}
$$

If the first case holds, then upon integrating, we obtain

$$
\left\|f^{2}-h^{2}\right\|_{p} \vee\left\|g^{2}-h^{2}\right\|_{p} \geqslant\left\|f^{2}-T_{2}\right\|_{p} \vee\left\|g^{2}-T_{2}\right\|_{p}
$$

Since $S_{p} f^{2} g^{2}$ is uniquely defined, $h^{2}=T_{2} \geqslant h^{1}$. By similar reasoning, if the second case holds, then $h^{1}=T_{1} \leqslant h^{2}$. This completes the proof of (i).

Lemma (ii) For $1<p<\infty$ and $c \in \mathbb{R}, S_{p}(f+c, g+c)=h_{p}+c$.
Proof: By the definition of h_{p}, we have for all $h \in K$

$$
\left\|f-h_{p}\right\|_{p} \vee\left\|g-h_{p}\right\|_{p} \leqslant\|f-h\|_{p} \vee\|g-h\|_{p}
$$

For any $k \in K$, there exists $h \in K$ such that $h+c=k$, so

$$
\begin{aligned}
\left\|f+c-\left(h_{p}+c\right)\right\|_{p} \vee\left\|g+c-\left(h_{p}+c\right)\right\|_{p} & \leqslant\|f+c-(h+c)\|_{p} \vee\|g+c-(h+c)\|_{p} \\
& =\|f+c-k\|_{p} \vee\|g+c-k\|_{p} .
\end{aligned}
$$

This concludes the proof of (ii).
Lemma (iii) If $1<p<\infty$, if I is an open interval, and if both f and g are constant on I, then $S_{p}(f, g)$ is constant on I.

Proof: Let $h=S_{p}(f, g)$, and let $\left.h^{\prime}\right|_{I}=-h+g+f$, and $\left.h^{\prime}\right|_{\Omega \backslash I}=h$. Note that $\left.h^{\prime}\right|_{I}$ is nondecreasing. For notational convenience, we let $\|k-l\|=\left(\int_{I}|k-l|^{p}\right)^{1 / p}$. Then $\|f-h\|=\left\|g-h^{\prime}\right\|$ and $\|g-h\|=\left\|f-h^{\prime}\right\|$. If $h^{\prime \prime}=2^{-1}\left(h+h^{\prime}\right)$ and $d=$ $2^{-1}(\|f-h\|+\|g-h\|)$, then both $\left\|f-h^{\prime \prime}\right\| \leqslant d$ and $\left\|g-h^{\prime \prime}\right\| \leqslant d$. But this implies that

$$
\left\|f-h^{\prime}\right\| \vee\left\|g-h^{\prime \prime}\right\| \leqslant\|f-h\| \vee\|g-h\|
$$

Since $h^{\prime \prime}=(g+f) / 2$ is constant on I and $h=S_{p}(f, g)$ it must be that $h^{\prime \prime}=h$ so $h^{\prime}=h$. Thus $\left.h\right|_{I}$ is both nondecreasing and nonincreasing, hence constant. This concludes the proof of (iii).

Since f and g have at most discontinuities of the first kind, they can be uniformly approximated by step functions (see [19]). Thus, for any $n \in \mathbb{N}$ there are step functions

$$
\begin{equation*}
f^{n}=a_{1} \chi_{\left[0, t_{1}\right]}+\sum_{i=2}^{k_{n}} a_{i} \chi_{\left(t_{i-1}, t_{i}\right]}, \tag{iv}
\end{equation*}
$$

and

$$
\begin{equation*}
g^{n}=b_{1} \chi_{\left[0, t_{1}\right]}+\sum_{i=2}^{k_{n}} b_{1} \chi_{\left(t_{i-1}, t_{i}\right]} \tag{v}
\end{equation*}
$$

(where χ_{A} is the indicator function of A, that is, $\chi_{A}(t)=1$ if $t \in A$ and $\chi_{A}(t)=0$ if $t \notin A$) such that $\left\|f-f^{n}\right\|_{\infty}<n^{-1}$ and $\left\|g-g^{n}\right\|_{\infty}<n^{-1}$, where $\left\{0=t_{0}<t_{1}<\right.$ $\left.\ldots<t_{n}=1\right\}$ is the common refinement of the partitions of $[0,1]$ associated with the canonical representations of f^{n} and g^{n}. Let $h_{p}^{n}=S_{p}\left(f_{n}, g_{n}\right)$. By the last lemma, h_{p}^{n} must have the form

$$
\begin{equation*}
h_{p}^{n}=c_{1}^{p} \chi_{\left[0, t_{1}\right]}+\sum_{i=2}^{k_{n}} c_{i}^{p} \chi_{\left(t_{i-1}, t_{i}\right]} . \tag{vi}
\end{equation*}
$$

Thus, we are in the context of weighted discrete simultaneous approximation (where $f^{n}=\left\{a_{i}\right\}_{i=1}^{k_{n}}, g^{n}=\left\{b_{i}\right\}_{i=1}^{k_{n}}, h_{p}^{n}=\left\{c_{i}^{p}\right\}_{i=1}^{k_{n}}$ and $w_{i}=t_{i}-t_{i-1}$) so, by (9), there are numbers $c_{i}^{1}, 1 \leqslant i \leqslant k_{n}$, such that

$$
\begin{equation*}
\lim _{p \nmid 1} h_{p}^{n}=h_{1}^{n}=c_{1}^{1} x_{\left[0, t_{1}\right]}+\sum_{i=2}^{k_{n}} c_{i}^{1} x_{\left(t_{i-1}, t_{i}\right]} . \tag{vii}
\end{equation*}
$$

Lemma (viii) Let f^{n}, g^{n}, h_{p} and h_{p}^{n} be as defined above. Let h_{p} be the best L_{p}-simultaneous approximation to f and g from \mathcal{M}. Then for every $\varepsilon>0$, there exists an $N=N(f, g, \varepsilon)$ such that for all $n \geqslant N$ and $p \in(1, \infty),\left\|h_{p}^{n}-h_{p}\right\|_{\infty}<\varepsilon$.

Proof: Let $\varepsilon>0$ be given. Then there is an integer $N \geqslant 1$ such that $\left\|f-f^{n}\right\|_{\infty}<\varepsilon$ and $\left\|g-g^{n}\right\|_{\infty}<\varepsilon$ for all $n \geqslant N$. Thus, except on a set of measure zero, $n \geqslant N$ implies that

$$
\begin{equation*}
f^{n}<f+\varepsilon, \quad g^{n}<g+\varepsilon \tag{ix}
\end{equation*}
$$

and
(x)

$$
f<f^{n}+\varepsilon, \quad g<g^{n}+\varepsilon
$$

Applying (i) and (ii) to (ix) and (x) respectively, we obtain

$$
h_{p}^{n}<h_{p}+\varepsilon, \quad \text { and } \quad h_{p}<h_{p}^{n}+\varepsilon,
$$

which implies that $\left\|h_{p}^{n}-h_{p}\right\|_{\infty}<\varepsilon$.
We are now in a position to complete the proof of Theorem 13. Let $\varepsilon>0$ be given. Then there exists $N \geqslant 1$ such that $\left\|f^{n}-f^{m}\right\|_{\infty}<\varepsilon$, and $\left\|g^{n}-g^{m}\right\|_{\infty}<\varepsilon$ for all $n, m \geqslant N$. An argument similar to that in the last proof shows that there exists an $N=N(f, g, \varepsilon)$ such that for every $n, m \geqslant N$ and $p \in(1, \infty), h_{p}^{n}<h_{p}^{m}+\varepsilon$ and $h_{p}^{m}<h_{p}^{n}+\varepsilon$. Letting $p \downarrow 1$, we obtain

$$
\begin{equation*}
\left\|h_{1}^{n}-h_{1}^{m}\right\|_{\infty}<\varepsilon, \quad n, m \geqslant N . \tag{xi}
\end{equation*}
$$

Hence $\left\{h_{1}^{n}: n=1,2, \ldots\right\}$ converges uniformly to, say, h_{1}. Since the values of N in (viii) and (xi) are independent of p, (vii), (vii) and (xi) and the triangle inequality imply that h_{p} converges uniformly to h_{1} as $p \downarrow 1$. This concludes the proof of Theorem 13. $]$

Let $h_{1}=\lim _{p \downarrow 1} h_{p}$ and define $S_{1}(f, g):=h_{1}$. Applying a version of (6), we have that $h_{1} \in \mu_{1}(f, g ; \mathcal{M})$. This proves the following:

Corollary 14. The set $\mu_{1}(f, g ; \mathcal{M})$ is nonempty.
We end this section with a discussion of the inheritance of the continuity of f and g by h_{p}. The theorem below is presented in [8], but is included here also for self-containment. We refer the reader to [1] for the definition of approximate continuity.

THEOREM 15. If f and g are approximately continuous and $p \in(1, \infty)$, then h_{p} is continuous on (0,1).

Proof: Suppose for contradiction that h_{p} has a jump discontinuity at $a \in(0,1)$. We may assume without loss of generality that $g(a) \leqslant f(a)$.

We may approximate the above functions by step functions. Indeed, let $\sigma=g(a)$, $\tau=f(a), \lambda=h_{p}\left(a^{-}\right)=\lim _{t \uparrow a} h_{p}(t)$ and $\mu=h_{p}\left(a^{+}\right)$and suppose that $\alpha>0$. By Lemma 9 , there exists an $\eta \in[\lambda, \mu]$ and $\varepsilon=\varepsilon(\alpha)>0$ such that

$$
\begin{gathered}
\max \left\{\alpha\left(|\tau-\mu|^{p}+|\tau-\lambda|^{p}\right), \alpha\left(|\lambda-\sigma|^{p}+|\mu-\sigma|^{p}\right)\right\} \\
=\max \left\{2 \alpha|\tau-\eta|^{p}, 2 \alpha|\eta-\sigma|^{p}\right\}+\varepsilon .
\end{gathered}
$$

If α is replaced by a multiple of α in the last equality, then ε is replaced by the same multiple of ε. Thus there exists a $K>0$ such that $\varepsilon(\alpha)=K \boldsymbol{\alpha}$. Hence

$$
\begin{gathered}
\max \left\{|\tau-\mu|^{p}+|\tau-\lambda|^{p},|\lambda-\sigma|^{p}+|\mu-\sigma|^{p}\right\} \\
=\max \left\{2|\tau-\eta|^{p}, 2|\eta-\sigma|^{p}\right\}+K
\end{gathered}
$$

Let $h_{p}^{r}(t)=h_{p}(t)$ if $t>a$ and $h_{p}^{r}(t)=\mu$ if $t \leqslant a$, and define h_{p}^{ℓ} similarly, with reversed inequalities. Then each of h_{p}^{r} and h_{p}^{ℓ} is continuous at a so, by [1, Theorem 5.4] each of $\left|h_{p}^{j}-k\right|^{p}, j=r, l, k=f, g$, is approximately continuous at a. By [1, Theorem 8.2]

$$
\lim _{\delta \rightarrow 0} \delta^{-1} \int_{a}^{a+\delta}\left|h_{p}^{r}-k\right|^{p}=\left|h_{p}^{r}(a)-k(a)\right|^{p}, \quad k=f, g
$$

and similar statements hold for h_{p}^{ℓ}, with integration from $a-\delta$ to a. Since $K>0$ there exists a $\delta>0$ such that

$$
\begin{aligned}
& \max \left\{\delta^{-1} \int_{a-\delta}^{a+\delta}\left|h_{p}-f\right|^{p}, \delta^{-1} \int_{a-\delta}^{a+\delta}\left|h_{p}-g\right|^{p}\right\} \\
> & \max \left\{\delta^{-1} \int_{a-\delta}^{a+\delta}|\eta-f|^{p}, \delta^{-1} \int_{a-\delta}^{a+\delta}|\eta-g|^{p}\right\}
\end{aligned}
$$

If h_{p}^{*} is defined by

$$
h_{p}^{*}= \begin{cases}\eta, & t \in[a-\delta, a+\delta) \\ h_{p}(t), & \text { otherwise }\end{cases}
$$

then h_{p}^{*} is a better simultaneous L_{p} approximation to f and g than is h_{p}.
If f and g are continuous, then they are quasi-continuous and approximately continuous both, so, by (13) and (15),

Corollary 16. If f and g are continuous, then so is h_{1}.
Example (19) in Section 4 shows that not all members of $\mu_{1}(f, g ; \mathcal{M})$ preserve the continuity of f and g. As a consequence of (3) and (13) above, we have the following.

Corollary 17. Suppose $p \in[1, \infty)$. If $h_{p} \neq f_{p}$, then $\left\|f-h_{p}\right\|_{p} \leqslant\left\|g-h_{p}\right\|_{p}$. If $f_{p} \neq h_{p} \neq g_{p}$, then $\left\|f-h_{p}\right\|_{p}=\left\|g-h_{p}\right\|_{p}$.

4. Simultaneous Monotone L_{1}-Approximation

The structure of the set of best simultaneous monotone L_{1} approximations to an arbitrary pair of functions (f, g) is of intrinsic interest. In [6, 7], assuming $f=g$, this set was completely characterised in terms of f, and in [9], the continuity of the multifunction $f \mapsto \mu_{1}(f ; M)$ was studied. In this section, we present some related results in the context where f and g are not necessarily the same.

Lemma 18. Let f and g be step functions defined over the same partition of $[0,1]$. Then there exists an element $h \in \mu_{1}(f, g ; \mathcal{M})$ such that h is a step function of the same form as f and g.

Proof: Let f_{i} and g_{i} be the values of f and g on the subinterval $\left(t_{i-1}, t_{i}\right]$. Assume without loss of generality that $g_{i}<f_{i}$. Let $h \in \mu_{1}(f, g ; \mathcal{M})$. If h is not a constant on $\left(t_{i-1}, t_{i}\right]$, then clearly $g_{i} \leqslant h(x) \leqslant f_{i}$ for all $x \in\left(t_{i-1}, t_{i}\right]$, otherwise both of $\|f-h\|_{1}$ and $\|g-h\|_{1}$ can be reduced simultaneously and h would not be an element of $\mu_{1}(f, g ; \mathcal{M})$ any more. Now, we seek a constant $c \in\left[g_{i}, f_{i}\right]$ such that
and

$$
\begin{aligned}
\int_{t_{i-1}}^{t_{i}}\left(f_{i}-h(x)\right) d x & =\int_{t_{i-1}}^{t_{i}}\left(f_{i}-c\right) d x \\
\int_{t_{i-1}}^{t_{i}}\left(h(x)-g_{i}\right) d x & =\int_{t_{i-1}}^{t_{i}}\left(c-g_{i}\right) d x
\end{aligned}
$$

But it is clear now that c is given by

$$
c=\left(t_{i}-t_{i-1}\right)^{-1} \int_{t_{i-1}}^{t_{i}} h(x) d x
$$

This completes the proof.
Thus, for any pair of step functions f and g, there always exists a step function $h \in \mu_{1}(f, g ; \mathcal{M})$. Clearly, such a step function is not necessarily unique. This will be shown as part of the next example.

In [5], it was shown that the set of best L_{1}-approximations to a bounded measurable function f by nondecreasing functions includes its supremum and infimum. However, this is not the case with $\mu_{1}(f, g ; \mathcal{M})$.

EXAMPLE 19. Take $f \equiv 2$ and $g \equiv 0$ on $[0,1]$. Then any function h_{c} of the form

$$
h_{c}(x)= \begin{cases}c, & 0 \leqslant x \leqslant 1 / 2 \\ 2-c, & 1 / 2<x \leqslant 1\end{cases}
$$

$c \in[0,1]$, is an element of $\mu_{1}(f, g ; \mathcal{M})$, so $\bar{h}:=\sup (f, g ; \mathcal{M}) \geqslant \chi_{[0,1 / 2]}+2 \chi_{(1 / 2,1]}$ and $\underline{h}:=\inf (f, g ; \mathcal{M}) \leqslant \chi_{(1 / 2,1]}$. Thus $d_{1}(f, g ; \bar{h}) \geqslant 3$, so $\bar{h} \notin \mu_{1}(f, g ; \mathcal{M})$. Similarly, $\underline{h} \notin \mu_{1}(f, g ; \mathcal{M})$. Also notice that if $h^{*}(x)=2 x$, then $h^{*} \in \mu_{1}(f, g ; M)$.

This example shows also that the fact that both of f and g are constants doesn't imply that every element of $\mu_{1}(f, g ; \mathcal{M})$ must be also a constant, or even a step function as is the case with $h^{*}(x)=2 x$. It also demonstrates the fact that continuity is not inherited from f and g by all elements of $\mu_{1}(f, g ; \mathcal{M})$.

Next, one might ask about the relation between the set of best L_{1}-simultaneous approximations to a pair of functions f and g, and the set of best L_{1}-approximations to the mean of this pair of functions. In [13], it was shown that h^{*} is the best L_{2} simultaneous approximation to two functions f and g if and only if h^{*} is the best L_{2}-approximation to their mean $T=(f+g) / 2$, provided we define h^{*} as the element satisfying

$$
\inf _{h \in \mathcal{M}}\left[\|f-h\|_{2}^{2}+\|g-h\|_{2}^{2}\right]^{1 / 2}=\left(\left\|f-h^{*}\right\|_{2}^{2}+\left\|g-h^{*}\right\|_{2}^{2}\right)^{1 / 2}
$$

This motivates us to raise a similar question for our case of best L_{1}-simultaneous approximation. Is $\mu_{1}(f, g ; \mathcal{M}) \cap \mu_{1}(T ; \mathcal{M}) \neq \emptyset$ for any pair of functions f and g; for a special pair of functions, such as continuous functions? How about if $\mu_{1}(T ; \mathcal{M})$ is a singleton? The following example answers these questions.

EXAMPLE 20. Let $f(x)=3-2 x$ and $g(x)=1-4 x$. Then $T(x)=(1 / 2)(f(x)+g(x))=$ 2-3x. Clearly $T_{1} \equiv 1 / 2$ is the unique best L_{1}-approximation to T by elements of \mathcal{M}. However $T_{1} \notin \mu_{1}(f, g ; \mathcal{M})$. Take for example $h^{*} \equiv 29 / 60 \in \mathcal{M}$. Then $d_{1}\left(f, g ; h^{*}\right)<$ $d_{1}\left(f, g ; T_{1}\right)$.

However, the following lemma gives us a condition which guarantees that $\mu_{1}(f, g ; \mathcal{M}) \subseteq \mu_{1}((1 / 2)(f+g) ; \mathcal{M})$.

Lemma 21. If $d_{1}((1 / 2)(f+g) ; \mathcal{M}) \geqslant d_{1}(f, g ; \mathcal{M})$, then $\mu_{1}(f, g ; \mathcal{M})$ $\subseteq \mu_{1}((1 / 2)(f+g) ; \mathcal{M})$.

Proof: In general, we have for any $h \in \mu_{1}(f, g ; \mathcal{M})$

$$
\begin{aligned}
d^{*}=d_{1}((1 / 2)(f+g) ; M) & \leqslant(1 / 2)\|(f-h)+(g-h)\|_{1} \\
& \leqslant \max \left(\|f-h\|_{1},\|g-h\|_{1}\right)=d_{1}(f, g ; h)=d_{1}
\end{aligned}
$$

So we obtain equality in the given condition of the theorem. Now, let $h_{1} \in \mu_{1}(f, g ; \mathcal{M})$, and suppose $\left\|f-h_{1}\right\|_{1} \geqslant\left\|g-h_{1}\right\|_{1}$. Then

$$
\begin{aligned}
d_{1}=\left\|f-h_{1}\right\|_{1} & \geqslant(1 / 2)\left(\left\|f-h_{1}\right\|_{1}+\left\|g-h_{1}\right\|_{1}\right) \\
& \geqslant\left\|(1 / 2)(f+g)-h_{1}\right\|_{1} \geqslant d^{*}=d_{1}
\end{aligned}
$$

Hence $h_{1} \in \mu_{1}((1 / 2)(f+g) ; \mathcal{M})$.
Suppose the hypothesis of (21) holds. Then $\mu_{1}(f, g ; M)=\mu_{1}((1 / 2)(f+g) ; \mathcal{M})$ if $\mu_{1}((1 / 2)(f+g) ; \mathcal{M})$ is a singleton. This occurs when both of f and g are continuous or approximately continuous (see [2]). Even with the assumption of uniqueness of the best L_{1}-approximation to the mean $(1 / 2)(f+g)$, the converse of the lemma is still not true in general. The following example illustrates this fact.

Example 22. Let $f(x)=x^{2}-1$ on $[-1,1]$ and let $g=-f$. Then

$$
\mu_{1}(f, g ; \mathcal{M})=\mu_{1}((1 / 2)(f+g) ; \mathcal{M})=(1 / 2)(f+g) \equiv 0
$$

However

$$
d^{*}=d_{1}((1 / 2)(f+g) ; \mathcal{M})=0<2 / 3=d_{1}=d_{1}(f, g ; \mathcal{M})
$$

The condition that $d^{*}=d_{1}$ is very vital. To see this, we go back to the two functions f and g given in Example (20) above. There we find that the set $\mu_{1}(f, g ; \mathcal{M})$ consists of a single element, namely $h_{1} \equiv 2 \sqrt{3}-3$. However

$$
\begin{aligned}
d_{1}=\left\|f-h_{1}\right\|_{1} & =\left\|g-h_{1}\right\|_{1}=5-2 \sqrt{3} \\
& >3 / 4=d^{*}=d_{1}\left((1 / 2)(f+g) ; h^{*}\right)
\end{aligned}
$$

where $h^{*} \equiv 1 / 2$ is the unique best L_{1}-approximation to $(1 / 2)(f+g)$.

References

[1] A.M. Bruckner, Differentiation of Real Functions: Lecture notes in mathematics 659 (Springer-Verlag, Berlin, Heidelberg, New York, 1978).
[2] R.B. Darst and R. Huotari, 'Best L_{1}-approximation of bounded approximately continuous functions on [0,1] by nondecreasing functions', J. Approx. Theory 43 (1985), 178-189.
[3] D.S. Goel, A.S.B. Holland, C. Nasim and B.N. Sahney, 'On best simultaneous approximation in normed linear spaces', Canad. Math. Bull. 17 (1974), 523-527.
[4] D.S. Goel, A.S.B. Holland, C. Nasim and B.N. Sahney, 'Characterization of an element of best ℓ^{p}-simultaneous approximation', S. Ramanaujan Memorial Volume, Madras (1984), 10-14.
[5] R. Huotari and D. Legg, 'Best monotone approximation in $L_{1}[0,1]$ ', Proc. Amer. Math. Soc. 94 (1985), 279-282.
[6] R. Huotari, D. Legg, A. Meyerowitz and D. Townsend, 'The natural best L_{1}-approximation by nondecreasing functions', J. Approx. Theory 52 (1988), 132-140.
[7] R. Huotari, A. Meyerowitz and M. Sheard, 'Best monotone approximants in $L_{1}[0,1]$ ', J. Approx. Theory 47 (1986), 85-91.
[8] R. Huotari and S. Sahab, 'Simultaneous monotone L_{p} approximation, $p \rightarrow \infty$ ', Canad. Math. Bull. (to appear).
[日] D. Legg and D. Townsend, 'Sets of best L_{1} approximants', J. Approx. Theory 59 (1989), 316-320.
[10] D. Landers and L. Rogge, 'Natural choice of L_{1} approximants', J. Approx. Theory 33 (1981), 268-280.
[11] D. Landers and L. Rogge, 'On projections and monotony in L_{p}-spaces', Manuscripta Math. 26 (1979), 363-369.
[12] I. P. Natanson, Theory of functions of a real variable (Ungar, New York, 1955).
[13] G.M. Philips and B.N. Sahney, 'Best simultaneous approximation in the L_{1} and L_{2} norms', in Theory of approximation with applications, Editors A.G. Law and B.N. Sahney (Academic Press, New York, 1976).
[14] M.J.D. Powell, Approximation theory and methods (Cambridge, 1981).
[15] S. Sahab On the monotone simultaneous approximation on [0,1], Bull. Austral. Math. Soc. 39 (1988), 401-411.
[16] S. Sahab, 'Natural choice of best L_{1}-simultaneous approximants', Tamkang J. Math. 20 (1989), 147-157.
[17] S. Sahab, 'Best simultaneous approximation of quasicontinuous functions by monotone functions', J. Austral. Math. Soc. (Ser. A) (to appear).
[18] I. Singer, Best approximation in normed linear spaces (Springer Verlag, Berlin, Heidelberg, New York, 1970).
[19] A.C.M. Van Rooij and W.H. Schikhof, A second course on real functions (Cambridge, 1982).

Department of Mathematics
Idaho State University
Pocatello, ID 83209
United States of America

Mathematics Department
King Abdulaziz University
Jeddah 21413
Saudi Arabia

[^0]: Received 14 May 1991
 This research was partially supported by Grant \# 170-410 from King Abdulaziz University.

