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Helioseismology: the Sun as a strongly-
constrained, weakly-coupled plasma 

W. DAPPEN 
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Abstract 

Accurate measurements of observed frequencies of solar oscillations are pro­
viding a wealth of data on the properties of the solar interior. The frequen­
cies depend on the solar structure, and on the properties of the plasma in 
the Sun. Except in the very outer layers, the stratification of the convec­
tion zone is almost adiabatic. There, the sound-speed profile is governed 
principally by the specific entropy, the (homogenous) chemical composition 
and the equation of state. It is therefore essentially independent of the 
uncertainties in the radiative opacities. The sensitivity of the observed fre­
quencies is such that it enables to distinguish rather subtle features of the 
equation of state. An example is the signature of the heavy elements in the 
equation of state. This opens the possibility to use the Sun as a laboratory 
for thermodynamic properties. 

Les frequences observees des oscillations solaires constituent une base 
de donnees extremement riche qui nous permet d'etudier les proprietes de 
I'interieur du soleil. Les frequences dependent de la structure solaire et des 
proprietes locales du plasma (surtout de la vitesse du son). Sauf dans les 
couches tres exterieures, la structure de la zone convective du soleil est es-
sentiellement adiabatique. Le profil de la vitesse du son est done donne 
par I'entropie specifique, la composition chimique (homogene) et I'equation 
d'etat. L'opacite radiative ne joue pas de role. Grace a la grande precision 
des frequences observees on arrive a distinguer des phenomenes assez sub-
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tiles dans l'equation d'etat, comme la signature faible des elements lourds. 
Le soleil est devenu un laboratoire de physique des plasmas stellaires. 

17.1 Introduction 

Solar acoustic oscillations have opened a new window into the Sun. By their 
nature they link the local sound speed in the interior with the observed 
oscillation frequencies. The spatial resolution of the solar disk allows the 
identification of a large number of individual oscillation modes, which are 
classified in terms of spherical harmonics. Modes in a large range of angular 
degrees, between / = 0 and a few thousand, are observed. The frequencies 
of these modes are centered around 3 mHz, which corresponds to periods 
around 5 minutes. They have been determined with high precision: typical 
relative errors are of the order of 10 - 4 . The modes are confined to a cavity, 
which extends, broadly speaking, from the surface of the Sun, where the 
waves lose their material support, to the inner turning point which lies 
deeper the lower the angular degree / is. Radial modes, with / = 0, have no 
inner turning point and their cavity is the entire Sun. 

The observed solar oscillation modes are standing acoustic waves; hence 
the quantity most obviously probed is sound speed. Since the oscillations 
are largely adiabatic (except very near the surface), the frequencies are 
determined predominantly by the local adiabatic sound speed, which is a 
thermodynamic quantity. In addition, the frequencies depend on the density 
distribution in the Sun. Therefore, these helioseismic frequencies can be 
used as a diagnosis of the plasma of the solar interior. A high-quality 
thermodynamic potential is needed for the pressure-density relation (i.e. 
the equation of state, which is essential for determining the hydrostatic 
equilibrium between pressure gradient and gravity) and for thermodynamic 
quantities (mainly adiabatic sound speed). 

Introductions to helioseismology are, for example, the reviews by Deubner 
k Gough (1984), Christensen-Dalsgaard, Gough & Toomre (1985), Bahcall 
& Ulrich (1988), Christensen-Dalsgaard (1988), Libbrecht (1988), Vorontsov 
& Zharkov (1989), Gough & Toomre (1991), Libbrecht & Woodard (1991), 
Christensen-Dalsgaard & Berthomieu (1991), Gough (1992), and Turck-
Chieze et al. (1993). The reviews by Christensen-Dalsgaard (1991) and 
Christensen-Dalsgaard & Dappen (1992) specifically address the helioseis­
mic determination of the equation of state. 
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Fig. 17.1 Observed p-mode frequencies obtained from a 20-day sequence 
obtained at the 60-Foot Solar Tower of Mount Wilson Observatory. 

17.2 Helioseismology: observations 

After the discovery of the solar five-minute oscillations by Leighton et al. 
(1962), it took 15 years before they were recognized as global oscillations. 
Figure 1 shows a typical display of the helioseismic data. While early data 
looked extremely noisy, the observational progress made since has been 
tremendous, resulting in very clean data. In a typical representation of 
helioseismic data, the frequencies of all observed oscillation modes are plot­
ted against their angular degree /. In general, for a given angular degree 
one observes more than one frequency. They belong to modes of different 
numbers n of radial nodes. If one plots the observed frequencies, those be­
longing to modes with the same number of radial nodes can be connected 
with smooth lines; this is true for any vibrating gas sphere. Figure 1 shows 
such a v — I diagram obtained from current observations. Since modes with 
the same radial order n lie on the same ridge, one can therefore identify the 
radial order n with the different ridges of the diagram. Such an identifica­
tion is possible up to an unkown global constant no. Duvall (1982) found 
a technique to resolve this remaining ambiguity and to identify the radial 
order uniquely. 

In the mid-seventies, the ridges in the u — I diagram began to emerge from 
the noise (Deubner, 1975); once they were seen, they definitely established 
the solar nature of the five-minute oscillations as a superposition of global 
oscillation modes, a suggestion made earlier by Ulrich (1969, 1970). 
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If the Sun were spherically symmetric, then each mode frequency vn\ 
would be 2/ + 1 times degenerate. The solar rotation (like any other non-
spherical perturbation, such as, e.g., magnetic fields) breaks this symmetry, 
thus each frequency is split into a multiplet. The splitting is small, since 
it is of the order of the angular frequency of the solar rotation, which has 
a period of a little less than a month. Therefore the rotational splitting is 
too small to be visible in a plot of absolute frequencies such as Figure 1. 
However, thanks to observational series of weeks and months, the splittings 
can be well observed for a wide range of / (see, e.g., Harvey, 1988; Rhodes 
et al., 1990). 

Why did it take some 15 years before the oscillations were properly identi­
fied? The reason is that the oscillation velocities are tiny, less than 1™. And 
yet, such velocities are observed using the Doppler effect of light. From each 
wing of a given spectral line, a narrow piece is cut out and sent through an 
interferometer into a comparator. The intensity difference of the two parts 
then becomes a measure of the Doppler line shift, and thus radial velocity. 
Since the solar disk can be well resolved, such measurements can nowadays 
be made typically for 1024 X 1024 pixels simultaneously, and this at a rate 
of a few times per minute. 

Using the Doppler effect of light, velocities of the order of 1™ are only 
marginally detectable. One might therefore wonder why one can obtain 
so clean a picture as in Figure 1. This question is even more in order if 
one considers the seemingly chaotic motion on the Sun, granulation, super-
granulation, flares, rotation, and so on. The answer lies in the extreme 
regularity and the surprisingly long life time of the modes, which allow 
the observers to follow an individual oscillation mode for days and weeks. 
Therefore, the strict periodicity of the signal is exploited, so that in the end 
the frequencies can be determined very accurately against all initial odds. 

The data like those of Figure 1 allow a high precision analysis of the 
structure of the solar interior. Tabulated frequencies are given in the article 
by Libbrecht et al., 1990. The relative precision, with which each of the 
observed mode frequencies vn\ is determined, now attains 10 - 4 , which is at 
least one order of magnitude better than the uncertainties of any current 
theoretical predictions. The reason for this inadequacy of the theoretical 
models is that they are not (yet) sufficiently sophisticated, because the 
usual simplifying assumptions on convection, opacity, equation of state, 
nuclear physics, internal rotation, and other physical ingredients are not 
good enough to explain all the details encountered in the seismological data. 
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17.3 Helioseismology: theory 

Broadly speaking, theoretical inferences from the observed helioseismic fre­
quencies can be made in two ways. In the forward approach, we build a 
solar model and compute its normal modes. Then the "best" model is the 
one that satisfies all observational constraints. Should there be more than 
one "best" model, an aesthetic principle such as Occam's razor is invoked 
to select the simplest of them. In the inverse approach, we try to make 
as few theoretical assumptions as possible to infer the physical state of the 
solar interior directly from the oscillation frequencies. 

17.3.1 The general equations for evolution and 
oscillations 

For tutorial purposes I will go somewhat off the beaten track and discuss the 
evolution and oscillations of the star at the hand of the same set of hydro-
dynamic equations. Of course, the time scales of evolution and oscillations 
are so much different that in practical calculations one always separates 
the two parts. Making here as many simplifications as I dare, I refer the 
interested reader to the superb book by Unno et al. (1989). The solar 
case is extensively dealt with, for instance, in the reviews by Christensen-
Dalsgaard and Berthomieu (1990) and Turck-Chieze et al. (1993). I neglect 
viscosity, and assume that any treatment of turbulent motion, or convective 
heat transfer, is done in terms of a mean-field approach. This means that 
state variables are averaged over time-scales of turbulent motion. Such an 
approach is justified except in a thin layer beneath the solar photosphere. 
Under the assumptions of inviscid motion and mean-field variables, the re­
sulting 9 equations are 

- + V - W = — V p - V<f> 
p 

(1) 

| + div(pv) = 0 (2) 

ds 
Vs 

1 ! J. „ 
= - ^ e n u c - -^<"vF (3) 

A<f> = 4xGp (4) 
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F = K ( V T ; 2 > , X ) (5) 

€nuc = €nuc(T, p, X ) (6) 

K = < T , / > , X ) (7) 

p = P ( r ,^ ,x) (8) 

s = s(T,p,X) (9) 

Here, v is the (Eulerian) velocity field, p and p are pressure and density, 
respectively, <f> is the (self-) gravitational potential, s is specific entropy (per 
unit mass), en u c is the nuclear energy generation rate, F is the energy flux 
(in the mean-field sense) through the star, the vector X = (Xi,X2,...Xn) 
symbolizes the chemical composition, with Xi being the mass fractions of 
element t, and K is the opacity. Note the square brackets in Eqs. (1-3). 
They are there for the discussion of the separate issues of evolution and 
oscillation (see below). 

Taking into account the vector nature of Eq. (1) and (5), Eqs. (1-9) are 13 
equations for the 13 hydrodynamic fields v ,p , p, <f>, T, s, F , cnuc, K. Eqs. (1-4) 
are partial differential equations, Eq. (5-9) are "material" equations, and it 
is no surprise that they are the hard part of the overall problem. The tough­
est among them is the expression of the "conductivity" for energy (Eq. 5), 
because it is the result of wholly different physical processes according to 
the physical conditions, given by T,p,VT. Energy transport by radiation, 
convection and electron conduction are the most familiar ones. As long as 
stellar matter is optically thick (which it is except near the stellar surface), 
Eq. (5) can be simplified with the help of the diffusion approximation 

F = _ i ^ v T (10) 
3np 

but when matter is optically thin, strictly speaking even the form of Eq. (5) 
is inappropriate, because then radiative transport becomes intrinsically non­
local, and radiation hydrodynamic will have to be brought into the game 
(see the book by Mihalas and Mihalas, 1984). 
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Eq. (5) also needs some "switch" to change to convective form of en­
ergy transport when the local conditions do not warrant a stable radiative 
stratification. For the equilibrium model, one usually assumes a stability 
criterion d la Schwarzschild or Ledoux plus some mixing-length formalism 
(see e.g. Cox k Giuli, 1968; Gough & Weiss, 1976; Unno et a/., 1989). For 
the oscillation part, the interplay between convective and oscillatory mo­
tion can become very complicated. Compared with the question of energy 
transport (Eq. 5), the rest of the material equations (6-9) look relatively 
harmless. The most difficult among them is opacity (7), which appears in 
the diffusion approximation (10). 

17.3.2 Evolution 

Formally speaking, the problem of stellar evolution is the one of Eqs. (1-9) 
without the parts in the big square brackets, that is without the inertia 
term of Eq. (1) and the thermal term of Eq. (3). Just to illustrate with a 
familiar equation, note that in the approximation of a spherically symmetric 
configuration Eqs. (1) and (4) allow elimination of <j> and become the well-
known equation of stellar structure (see, e.g., Schwarzschild, 1958). 

4 = -SJf£. (ii) 
Here, as usual, Mr denotes the mass of the sphere of radius r and G the 
constant of gravitation. Similarly, in the spherical approximation, Eq. (3) 
becomes (with Lr = 4irr2F) 

dL o 
— = 47rr penuc, (12) 

and Eq. (5) [in the form of the special case of Eq. (10)] becomes the equally 
familiar equation of the radiative temperature gradient 

dT = ZnpL 
dT 647r<rr2T3 K ' 

With the dynamical terms of Eqs. (1-3) thus stripped away, the sys­
tem of equations becomes formally time-independent. Evolution only hap­
pens through the transmutation of the chemical elements and the associated 
change of elemental abundances, which are reflected in the material prop­
erties (5-9). However, by all means one should avoid the impression that 
this simplification to a sequence of slowly changing static models will make 
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the problem of stellar evolution easy. In fact, the evolutionary part is the 
hard part, not only because of its nonlinear nature (in contrast to the oscil­
lation problem, here no linearization is available). The complexity of stellar 
evolution is due both to the rich variety of physical phenomena contained 
in the material equations (5-9) and to the varying chemical composition in 
the star. 

17.3.3 Oscillations 

Having solved the hard problem of stellar evolution, we arrive at an equilib­
rium model (often assumed to be spherically symmetric). Again, the reader 
is referred to the book by Unno et al. (1989). Let po, po, To, ̂ o, SQ, FO be the 
variables and X(r) the profile of the chemical composition that define this 
equilibrium model at some point to in the star's evolution. Introduce the 
Eulerian displacement variables of the kind jt = p — po, p' = p — Po, and so 
forth, and insert these difference variables into the original equations (1-9). 
We then obtain equations that look essentially the same, though now they 
are written for the displacement variables. As long as no linearization or 
other simplification is made, the new equations are of course equivalent to 
the old ones. 

However, the purpose of going to displacements is to make approxima­
tions. The two most important are those of a static and spherically stratified 
equilibrium. The assumption of a static equilibrium precisely reflects the 
vast gulf between oscillation and evolution time-scale, an assumption cer­
tainly valid until the very violent final phases of the star's life. The other 
assumption, that of a spherical equilibrium state, is a working hypothesis, 
not bad if rotation and magnetic fields do not distort the equilibrium state 
too much. According to Noether's (1918) theorem, the two assumed under­
lying symmetries (time translations, rotations) lead to conserved quantities, 
but they show up nicely only in a linear theory. Let us thus linearize the 
whole system (1-9), that is, neglect all second and higher-order terms in 
the displacement quantities. In the material equations (5-9) the compli­
cated functional behavior is greatly simplified by linear expressions that 
involve the equilibrium quantities po, enuC)o, «o a^d their partial derivatives 
evaluated at the equilibrium values. Under these assumptions (static and 
spherical equilibrium and linearization), there are special solutions that are 
products of a radial amplitude with an exponential time dependence and a 
(possibly vector-) spherical harmonic function. If we consider the example 
of pressure we write 

https://doi.org/10.1017/S0252921100026452 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100026452


376 Dappen: Helioseismology 

p'=pUr)eiu,,tYr(e,4>). (14) 

There are analogous expressions for all other variables. The general solution 
is a superposition of such particular solutions. 

If we assume that thermal heat losses are negligible small during the fast 
oscillations, then we deal with adiabatic oscillations. Drastic simplifications 
become possible. The whole equation (3) disappears, because the left-hand 
side vanishes identically, showing that the equilibrium condition is exactly 
preserved (this statement is true even in the nonlinear case. In the absence 
of equation (3), temperature, energy flux and opacity do not participate in 
the oscillation equation, though they are of course important in the equilib­
rium part. Thus equations (5-7) are also gone. Thermodynamics becomes 
ultra simple, especially in the linear case, where the co-moving Lagrangian 
pressure and density fluctuations (6p and 6p) are simply related through 
the equilibrium adiabatic gradient Ti = (dlnp/dlnp)s 

Sp = SpT^ . (15) 
P 

In the nonlinear adiabatic case, this simple relation would have to be re­
placed by the function p(p) that follows from the integral of motion s, i.e. 
from the implicit equation s = s(p,p,'X.) = const. 

A further simplification of the adiabatic problem is that the equation of 
continuity permits expressing the tangential component of the displacement 
field in terms of the pressure fluctuation (for details see Unno et al., 1989). 
We thus arrive at the famous adiabatic eigenvalue problem of stellar oscil­
lations, which plays a central role in helioseismology. The result is, for each 
angular degree /, an eigenvalue problem, which consists of coupled equations 
for the radial amplitudes of the displacement vector £r, the fluctuation of 
pressure p1 and of the gravitational field <f>, and of the usual boundary con­
ditions at the center and the surface of the star. For radial oscillations or in 
the so-called Cowling approximation for nonradial oscillations (where one 
neglects changes of the gravitational field during the oscillatory motion), 
the equations become especially simple. Their formal type is (again, see 
Unno et al., 1989, for details) 
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?f = Dp' + Et' + F (16) 

The Coefficients A,B,C,D,E,F are not constant but functions of the 
radius. They contain the properties of the equilibrium model and, most 
importantly, the eigenvalue U[. As mentioned, boundary conditions com­
plement the equations (16). Thus the problem of adiabatic stellar oscilla­
tions is, for each /, completely analogous to an inhomogeneous vibrating 
string. For each / there is a set of solutions with different radial nodes n 
and frequencies un\. 

It should be clear by now that the solution of the eigenvalue problem is 
much easier than finding the equilibrium model through stellar evolution. Of 
course one can make things more complicated here as well. By considering 
nonadiabatic motion, the energy equation (3) is coming back, and with it 
temperature, which forces us to bring in enuc, «> and convection. Again, I 
refer to the book by Unno et al. (1989). Near the solar surface there are 
nonadiabatic effects that have to be treated properly before the theoretical 
data will match the observations shown in Figure 2. 

17.3.4 Inverse analysis 

If one writes Eq. (16) very formally, the oscillation frequencies un\ can be 
written as functionals 

WnJ = .FnJ fo(r), p ( r ) , . . . ] (17) 

of the structure of the Sun. So far we have discussed how to obtain the 
frequencies, given the structure. With the ability to do so, one can com­
pare observed frequencies with computations based on different models, and 
in this way obtain some information about the solar structure. However, 
it is evidently desirable to attempt to invert the process, to obtain more 
extensive information about the properties of the solar interior from the 
observed frequencies. Such inverse analyses are, in a certain sense, implicit 
in any type of scientific measurement, since a raw measurement rarely sup­
plies the quantity that one is interested in. However, in the present case 
the relation between the desired properties of the Sun, e.g. p(r), and the 
observed quantities is more complex, since each frequency is sensitive to 
the structure of a substantial part of the Sun; thus the inverse problem is 
correspondingly more difficult. Similar problems are encountered in other 
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branches of science, such as geophysics and radiation theory, and there is 
a substantial literature dealing with them {e.g. Parker 1977; Deepak 1977; 
Craig & Brown 1986; Tarantola 1987). 

An alternative method of inversion is based on asymptotic theory, where 
local propagation properties for acoustic waves are approximately examined 
in the spirit of a JWKB analysis. The need for such an approximate dis­
cussion comes from the fact that, although the numerical solution of the 
equations of adiabatic oscillations is relatively simple, it does not immedi­
ately provide an understanding of the properties of the oscillations. Such a 
direct understanding can come from the approximate asymptotic analysis 
It was shown by Gough (cf. Deubner & Gough 1984; Gough 1986) how to 
write down an approximate form of the oscillation equations, from which 
it is straightforward to obtain the asymptotic behavior of the solution. It 
turned out immediately that this asymptotic approach also opens the door 
for elegant asymptotic inversion methods. I refer the reader to the papers 
by Gough (1985), Thompson (1991), Gough & Thompson (1991), Brodsky 
& Vorontsov (1993), and Gough & Vorontsov (1993). The last two papers 
deal with a nonlinear asymptotic inversion. The power of such inversions for 
the equation of state is illustrated in the article by Vorontsov et al. (tfiese 
proceedings). 

17.4 Comparison of theory with observations 

The most direct way to compare theory and observation is to compute 
the analogue of Fig. 1 with the forward techniques mentioned above, so 
that the difference between each observed and computed frequency can be 
taken. Figure 2 shows four such diagrams of frequency differences, each 
for a different theoretical model. Two equations of state and two different 
opacity tables were used in the models. The two equations of state were 
(i) the Eggleton, Faulkner & Flannery (1973) (EFF) equation of state and 
(ii) the CEFF equation of state, which is, as explained below, an EFF plus 
a Coulomb term (Christensen-Dalsgaard, 1991; Christensen-Dalsgaard & 
Dappen, 1992). The opacities used were the Cox and Tabor (CT) (1976) 
and Los Alamos Opacity Library (LAOL) tables. Since I merely want to 
illustrate the sensitivity of the helioseismic method, it doesn't matter that 
these opacities are not the most current ones. A recent calculation based 
on Livermore opacitites can be found in Berthomieu et al. (1993a). 

I remark in passing that in such comparisons of observed with com­
puted data ("0-C diagrams"), it is useful if an appropriate scale factor 
is taken out (see, e.g., Christensen-Dalsgaard 1988; Christensen-Dalsgaard 
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Fig. 17.2 Frequency differences, scaled by the factor Qni (see text), be­
tween observed frequencies in the compilation by Libbrecht et al. (1990) 
and four sets of computed frequencies, in the sense (observation) - (the­
ory). The abscissa is cyclic frequency vn\. The points have been connected 
with lines according to the value of the degree /: / = 20,30: ; 
/ = 40,50,60,80,100: -; / = 120,150,200,300,400: ; 
and / = 500,600,700,800,900,1000: . The models are distin­
guished by their equation of state and opacity (a) EFF equation of state, 
CT opacity; (b) EFF equation of state, LAOL opacity; (c) CEFF equa­
tion of state, CT opacity; (d) CEFF equation of state, LAOL opacity (from 
Christensen-Dalsgaard k. Dappen, 1992). 
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& Berthomieu 1991). This scale factor Qni, which is essentially the inertia -
or kinetic energy - of the mode with quantum numbers nl (normalized to the 
same surface amplitude), contains the principal / and frequency dependence 
of the individual mode frequencies vn\. 

The purpose of the illustration in Fig. 2 is to show the sensitivity of the 
helioseismic analysis with respect to changes in the physics of the model. 
A perfect model would yield a horizontal line corresponding to all ftvn\ = 
0. Note that the discrepancies between theory and observation are huge 
compared to the observational errors which are nowadays significantly below 
1 /xHz. Such a combination of quantity and quality of astrophysical data is 
truly exceptional. 

17.5 The equation of state 

As we have seen, the three basic material properties required in stellar 
models are the equation of state, opacity, and the nuclear-energy generation 
rate. At this meeting, the focus is on the equation of state. I shall use the 
term equation of state in a slightly broader sense than usual, so that it 
encompasses not only pressure as a function of temperature and density, 
but also all thermodynamic quantities. These quantities must be consistent 
with each other, that is, their appropriate Maxwell relations have to be 
satisfied. Such formal consistency is always achieved if the equation of 
state and the thermodynamic quantities stem from a single thermodynamic 
potential. In trivial models (e.g. in a plasma assumed to be fully ionized 
everywhere) it is possible to write down a consistent equation of state and 
thermodynamic quantities independently. However, in more realistic cases, 
modeling a thermodynamic potential is the only practical way to obtain the 
equation of state and thermodynamic quantities. 

A quick glance at Fig. 2 reveals that solar observations are indeed very 
sensitive to details of the equation of state. One might go further and con­
clude that the Sun prefers the CEFF to the EFF equation of state. How­
ever, such conclusions are fraught with danger, although probably not in 
this clear-cut case. The reason why one has to be prudent is that there are 
too many uncertainties in the solar model, coming, e.g., from convection or 
opacity, so that one has to be alert to the possibility that by changing the 
equation of state one could trigger changes in the other physical parameters. 
An illustration for this is found at each railroad crossing in France, where a 
sign warns: "un train peut en cacher un autre" (which, applied to our situa­
tion, means: proceed with caution, watch out for a hidden train of thought). 
If, say, the opacity is bad, one can not rule out that a worse equation of 
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state could cause an overall better agreement with observations. Only when 
simultaneous progress with the other physical quantities is made (that is, 
if someone is watching the other track, to use the train metaphor), we will 
learn how to disentangle the different effects. However, for a sensitivity 
analysis, Figure 2 is already sufficient. The transitions from panels a to c 
and b to d, respectively, are obtained by putting some additional nonideal 
effects (the Coulomb pressure) into the equation of state with everything 
else unchanged. The response of the Sun, as seen through the "eyes" of 
helioseismology, is huge. 

I will not elaborate how the equation of state is modeled. Several au­
thors of these proceedings do it (Rogers, Alastuey, Saumon, and Chabrier). 
My message is different: I intend to show why there is still a long way to 
go before rigorous theories (for instance that presented by Alastuey, these 
proceedings) can be used in solar and stellar models. I will begin with re­
quirements for any solar or stellar equation of state. I insist that formal 
aspects (such as consistency and smoothness) play a crucial role. As a 
consequence, I would like to raise sympathy for the many home-grown for­
malisms that stellar modelers have been constantly developing. Then I will 
discuss the nonideal plasma effects that have to be included in realistic solar 
equations of state. Finally I will present a few selected results from equa­
tion of state comparisons. In the absence of a perfect equation of state, the 
comparisons can give us at least important information about the amount 
of the current uncertainty in the equation of state. Also, it will tell us at 
which temperatures and densities the uncertainty is most noticeable and to 
what degree solar observations can discriminate between various models. 

17.5.1 Requirements on an equation of state for stellar 
models 

A stellar equation of state has to satisfy four conditions: (i) a large domain 
of applicability (in p, T), (ii) a high precision of its numerical realization, 
(iii) consistency between the thermodynamic quantities, and (iv) the possi­
bility to take into account relatively complex mixtures with at least several 
of the more abundant chemical elements. More specifically, the first condi­
tion demands that the formalism can be used from the stellar surface (the 
photosphere), where T is typically a few 103 K and p some 10~7 g/cm3, to 
the center of a star where T is, again typically, about 107 K and p some 
102 g/cm3. The second condition demands that a given formalism can be 
cast in an algorithm that converges without ambiguity and with sufficient 
precision, so that all required thermodynamic derivatives (such as adiabatic 
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gradients) can be computed. Note, that for this only formal precision is 
required: reality of the physical description is a different issue. The third 
condition, consistency, states that all thermodynamic quantities stem from 
a single thermodynamic potential. This condition is often violated in two-
or more-zone formalisms, which contains a different physical theory in dif­
ferent parts of a star. An example is the ad hoc imposition of full ionization 
in the central region, in order to mimic a pressure-ionization device, in 
combination with a conventional Saha equation in the envelope of the star. 
Such a formalism leads to a discontinuous thermodynamic potential and a 
violation of thermodynamic identities. 

Such violations of thermodynamic identities are inadmissible in calcula­
tions of stellar structure and oscillations. As we have seen, calculations 
of stellar oscillation frequencies often exploit thermodynamic quantities to 
transform one variable into another. Equation (15) shows such a transfor­
mation. There the adiabatic gradient Y\ is used to establish a connection 
between density and pressure changes, and it is an absolute necessity that 
the Ti is consistent with the equation of state and other thermodynamic 
variables of the model. This example illustrates the necessity of formal 
consistency. Finally, the third and last condition, i.e. the possibility to 
describe rather realistic chemical compositions, is a bit less important for 
the equation of state itself. However, for opacity, heavy elements are very 
important, and a good equation of state plays an important role in any 
opacity calculation. 

17.5.2 The role of the solar convection zone 

Energy transport by radiation is treated adequately in the solar interior in 
the diffusion approximation; on the other hand, energy transport by con­
vection is usually treated in a rather crude way, with an a priori unknown 
parameter, the so-called mixing length (see, e.g., Cox and Giuli, 1968). 
Near the surface, convection is probably sufficiently vigorous to cause dy­
namic effects on the average hydrostatic equilibrium, yet such effects are 
often ignored. At the lower boundary of the convection zone, motion is 
normally supposed to stop at the point where convective instability ceases; 
there is no doubt, however, that motion extends into the convectively stable 
region through convective overshoot, although the extent of the overshoot 
is uncertain (see, e.g. Berthomieu et al., 1993b). 

Despite the complications it introduces, in a certain sense convection 
simplifies the structure of the outer parts of the Sun. Regardless of the 
uncertain details of convective energy transport, there is no doubt that 
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except in a thin boundary layer near its top the convection zone is very 
nearly adiabatically stratified {e.g. Gough & Weiss 1976). One can show 
(Christensen-Dalsgaard, 1986) that the structure of the almost adiabati­
cally stratified convection zone only depends on the equation of state, the 
composition and the constant value of the specific entropy, which in turn 
is essentially fixed by the value of the mixing-length parameter; particular, 
the convection zone structure is insensitive to the opacity. Another simplifi­
cation of convection is that it makes the chemical composition homogeneous 
in the convection zone, although there is of course the possibility of gravi­
tational settling (for a recent calculation, see Christensen-Dalsgaard et al., 
1993). 

Beneath the convection zone, the stratification becomes highly dependent 
on radiative opacity. It is difficult to disentangle the helioseismic effects of 
equation of state and opacity, but if opacity can be nailed down relatively 
accurately, an equation of state diagnosis can also become possible. An 
examlpe of an equation of state issure is the possibility of partial recombi­
nation of He+ ions in the solar center (see Christensen-Dalsgaard & Dappen, 
1992). 

17.6 Equation of state comparisons 

The most direct way to test the equation of state would be laboratory ex­
periments. However, so far they have not yet helped to check realistic stellar 
equations of state. For instance, attempts to use constraints from a high-
precision optical emission spectrum (e.g. Wiese, Paquette & Kelleher, 1973) 
have failed, because line-broadening effects were overshadowing the subtle 
details of statistical mechanics. It is therefore no wonder that - despite their 
difference in statistical mechanics - several of the currently popular equa­
tions of state have been able to reproduce that optical experiment (Dappen, 
Anderson and Mihalas, 1987; Seaton, 1990; Iglesias & Rogers, 1992). 

An alternative "experimental" approach is to use solar oscillation data. 
As the comparisons between observed and theoretical solar oscillation fre­
quencies (Fig. 2) demonstrate, one can use the Sun to test the equation 
of state (for more details, see Christensen-Dalsgaard, Dappen & Lebre-
ton, 1988; Christensen-Dalsgaard, 1991; Christensen-Dalsgaard & Dappen, 
1992). Inversions of solar oscillation frequencies, such as those presented by 
Vorontsov et al. (these proceedings), have also demonstrated a high diagnos­
tic potential for subtle effects, such as the location of the pressure-ionization 
region of helium and the influence of heavy elements in the equation of state. 
The disadvantage of a solar diagnosis is of course that we cannot vary the 
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parameters: we have to accept solar conditions as they are. Only asteroseis-
mology carries the promise to overcome this handicap (for a recent review, 
see e.g., Christensen-Dalsgaard, 1993). 

In the absence of a rigorous computation of the equation of state (to 
the needed accuracy), one can make comparisons between different models 
of the equation of state. Such comparisons will give us information about 
the overall uncertainty in the equation of state. But they also allow solar 
physicists to determine how uncertainties in the equation of state propagate 
into theoretically predicted oscillation frequencies. In this way, a "map" of 
the T—p plane can be drawn, showing localized "interesting" regions, where 
nonideal effects of one or another kind are important. 

I will briefly present the equations of state used in the comparisons. More 
details about them (and further references) can be found in the article by 
Christensen-Dalsgaard & Dappen (1992). I just recall that all currently 
used stellar equations of state can be classified in terms of the so-called 
"chemical picture" and the "physical picture" (Krasnikov, 1977). While in 
the more conventional chemical picture bound configurations (atoms, ions 
and molecules) are introduced and treated as new and independent species, 
only fundamental particles (electrons and nuclei) appear in the physical 
picture. In the chemical picture, reactions between the various species oc­
cur, and thus the thermodynamic equilibrium must be sought among the 
stoichiometrically allowed set of concentration variables by means of a max­
imum entropy (or minimum free-energy) principle. In contrast, the physical 
picture has the aesthetic advantage that there is no need for a minimax 
principle; the question of bound states is dealt with implicitly through the 
Hamiltonian describing the interaction between the fundamental particles. 
For exhaustive treatments of these issues, consult the three books by Ebel-
ing, Kraeft & Kremp (1976), Kraeft et al. (1986), Ebeling et al. (1991). 

17.6.1 EFF 

Eggleton, Faulkner & Flannery (1973) developed a simple equation of state 
in the chemical picture (EFF) that is formally consistent and includes an 
ad hoc pressure ionization device that works at least qualitatively correctly. 
The device is not based on a physical model (e.g. a description of an atom 
and its surrounding particles), but is imposed by forcing the anticipated 
result, i.e., full ionization at high densities. In addition, the EFF equation of 
state incorporates a correct treatment of the partially degenerate electrons 
according to Fermi-Dirac statistics. Bound systems (atoms and ions) are 
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always assumed to be in their ground state; the ground-state energy is 
constant and equal to the free-particle value. 

17.6.2 CEFF 

To overcome the lack of a Coulomb term in the EFF equation of state, 
J0rgen Christensen-Dalsgaard and I have added a Coulomb configurational 
term in the Debye-Hiickel approximation (taken from the MHD equation 
of state). Such an upgrade of the EFF equation of state was motivated by 
the fact that adding a Coulomb term to the EFF equation of state makes a 
significant contribution towards a more realistic equation of state (see below 
and the papers by Christensen-Dalsgaard, 1991; Christensen-Dalsgaard & 
Dappen, 1992). Of course the remaining disadvantages of the EFF equation 
of state still point to the need of more complete formalisms. However, the 
successful application of the CEFF equation of state to solar physics makes 
it very well suited as a reference equation of state. 

17.6.3 MHD 

The Mihalas-Hummer-Dappen (MHD) equation of state (Hummer & Mi-
halas, 1988; Mihalas et al., 1988; Dappen et al., 1988) is realized in the 
chemical picture with the free-energy minimization method. Occupation 
probabilities are introduced on the one hand to avoid the famous (or rather 
notorious) discontinuities that come along with simple cut-off recipes for 
internal partition functions. On the other hand they represent a result that 
should come from quantum mechanics, namely the fraction of atoms or ions 
for which a given state can exist (given the constraints of the surrounding 
particles). Only then, these "available" states are populated according to 
statistical mechanics. It is clear that such an approach is largely intuitive. 
However, its advantage is that complicated plasmas can be modeled, with 
detailed internal partition functions for a large number of atomic, ionic, and 
molecular species. All particles are allowed to interact with each other. Also, 
full thermodynamic consistency is assured by analytical expressions of the 
free energy and its first- and second-order derivatives. This not only allows 
an efficient Newton-Raphson minimization, but, in addition, the ensuing 
thermodynamic quantities are of analytical precision and can therefore be 
differentiated once more, this time numerically. Reliable third-order ther­
modynamic quantities are thus calculated. The MHD equation of state was 
realized for the international "Opacity Project" (see Seaton, 1987). 
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17.6.4 OPAL 
The OPAL equation of state is realized in the physical picture. A detailed 
presentation is given by Rogers (these proceedings). In the physical pic­
ture, the concept of a perturbed atom in a plasma is not needed at all. 
Therefore, no assumptions about energy-level shifts or the convergence of 
internal partition functions have to be made. On the contrary, properties of 
energy levels and the partition functions come out from the formalism. The 
OPAL equation of state was developed by a group at Livermore as part of 
their opacity project (Rogers, 1986; Iglesias, Rogers & Wilson, 1987; Rogers, 
these proceedings). This equation of state does satisfy the requirements from 
stellar modelling that I mentioned above; however, a systematic application 
application of the OPAL equation of state to helioseimology is still awaiting. 

17.6.5 Results from the comparisons 

Early comparisons showed a striking agreement between the MHD and 
OPAL equation of state for conditions as found in the hydrogen-helium 
ionization zones of the Sun (Dappen, Lebreton & Rogers, 1990; Dappen, 
1990). For convenience, a representative result from this early comparison 
is shown in Figure 3, which compares the MHD and OPAL results with that 
of the simple EFF formalism (which is essentially a consistent ground-state-
only Saha equation of state under these conditions). The absolute curves of 
part a of Figure 3 are merely able to show the difference between MHD (or 
OPAL) and the simple EFF results. To see the difference between the MHD 
and OPAL results, one needs the magnified part 6, which shows the relative 
differences between MHD and EFF, and between OPAL and EFF values, 
respectively. This relative plot now not only allows one to see the difference 
between MHD and OPAL results, but also their striking similarity. 

Later, it turned out that this agreement was nearly accidental. The reason 
for this was found by varying the parameters of the MHD equation of state. 
It followed that on the chosen isochore, all thermodynamic quantities are 
dominated by the Coulomb pressure correction (Dappen, 1990; Christensen-
Dalsgaard, 1991; Christensen-Dalsgaard & Dappen, 1992). The Coulomb 
correction overshadows the effect of the excited states (which are of course 
treated differently in the MHD and OPAL approach). Note that the Cou­
lomb term acts directly and indirectly, at least in the language of the chem­
ical picture, because it is not mainly the free-energy of the Debye-Hiickel 
term itself, but rather also the Coulomb-induced shift in the ionization equi­
librium, which is responsible for the deviation from the unperturbed EFF 
result. 
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Fig. 17.3 Comparison of XT = (dlnp/d\nT)p for p = 10" g cm- . 
Absolute quantities (a) and relative differences (with respect to EFF) (b) 
are shown. See text for more details. 

Of course, solar physicists were happy that two completely different for­
malisms delivered the same equation of state, but, by the same token, a first 
attempt to use the Sun as an equation-of-state test was also thwarted. This 
discovery suggested to upgrade the simple EFF equation of state with the 
help of the Coulomb interaction term. The resulting equation of state (called 
CEFF) has become a useful tool for solar physics (Christensen-Dalsgaard, 
1991; Christensen-Dalsgaard & Dappen, 1992); at the same time, however, 
it became also clear that a helioseismic test of the important issue of chem­
ical versus physical picture would be more difficult than first thought. 

For reasons not yet fully understood it seems that in the chemical picture, 
the signature of internal partition functions, such as those employed in the 
MHD equation of state, is much less visible in the thermodynamic quantities 
than a naive estimation of the shift in the ionization equilibrium would 
predict. It is likely that there are accidental cancellations in the derivatives 
of the free energy. The cancellations of partition-function effects in the 
chemical picture seem to be greatest for the ionization zone of hydrogen 
and somewhat less for those of helium. A more recent comparison of MHD 

2.5 - i — i — r — i — i — . — r 

») 

2.0 -

XT 

1.5 

1.0 

x 

0.02 

0.00 

-0.02 

-0.04 

" • » 

https://doi.org/10.1017/S0252921100026452 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100026452


388 Dappen: Helioseismology 

1.680 

1.670 

1.660 

1.650 

1.640 

//^1\ 
if/ \ ; 

' • • 

i—i l - i—I—r i 

. - - - - - - . 
! 

: 

• 

• • ' 

5.0 

0.0030 

0.0020 

t-T 
^ 0.0010 

-0 .0000 

-0 .0010 

1 I 
1 I 
1 1 
1 1 

.4 

. . . . 

• ' ' ' ' 1 ' ' ' ' 1 ' ' ' ' 

• 

~ - \ ''' 

. . . / • • • " • 

v/' -' 
5.5 6.0 6.5 

log T 
7.0 5.0 5.5 6.0 6.5 

log T 
7.0 

Fig. 17.4 Ti for p = 5.00 x 10~3g cm-3 and a representative solar mixture 
of H, He, and O. Parts (a) and (b) as in Fig.3, but here with CEFF instead 
of EFF. See text for more details. 

and OPAL values (Dappen, 1992) has examined selected cases of higher 
densities (where sizeable discrepancies appear) and a first case of a mixture 
involving a representative solar heavy element (oxygen). It appears that 
for the heavier elements, the internal partition functions finally lead to the 
intuitively expected consequences for the thermodynamic quantities. 

Figure 4 shows the result of this comparison with oxygen for the quantity 
1*1. Density was chosen as p = 0.005 g cm"3, a value suggested by a helio-
seismic study of the solar helium abundance (Kosovichev et ai, 1992). Here, 
not only do the large MHD partition functions cause shifts in the ionization 
balance but these shifts also significantly propagate into the thermodynamic 
quantities. The effect is large enough so that it appears, despite the small 
relative number of the heavy elements in the mixture, to be within reach 
of helioseismology (for more details see Christensen-Dalsgaard & Dappen, 
1992; Dappen et ai (1993)). 

To examine the MHD ionization fractions, a single case was examined 
( r = 2.10 X 105K,p = 5.00 x 10_3g cm - 3 ) , once with the full MHD equa­
tion of state, once with a "stripped-down" version of MHD, which does not 
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contain any excited states (but is otherwise identical). The resulting ioniza­
tion fractions of 0 3 + , 0 4 + , 0 5 + were, respectively, 0.314, 0.248, 0.364 for 
the stripped-down MHD (without excited states), and 0.304, 0.476, 0.182 
for the full MHD. (The result for the stripped-down very closely reflects 
the ground-state weights of the ions). Not unexpectedly in view of the 
Planck-Larkin partition function (see Rogers, these proceedings), the OPAL 
equation of state predicts ionization fractions close to those of the stripped-
down MHD equation of state (Rogers, private communication). 

This comparison for the first time establishes a clear case of disagreement 
between the MHD and OPAL results. Clearly, the origin of the discrepancy 
in the ionization degrees is due to the treatment of the excited states. Of 
course, only some 2 percent of the matter in the Sun consist of elements 
heavier that H and He, and therefore the signature of the MHD-OPAL 
discrepancy in Ti (Figure 4) is small (of the order of 10 - 3 ) . Nevertheless, 
as has been demonstrated by Christensen-Dalsgaard & Dappen (1992), even 
the resulting tiny sound-speed differences are within reach of a helioseismic 
diagnosis. 

17.7 Conclusions 

Even weakly-coupled plasmas can pose tough problems if high accuracy is 
demanded. Solar oscillations are an example of a case where the present 
observational material is much better than the theoretical models. The so­
lar convection zone is especially well suited for a study of the equation of 
state. It was suggested in a number of early papers (e.g. Berthomieu et 
al., 1980; Ulrich, 1982; Shibahashi et al., 1983, 1984) that improvements in 
the equation of state can reduce discrepancies between theory and obser­
vations. Later, Christensen-Dalsgaard, Dappen & Lebreton (1988) showed 
that the MHD equation of state significantly reduced these discrepancies 
for a large range of oscillation modes. Since the MHD equation of state si­
multaneously incorporates several different types of non-ideal corrections, it 
did not become immediately clear which one of these corrections was mainly 
contributing to this success. 

iFrom selected comparisons of the MHD with the OPAL equation of 
state, it turned out, rather surprisingly, that the net effect of the hydrogen 
and helium bound states on thermodynamic quantities was to a large de­
gree eclipsed beneath the influence of the Coulomb term, which was thus 
recognized as the dominant non-ideal correction in the hydrogen and he­
lium ionization zones. This discovery led to an upgrade of the simple EFF 
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equation of state through the inclusion of the Coulomb interaction term 
(CEFF). 

However, for the heavier elements it appears that, in the chemical picture, 
the internal partition functions finally lead to the expected consequences 
for the thermodynamic quantities. The heavy elements can thus become 
the ideal testing ground for the effects of bound states in partially ionized 
plasmas. The small abundance of heavy elements in the Sun will make 
a diagnosis difficult and stretch the power of helioseismology to its limits, 
but as the study by Vorontsov et al. (these proceedings) shows, there are 
encouraging signs that the difficulties can be overcome. 
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