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Abstract

We investigate the relationship between the peripheral spectrum of a positive operator T on a Banach
lattice E and the peripheral spectrum of the operators 5 dominated by T, that is, \Sx\ < T\x\ for all
x e E. This can be applied to obtain inheritance results for asymptotic properties of dominated operators.
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Introduction

The investigation of operators on Banach lattices leads to the natural question which
properties of a positive operator T on a Banach lattice E are inherited by the operators
S dominated by T, that is, \Sx\ < T\x\ for all x e E. For certain properties one has
to impose the additional assumption, that the operator S is also positive.

There are numerous results on inheritance of operator properties such as com-
pactness, weak compactness, or being a kernel or a Dunford-Pettis operator (see, for
example, [1,4, 7,9, 13, 14, 20, 27]; see also [2, 19, 22, 28] for a comprehensive survey
and further developments). Only recently the inheritance of spectral and asymptotic
properties of an operator has been investigated (see, for example, [3, 5, 17, 18, 21,
23-25]).

In the present paper we are mainly interested in properties of the peripheral spectrum
of a dominated operator. We always assume that the dominating operator T satisfies a
certain growth condition (G). Then for positive operators S dominated by T one has
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[2] Properties of dominated operators 17

a(S) n r(T)r c CT(F) n r (7) r , that is, either the spectral radii satisfy r(S) < r(T)
or the peripheral spectrum a(S) D r(S)V of 5 is contained in the peripheral spectrum
a(T) n r(7)F of T (see Theorem 1.4). If T satisfies an ergodicity condition and/or
the Banach lattice E has order continuous norm or is a ATB-space, one obtains the
corresponding inclusion Pcr(S) D r(T)F c Pa(T) D r(T)V for the point spectrum
(see Theorem 2.2, Corollary 2.4 and Theorem 2.6). If r(T) is a Riesz point of 7
and S a (not necessarily positive) operator dominated by T, then r(S) < r(7) or
the peripheral spectrum of 5 contains only Riesz points (see Theorem 3.1). This
generalizes a result of Caselles [5, Theorem 4.1], where S is assumed to be positive.
Finally we apply the above results and investigate inheritance of asymptotic properties
such as uniform convergence of 5"+l — S" to 0 (see Theorem 4.1), almost periodicity
and strong convergence of the powers 5" (see Theorem 4.2 and Corollary 4.3), and
uniform ergodicity of S (see Theorem 4.5). In particular we generalize a result of
Caselles [5, Corollary 4.6] and extend results of Rabiger [24,25].

Our notation is standard and follows mainly the books of Meyer-Nieberg [ 19] and
Schaefer [26]. Unexplained terminology can be found there. We briefly recall some
frequently used notions. By F := {k e C : |A.| = 1} we denote the unit circle.
Throughout the whole paper we consider spaces over C. If £ is a Banach space, then
Jz?(£) is the space of all bounded linear operators on E and £' the (topological) dual
ofE. ForT e Sf(E) let T' e Sf(E') be the adjoint of T. Moreover, a (T) denotes the
spectrum, r(T) := sup{|A.| : k e a(T)} the spectral radius, Po{T) := {k e a(T) : k
is an eigenvalue of T] the point spectrum, and p(T) := C\a(T) the resolvent set of
T. For k e p{T) we set R(k, T) := (kl - T)~l.

Now let £ be a (complex) Banach lattice with modulus |. |. Then E+ :— {x e E :
x = \x |} is the set of all positive elements in £. The dual space £' is again a Banach
lattice and x' e £' is positive if and only if (x', x) > 0 for all x e £+. For operators
S,T e Sf(E) we write 5 < T if (T - S)E+ c E+, and T is called positive if 0 < T.

1. The peripheral spectrum of dominated positive operators

In this section we show that for operators 0 < 5 < T on a Banach lattice £ one
always has a(S) D r(T)T c o(T) D r(T)T provided that T satisfies a certain growth
condition (G).

At first we recall some well-known facts and fix some notations. Let T e J?(E) be
a bounded linear operator on a Banach space E. If G is a closed linear subspace of £
such that TG c G we denote by 7] = 7jG the restriction of T to G and by 7) = T/c the
induced operator on the quotient space E/G given by T/(x + G) := Tx + G, x e £.
The following lemma is well-known (see [26, V, Exercise 5]).
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18 Frank Rabiger and Manfred P. H. Wolff [3]

LEMMA 1.1. Under the conditions above one has
(i) (a(7]) U a{T,)) D r(T)V c a{T) n r ( r )F .
(ii) max(r(7]), r(7))) = r(T).
(iii) A e K7")F is a pole of the resolvent R(., T) {of order k) if and only ifX is a

pole of /?(., 7j) and /?(., Tj) {of order kt and k/y respectively), and then sup(/cj( kf) <
k < )t| + k/. Moreover, if P is the residuum of R{., T) at X, then PG c G and P\ and
P/ is the residuum of R{., 7j) and /?(., 7)) a? A., respectively.

In the sequel we make use of the following construction. For details we refer
to [26, V.I]. If E is a Banach space let loo{E) be the space of bounded £-valued
sequences endowed with the sup-norm. For a free ultrafilter ^ on N we consider
the closed subspace c<%{E) := {{xn) e ^{E) : lim^ ||jcn|| = 0}. The quotient space
E<& := l0O{E)/cty{E) is called ultrapower or fy-power of E. For(xn)+c<&(E) € E^
we also write (xn). The mapping x i-> {x, x,.. .f is an isometric embedding of E
into Ecy and thus E can be considered a closed subspace of E&. Everyoperator
T € Jif{E) induces an operator 7V e -£?(£V) by means of 7V(x,,) := {Txn). Its
restriction to £ satisfies 7V!£ = 7 . Moreover, the following holds (see [26, V.I]).

LEMMA 1.2. (i) ||7V|| = ||r||.

(iii) «T(7W) n r ( F ) r c

(vi) /?(A, 7W) = /?(A, T)^ for all k e p(T).
(v) A e o(T) is a pole of order k of R{., T) if and only if the same holds for

If E is a Banach lattice and T e £?{E) is a positive operator, then Eo% is again a
Banach lattice and 7^ e J>?(£V) is positive. For (̂ ;n) e £ ^ one has |(xn)| — (\xn\).

Now let 0 < S < T be operators on a Banach lattice E. In the following lemma
we present a condition under which an eigenvalue of S is also an eigenvalue of T.

L E M M A 1.3. Let E be a Banach lattice and let S,T e J?f (Zs) fo» SMC/* fte? 0 <

7\ Suppose there is a G F and x e £ SMC/J ?/za? SJT = a x anc? 7"|.v| = |x |

T x = a x .

PROOF. The assumptions imply |x | < 5|JC| < T\x\ = |x | . Thus 0 < \{T - S)x\ <

{T — S)\x\ = JJC| — S\x\ < 0, and hence Tx = Sx = ax.

REMARK. The conditions of the lemma are satisfied if 0 < S < T, Sx = ax for
a e F and x e E, and there is a strictly positive linear form x' € E'+ such that
7"x' < x . (Recall thatx' e E'+ is strictly positive if (x', y) > 0 for all y e £ + \ {0}.)
In fact, from 0 < T\x\ - |x| and 0 < {T\x\ - |x|, x') = (\x\, (7" - I)x') < 0 we
obtain 7"|x| = \x\ by the strict positivity of x .
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[4] Properties of dominated operators 19

Now we come to the main result of this section. Recall that an operator T on a
Banach space E satisfies the growth condition (G) if lim sup U r ( r ) \\(k—r(T))R(k, T)\\
< co. Lemma 1.2 implies that then 7V e Jzf(£V) has also property (G) for
every ultrapower E<% of £ . Clearly every operator with uniformly bounded powers
and spectral radius 1 satisfies (G). Moreover a positive operator T on a Banach
lattice E with r(T) = 1 has property (G) if and only if the Cesaro means Tn :=
«- ' £ X o Tk, n e N, are uniformly bounded (see [10, 1.5, 1.7]).

THEOREM 1.4. Let E be a Banach lattice and let S, T e -£?(£) such that 0 < S <T
and T satisfies (G). 77u>rt cr(S) n r ( 7 ) r C CT(7") n r(T)r.

PROOF. The assumptions imply 0 < r(S) < r(T). If r{T) = 0 there is nothing
to prove. Otherwise we may assume r(T) = 1 and, by passing to an ultrapower,
a(S) n r c Po(S). Let a € a(S) D T and choose 0 / u £ such that Sx = ax.
Then |x| < 5|JC| < 7™|JC|. For y e E let p(y) := limsupx|1(A. - l)\\R(k, T)\y\\\
(see also [19, proof of 4.1.11]). Since T satisfies (G) the mapping p is a continuous
lattice seminorm. Then J := kerp is a closed ideal in E. From p(Ty) < \\T\\p(y)
we obtain TJ^J and W c y. Let 5/ and 7} be the operators on E/J induced by
S and T, respectively. From |JC| < 7"|jt| it follows that p(x) > \\x\\ > 0, and hence
x := x + J ^ 0. Clearly S/X = ax. Moreover, since T satisfies (G),

p(T\x\ - | * l ) = l i m s u p ( X - \)\\R(k,T)(T -k + k - \)\x\\\
Ail

- l)2\\R(k, T)\x\\\ = 0.

Thus T\x\ — \x\ e J; that is, 7}|jc| = \x\. Now Lemma 1.3 implies T/x = ax. Hence
a e o{T) by Lemma 1.1.

As in the proof of [26, V.4.9], one can extend Theorem 1.4 to operators T which are
(G)-solvable. Recall that a positive operator T on a Banach lattice E is (G)-solvable,
if there exist finitely many closed r-invariant ideals {0} = I\ c 72 c • • • c /„ = E
such that the operator Tk induced on /*/Ik-\ satisfies (G) for all 2 < k < n.

COROLLARY 1.5. Let E be a Banach lattice and S,T e ^f(E) operators such that

0 < S < T. IfT is (G)-solvable, then a(S) D r(T)V <^a(T)D r{T)V.

If T is a positive operator and r(T) is a pole of the resolvent map k i->- /?(X, 7) ,
then T is (G)-solvable (see [26, p.326, Example 4]). In particular, this is the case if
r{T) is a Riesz point of T, that is, a pole of the resolvent map R(., T) with finite
dimensional residuum.
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20 Frank Rabiger and Manfred P. H. Wolff [5]

COROLLARY 1.6. Let E be a Banach lattice and S,T e Jg (E) operators such that
0<S<T. lfr{T) is a Riesz point, then a(S) f~l r(T)r c a{T) D r(T)T.

REMARK. If r(S) = r(T), then by a result of Caselles [5, Theorem 4.1] r(S) is
a Riesz point of S, and hence a(S) n r(5)f consists entirely of Riesz points (see
[26, V.5.5]). In Theorem 3.1 we will show that this conclusion actually holds for any
operator S such that |S;c| < T\x\ for all x e E.

2. The peripheral point spectrum of dominated positive operators

In this section we give analogues of Theorem 1.4 for the point spectrum. At
first we recall some well-known facts from ergodic theory and the theory of Banach
lattices. The following proposition is a special case of a general ergodic theorem due
to Eberlein [9, Theorem 3.1].

PROPOSITION 2.1. LetT e Jzf\E) be an operator on a Banach space E and suppose
that r(T) = 1 and T satisfies (G). Then for x e E the following assertions are
equivalent:

(i) limAii(A. — l)R(k, T)x exists in E.
(ii) ((k — l)R(k, T)x)k>] has a weak cluster point (as k —> 1).

In this case y := lim îCA. — l)R(k, T)x satisfies Ty = y.

An operator T € J£(E) is called Abel ergodic if

PTx := lim (A - r(T))R(X, T)x exists for all x € E.
AMD

From (k-r(T))R(X, T) = (ak-ar(T))R(ak,aT), k e p(T),a > 0, it follows that
T is Abel ergodic if and only if a T is Abel ergodic for all a > 0. If T is Abel ergodic
and r(T) > 0, then PT e J?(E) is a projection, PTE = {x e E : Tx = r(T)x],
and ker PT = (r(T) — T)E (see [16, 2.1.9]). By the uniform boundedness principle,
every Abel ergodic operator satisfies (G).

For our next theorem we need a construction from the theory of Banach lattices
(see [26, II.8, Example 1]). Let £ be a Banach lattice and y' € E'+. The mapping
p : E -> R+; x i-* ( / , |*|) is a continuous lattice seminorm on E with kernel
kerp = N(y') := {x e E ; ( / , \x\) = 0}. Then p induces a lattice norm on
E/ker p. Let (E, y') be its (norm) completion, which is again a Banach lattice, and
let jy' : E -> (E, y') be the lattice homomorphism induced by the quotient map
q : E -> E/ker p. It turns out that (E, y') is an AL-space, that is, on (£, / )+ the
norm is additive . If T € ^f(E) is a positive operator such that T'y' < y', then
TN(y') c N(y'). Hence T induces an operator 7) on E/kerp which is a positive
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[6] Properties of dominated operators 21

contraction for the norm induced by p. Thus 7} has a unique contractive positive
extension f e 3f((E, / ) ) . We call f the operator on (E, y') induced by T.

Now we can state the following inheritance result for the point spectrum.

THEOREM 2.2. Let E be a Banach lattice and let S, T € £?(E)suchthatO < S <T
andaT is Abel ergodic for all a € F. Then Pa(S)nr(T)r c Pa(T) Dr(T)r.

PROOF. Firstly let r(T) = 0. Clearly, T satisfies (G), and hence supx>0 \\kR(k, T)\\
< oo. From \kR(k,T)x\ < \k\R(\k\,T)\x\, k € C \ {0}, x € £ , we obtain
suP*eC\io} l l^(^> ^)ll < oo. Then A. i-» kR(k, T) = I + TR(k, T) has a removable
singularity at 0. Thus TR(k,T) has a holomorphic extension to the whole complex
plane. Since limw^oo TR(k, T) — 0, Liouville's theorem implies TR{., T) = 0,
and hence T = 0.

Now let r(T) > 0. Without loss of generality we may assume r(T) = 1. Let
a € Pa{S) n T and choose Q^x e E such that Sx = ax. Then |jc| < S|JC| < 7*|JC|.

Since T is Abel ergodic, y := \imxll(k — l)R(k, T)\x\ exists andO < \x\ < y = Ty.
Let x' € E'+ be such that (x1, \x\) > 0. Again by Abel ergodicity, y' := a(E', E)-

limUi(A. - \)R(k, T)'x' exists and 0 < S'y' < T'y' = /. Moreover, (y', \x\) =
limHi((k-l)R{k,T)'x', \x\) = (x',y) > (x', |x|) > 0. Let S and f be the operators
on the AL-space (E, y') induced by S and T, respectively. Then 0 < S < f and S
and f are contractions. Let x := jyx. We have Sx = ax and ||x|| = (y', \x\) > 0,
hence a e Pa(S). Moreover |x| < S\x\ < f\x\. Since the norm of (E, y') is strictly
monotone on (E, y')+ and f is contractive we obtain T\x\ = |x|. Then Lemma 1.3
implies Tx =ax. Now a"1 T is Abel ergodic. Then z '•= \imXi\(k — l)R(k,a~iT)x
exists in E and Tz = az. Thus

jv(k - l ) / ? (A,a" l r )x = lim(X - l)R(k, a~]f )jvx

= lim(A. - \)R(k, aT1 f )x = x # 0.

Hence z ^ 0 which shows a e Pa(T) n F.

REMARK. The proof shows that a positive operator T is the zero operator if r(T) =
OandT satisfies (G).

If the powers of T converge strongly, then a T is Abel ergodic for all a € F and
Pa(T) f lF c {1}. Thus we obtain the following result.

COROLLARY 2 . 3 . Let E be a Banach lattice and let S,T e S£(E) be such that

0 < 5 <T and (T") is strongly convergent. Then Pa(S) H F C Pa(T) (1 F C {1}.
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22 Frank Rabiger and Manfred P. H. Wolff [7]

If £ is a Banach lattice with order continuous norm we can relax the conditions
on the operator 7. Recall that a Banach lattice £ has order continuous norm if every
decreasing net (xa)a£A in E+, such that infa xa = 0 satisfies lirn^ \\xa || = 0. Examples
of such spaces are c0, Lp for 1 < p < oo, and all reflexive Banach lattices. Order
continuity of the norm is equivalent to the fact that for every relatively weakly compact
set C c £+, the solid hull soC := {y e E : | v| < x for some x e C] is relatively
weakly compact as well (see [2, 13.8]), or that every closed ideal in £ is a projection
band (see [26,11.5.14]).

COROLLARY 2.4. Let E be a Banach lattice with order continuous norm and let
S,T € -£?(£) such thatO < S < 7 and T is Abel ergodic. Then Pa(S) C\ r(T)V c
Pa(T)r\r(T)r.

PROOF. We have to consider only the case r (7) > 0 (see the remark after Theorem
2.2) and without loss of generality we may assume r(T) = 1. Now let a e F. If
k > 1 and x e E then

\(k-l)R(k,a~lT)x\ < ( X -

<(k-l)R(k,T)\x\.

Since T is Abel ergodic, T and hence a"1 T satisfies (G). Moreover C := {(A — 1)
R(k, 7)|;c| : 1 < A. < 2} is relatively compact and D := {(X - l)R(X,a~]T)x :
1 < X < 2} is contained in the solid hull of C. The order continuity of the norm
then implies that D is relatively weakly compact. Thus a~'7 is Abel ergodic by
Proposition 2.1. The assertion follows now from Theorem 2.2.

The next lemma is a pointwise version of Corollary 2.4.

LEMMA 2.5. Let E be a Banach lattice with order continuous norm and let S, T e
-S?(£) be such that 0 < S < T and T satisfies (G). Let a € r(T)F and 0 ^ x e E
be such that Sx = ax. If\imHr{T)(k — r(T))R(k, T)\x\ exists in E, then a e Po(T).

PROOF. If r(T) = 0, then by the remark after Theorem 2.2 we have 7 = 0,
and hence 0 € Po(T). Now let r(T) > 0. Without loss of generality we may
assume r(T) — 1. Then |*| < 5|JC| < 7|JC|. Since 7 satisfies (G) there exists
x' e E'+ such that T'x' = x' and (x1, \x\) > 0 (see [26, V.4.8]). Let N(x') :=
{y e E : (x', \y\) = 0}. Since £ has order continuous norm the closed ideal N(x')
is a projection band (see [26, II.5.14]), and hence £ = A (̂*') © Nix')1, where
N(xY :={u € £ : inf(|«|, |v|) =0forallu e Â  (*')}• Let Q be the band projection
from £ onto N{x')x- Since 0 < S'x' < T'x' - x' the operators S and 7 leave N(x')
invariant, that is, 5 ( 7 - g ) £ C (/-£>)£ and T(I-Q)E c (I-Q)E. If we represent
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[8] Properties of dominated operators 23

5 and T as operator matrices according to the decomposition E = N(x') © N(x')-1,
we obtain

0\o s3)
and T =

where 53 = QS\QE and T3 = QT\QE. In particular 0 < S3 < T3. Letx' := x'lQE. Then
x' e (QE)' is strictly positive and for y e QE we have

<*, r3y> = (x\ QTy) = (x1, QTy) + (x\ (1 - Q)Ty)

= (x1, Ty) = (x',y) = (x,y);

that is, Tjx' = x'. Let x := Qx. From |x | = \Qx\ + \(I - Q)x\ it follows that

(x1, \x\) = {x1, \Qx\ + \(I - Q)x\) = (x1, \x\) > 0 ,

and hence x ^ 0. The S-invariance of N(x') yields S^Qx = QSx, and hence
S3x = ax. The remark after Lemma 1.3 then implies T3x — ax.

Let now k > 1 and y € E. Then

\R(k,a-'T)y\ =
y^ T"y

n>0

Thus

sup || ( X - l)/?(A.,cT17')|| < sup || (A.- l)/?(A.,r)| | < oo and

{(A.- l)R(X,a~lT)x : 1 < A. < 2} c so{(A. - 1)/?(A., 7*)|;c| : 1 < A. < 2}.

Since the limit limxn(A. — l)R(k,T)\x\ exists and E has order continuous norm,
{(A. — l)R(k,a~lT)x : 1 < A. < 2} is relatively weakly compact. Proposition 2.1
then implies that z := lim^n (A. — l)R(k,a~] T)x exists in E, and Tz = az.

It remains to show z ^ 0. The 7-invariance of A^(JC') implies T3Qy = QTy for
every j e £ . Hence T3" Qy = QT"y for all n e M and y e E. Thus

E Q(a-*
—

1«+
n>0 n>0

n>0

and hence z / 0.
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If in Theorem 2.2 the Banach lattice £ is a KB-space we can further relax the
conditions on T. Recall that a Banach lattice E is a KB-space if £ is a (projection)
band in its bidual E". In this case every increasing uniformly bounded sequence (xn)
in E+ converges in norm (see [26, II.5.15]). Note that every KB-space has order
continuous norm. Examples of KB-spaces are Lp for 1 < p < oo, and all reflexive
Banach lattices.

THEOREM 2.6. Let E be a KB-space and let S,T e £?(E) be such that 0 < S <T
and T satisfies (G). Then Pa(S) n r(T)F c Pa(T) n r{T)T.

PROOF. If r (T) = 0 the assertion follows from the remark after Theorem 2.2. As
above, the case r (T) > 0 can be reduced to the case r(T) — 1. LetSx = ax for a G F
and 0 / i e £ . Then \x\ < S\x\ < T\x\. Hence the sequence (r"|jc|) is increasing.
On the other hand, if A. > 1, then (X - \)R{X, T)\x\ > (X - l )£m 5. , , Tm\x\/Xm+] >
X~"T"\x\ for every n G N. Property (G) implies that ( r" |x | ) is uniformly bounded.
Since £ is a A'fi-space y := limn T"\x\ exists in E and |x| < y = Ty. Thus if X > 1
then 0 < (X - l)R(X, T)\x\ < y. Hence {(X - l)R(X, T)\x\ : X > 1} is contained in
the order interval [0, y] which is weakly compact (see [26, II.5.10]). By Proposition
2.1 the limit limA4J(A. — l)R(X, T)\x\ exists. Now Lemma 2.5 implies a e Po{T)
and the proof is finished.

The following example shows that in Theorem 2.2 and Corollary 2.4 the condition
on T (Abel ergodicity) and in Theorem 2.6 the condition on E (A'fi-space) cannot be
omitted.

EXAMPLE 2.7. Let E — c0 be the space of all sequences converging to 0. Define op-
erators S and T on E by Sx := (£ , , 0, £2, £s, •••) and T* := (£ , ,£ , , £2, £3, • • • ) , * =
(£„) € E. Then 0 < 5 < T, \\T\\ = 1 and Se, = ex where e, = (1, 0, 0 , . . . ) . In
particular 1 e Pa(S). On the other hand, let x — (£„) e E be such that Tx = x.
Then £, = £2 = . . . . However, the only constant sequence belonging to E is the zero
sequence, hence 1 ^ Pa(T). Since (X — l)R(X, T)e\ does not converge as X \, 1
the operator T is not Abel ergodic. Finally, if a G T \ {1}, then an easy computation
shows that 1 is not an eigenvalue of aT'. Thus, by [16, Theorem 2.1.4, Theorem
2.1.5], the operatoraT is Abel ergodic foreacha € T \ {1}.

From the results on the point spectrum we can deduce inheritance properties for
the residual spectrum. In fact, if T G Jz?(E) is an operator on a Banach space E,
consider Ro(T) := {X G C : (X — T)E is not dense in E), the residual spectrum of
T. Then Ro{T) = Pa(T') by the Hahn-Banach Theorem. Thus Theorem 2.6 leads
to the following result.
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[10] Properties of dominated operators 25

THEOREM 2.8. Let E be a Banach lattice such that E' has order continuous norm
and let S,T e Jz?(£) be such that 0 < 5 <T, and T satisfies (G). Then Ra(S) 0
r(T)r c Ra(T)nr(T)r.

PROOF. The assumptions on S and T imply that 0 < 5" < T and T satisfies (G).
If E' has order continuous norm, then E' is already a ATB-space (see [19, 2.4.14]).
Thus Theorem 2.6 yields

Ro(S) n r(T)T = Pa(S') (1 r(T)F c Pa (7") D r(7*)r = Ra(T) n r(7)r.

REMARK. One also obtains analogues of Theorem 2.2 and Corollaries 2.3 and 2.4
for the residual spectrum.

3. The essential spectrum of dominated operators

If 0 < S < T are operators on a Banach lattice E and r{T) is a Riesz point of T,
then by a result of Caselles [5, Theorem 4.1] either r{S) < r(T) or r(T) is a Riesz
point of S. In this section we show that an analogous conclusion holds for every
operator 5 which is dominated by T, that is, such that |5JC| < T\x\ for all x e E.

Let us make this more precise. For an operator T e Jif(E) on a Banach space
E let 0(7) := {k e C : ker(A - T) and E/{X - T)E are finite dimensional}
be the Fredholm domain, <ress(T) := C \ 0 (7) the (Wolf) essential spectrum, and
ftas(T) := sup{|A.| : A. e cress(r)} the essential spectral radius of T'. If cress(r) = 0, we
set ress(r) = — oo. It is well-known that o-ess(T) c a ( r ) is compact and aessCT) / 0
if £ is infinite dimensional (see [11, XI, p.205]). Recall that X e o(T) is & Riesz point
of T if k is a pole of the resolvent map with residuum of finite rank. It turns out that
{k e a(T) : |A.| > ress(7)} contains only Riesz points (see [11, XI.8.4]). Conversely,
every Riesz point of T belongs to o{T) \ aess(T) (see [11, XI.5.3]). If r(T) = 0 and
0 is a Riesz point, then T is nilpotent and hence E is finite dimensional (notice that
the Neumann series is the Laurent expansion of the resolvent R(., T)).

If T is a positive operator on a Banach lattice E and r(T) is a Riesz point of T,
then by a result of Niiro and Sawashima all elements of a(T) D r(T)V are poles
of the resolvent. An inspection of the proof given by Lotz and Schaefer (see [26,
V.5.5]) even shows that a{T) D r(T)F consists entirely of Riesz points (see also [18,
Corollary 2.3]). Now the result of Caselles [5, Theorem 4.1] reads as follows (see
also [18, Proposition 2.5]):

PROPOSITION. If 0 < S < T are operators on a Banach lattice E such that r(T)
is a Riesz point of T, then ress(S) < r(T).
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Our aim is to prove the following generalization of Caselles' result.

THEOREM 3.1. Let E be a Banach lattice and let S,T e S£(£) be operators such
that S is dominated by T, and r(T) is a Riesz point ofT. Then ress(S) < r(T). In
particular, a(S) fl r(T)F contains only Riesz points.

The proof of Theorem 3.1 is divided into several 'auxiliary results'. Our first
lemma is due to Greiner [12, Proposition 1.32] (see also [6, Lemma 8.9]) and has its
origin in a result of Schaefer [26, V.5.1, V.7.4]. If £ is a Banach lattice and z e E+,
then Ez denotes the ideal generated by z endowed with the norm pz(x) := inf{r > 0 :
1*1 < rz}- The space Ez is a Banach lattice (see [26, II.7.2]). Moreover there is an
isometric lattice isomorphism from £, onto a space C(K), K compact, which maps
zto \K (see [26, II.7.2, II.7.4]).

LEMMA 3.2. Let S,T e Jz?(£") be operators on a Banach lattice E such that S
is dominated by T. Suppose there is a € F and 0 ^ z e E such that Sz — az
and T\z\ = |z|. Then there is a surjective isometry V e Jf(E^) such that Sx =
aVTV~]xforallx € 1 ^ .

If T is an operator on a Banach space E, G c E a closed T- invariant subspace
and X e a(T) D r(T)T a Riesz point of T, then Lemma 1.1 implies that A. is a Riesz
point or belongs to the resolvent set of the induced operators 7] and 7} on G and E/G,
respectively. In case G is an ideal in a Banach lattice E, Caselles [5, Lemma 4.4] has
shown that the converse is true. We formulate his result in a slightly different form.

LEMMA 3.3. Let E be a Banach lattice, T € ^f (E), I c E a closed T-invariant
ideal, and 7] and 7) the induced operators on I and E/I, respectively. Suppose that
X G C is a Riesz point of 7] and 7), or a Riesz point of either 7] or 7) and belongs to
the resolvent set of the other operator. Then X is a Riesz point of T.

Now we prove a special case of Theorem 3.1. Recall that a positive operator T
on a Banach lattice E is irreducible if {0} and E are the only closed 7"-invariant
ideals in E. We call u e E+ a topological order unit if the ideal generated by u
is dense in E. For z' e £" and z 6 E w e denote by z' ® z the operator given by
(z' ®z)x := (z',x)z, x e E.

LEMMA 3.4. Let E be a Banach lattice and let S,T € J£?(£) be operators such
that S is dominated by T, r(T) is a Riesz point of T, and T is irreducible. Then
ress(S) < r(T).

PROOF. If E is finite dimensional there is nothing to prove. Otherwise we have
r(T) > 0 and without loss of generality we may assume r(T) = 1. If r(S) < 1
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the assertion holds. Now let r(S) = 1 and A. G <r(5) n F. Consider an ultrapower
E& of E and the operator S& induced by S. Then X e Pa(S^) by Lemma 1.2.
Choose 0 / i e £ ^ such that S^v = av. Clearly, S& is dominated by 7V. The
irreducibility of T implies that 1 is a pole of order 1 of /?(., T) and the residuum P at 1
is given by P = z <8> u, where z' e E'+ is strictly positive and u e E+ is a topological
order unit (see [26, V.5.1, V.5.2]). Lemma 1.2 implies that 1 is a pole of order 1 of
R(., 7V) with residuum P<% = %' ® u, where u := (u, u,...)"€ E<% and z e (£V)+
is given by (z1, x) := lim^(z', xn), x = (xn) e E&- Thus P<% has rank 1, and hence
1 is a Riesz point of 7V •

Since T'^z! = z' the closed ideal / := [x e £V : (£', \x\) = 0} c £ ^ is invariant
for 7V and S&, respectively. Let (7V)i and (S< )̂[ be the induced operators on / .
From Ptyl = {0} and Lemma 1.1 it follows that 1 e p((7V)|). Since ( r ^ ) ( is positive
this implies r((7V)|) < 1 (see [26, V.4.1]), and hence r((5V)j) < 1. In particular
v$I.

Let W := (7V)/ and U := (5^) / be the induced operators on F := E^/1 and let
z and y be the canonical images of v and M in F, respectively. Then U is dominated by
W, 1 is a Riesz point of W with corresponding residuum g := ( /V)/ = z' <S> 3', and
O ^ a z = Uz. Since |y| = \S^v\ < T^\v\andT^z! = z! we obtain T&\v\ - \v\ e I,
and hence W\z\ = \z\ = Xy for some X > 0.

Let J be the closed ideal in F generated by y. Then J is invariant for W, Q and
U. Let W|, U\ and W/7 (2/, [// be the induced operators on J and F/J, respectively.
Then Q/ = 0, and hence 1 e p(W/). Since W/ is positive and U/ is dominated by
Wt we obtain r(Uf) < r(W/) < 1. On the other hand, 1 is a Riesz point of W{ and
Wh f/|, a and z satisfy the assumptions of Lemma 3.2. Thus the operators U\ and a W{

are similar, and hence a is a Riesz point of U\. Now Lemma 3.3 and r(U/) < 1 imply
that a is a Riesz point of U = (S<&)/. Since r((S<^)() < 1 by the same argument, we
obtain that a is a Riesz point of S<&. Thus a is a Riesz point of 5 =

Now we prove Theorem 3.1. We follow the lines of a proof of Lotz and Schaefer
(see [26, V.5.5] and [5, Theorem 4.1]).

PROOF OF THEOREM 3.1. If £ is finite dimensional the assertion is obvious. Now
let E be infinite dimensional. Since r(T) is a Riesz point we have r(T) > 0. Then
without loss of generality we may assume r(T) = 1. The proof is now divided into
three steps.

(1) We first assume that r(T) = 1 is a pole of order one of /?(., T) and its
residuum P is strictly positive, that is, Px e E+ \ (0) for all x e E+ \ {0}. Then
PE = Fix(r) (see [8, Theorem 2.17]) and from [26, III. 11.5] it follows that PE is a
finite dimensional sublattice of E. Thus PE is the linear span of normalized, mutually
orthogonal vectors ex,... ,en e (PE)+. Let Jk, 1 < k < n, be the closed ideal in
E generated by ek. Then TJk c Jk and by [26, III.8.5] each Tk := TiJk is irreducible.
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Since S is dominated by T, each Jk is invariant for S. Hence we can apply Lemma
3.4 to 71 and Sk := SlJt and obtain ress(Sk) < I for 1 < k < n. Now / := J2"k=] h is
a closed ideal (see [26, III. 1.2]) which is invariant for T and 5. Since PE c y and 7*
is positive, the induced operator 7) on E / y satisfies r(7}) < 1. Therefore the same
holds for the induced operator Sf on E/J. On the other hand, ress(5,y) < 1 by the
foregoing reasoning. Hence the assertion follows from Lemma 3.3.

(2) Next, let r(T) = 1 be a pole of order one of /?(., 7") with (not necessarily
strictly positive) residuum P. Since TP = PT, the ideal J := {x e E : P\x\ = 0}
is invariant under T and r(7]y) < 1. Thus S7 c y and r(Sjj) < 1. For the induced
operators 7) and 5/ on E/J we are in the situation of (1). Hence the assertion follows
from Lemma 3.3.

(3) Finally, let r (T) = 1 be a pole of order A: > 1. Then Q := l im u l (A.-1 )*/?(*, T)
is a positive operator on E satisfying Q2 = 0. Since TQ = QT the ideal y := [x e
E : <2I*I = 0} is 7"-invariant. For the induced operators 7j and 7) on y and £ / y ,
respectively, we obtain that 1 is a pole of order k — \ of R(.,T\) and a pole of order 1
of /?(., 7}). Moreover, SJ c. J and the induced operators 5| and 5/ on J and £ / y are
dominated by 7] and 7), respectively. Thus the assertion follows by induction over k
and applying Lemma 3.3.

4. Asymptotic properties of dominated operators

In this section we apply the previous results to investigate inheritance of asymp-
totic properties. Recall that by the theorem of Katznelson-Tzafriri [15, Theorem 1]
an operator T on a Banach space E with uniformly bounded powers T" satisfies
lim,, \\T" - Tn+X || = 0 if and only if a(T) f i f e {1}. Now the following result is an
immediate consequence of Theorem 1.4.

THEOREM 4 . 1 . Let E be a Banach lattice and let S,T e Ja?(E) be such that

0< S < 7\supn || T" || < oo and lim,, ||7"" - r"+1| | = 0 . Then lim,, | | 5 " - 5 " + l | | = 0 .

In [24] and [25] it is shown that for operators 0 < S < T on a Banach lattice E
with order continuous norm strong convergence of (T") to a projection PT of finite
rank implies strong convergence of (Sn). We will see that the rank condition on PT

can be replaced by a spectral condition on T.
At first we prove an inheritance result for a property which is slightly more general

than strong convergence of the powers T", n e N. An operator T on a Banach space
E is called almost periodic, if {T"x : n e N) is relatively compact for all x e E. In
this case the Jacobs-Glicksberg-deLeeuw splitting theorem (see [16, §2.4]) yields a
decomposition E = Eo © E, of E where

Eo = E0(T) = [x € E : lim T"x = 0} and
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Er = Er(T) = \m{x e E : Tx = ax for some a € F}.

Now we obtain the following inheritance result for almost periodicity (see [24, Pro-
position 3.10] and [25, Theorem 4.6]). Notice that we do not impose any restriction
on the projection QT from E onto Er.

THEOREM 4.2. Let E be a Banach lattice with order continuous norm and let
S,T e 3f{E) be such that 0 < 5 < T and T is almost periodic. Ifa{T) n r ^ T ,
then S is almost periodic.

PROOF. By the uniform boundedness principle, supn ||S"|| < supn ||r
n|| < oo, and

hence r(T) < 1. If r(T) < 1, then r(S) < r(T) < 1, which implies lin%, ||S"|| = 0.
Thus we may assume r (T) = 1. By a result of Lotz (see [26, V.4.9])<r(r)nF is cyclic,
that is, X €a(T)nr implies X" e a(T) for all n e 1. Since a (T) HV is not the whole
unit circle it must be a finite union of finite subgroups of F. Hence there exists m e M
such that cr (7 m )nF = {1}. By Theorem 1.4 we have a (Sm) OF C ( j ( r ) n r = {1}.
On the other hand, {Tmnx : n € N} is relatively compact for x € E. Since E has
order continuous norm {Sm"x : n € N} c so[Tmn\x\ : n e N} is relatively weakly
compact for all x e E. If X > 1 then (X — l)R(X, Sm)x is in the closed convex
hull of [Smnx : n e H} which is again weakly compact by Eberlein's theorem. Then
Proposition 2.1 implies that Sm is Abel ergodic and E = Fix(5m) © (/ - Sm)E.
Since a(Sm) OF c {1}, the Katznelson-Tzafriri theorem (see [15, Theorem 1]) yields
limn ||S

mn - 5m<"+1)|| = 0. Thus limn S
mnx = 0 for all x e (/ - Sm)E, and hence

(Smn)neN is strongly convergent. Thus {S"x : n e N} c (J™=| S
k{Sm{n~l)x : n e N} is

relatively compact for all x e E.

If (Tn) is strongly convergent we obtain strong convergence of (5").

COROLLARY 4.3. Let E be a Banach lattice with order continuous norm and let
S,T e ££{E) be such that 0 < 5 < T and (T") is strongly convergent. Ifa(T)nV ^
F, then (S") is strongly convergent.

PROOF. By Theorem 4.1 the operator 5 is almost periodic. Then the Jacobs-
Glicksberg-deLeeuw decomposition yields E = E0(S) © Er(S). By Corollary 2.3 we
have Pa(S) n F c Pa(T) n F c {1}. Thus Er(S) = Fix(S). Hence (5") is strongly
convergent.

If (T") is uniformly convergent, then 1 e p{T) or 1 is isolated in a(T) (see [16,
2.2.7]). So we obtain the following result.

COROLLARY 4.4. Let E be a Banach lattice with order continuous norm and let
S,T e 3f(E) be such thatO < S <T and (Tn) is uniformly convergent. Then (S")
is strongly convergent.
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REMARKS, (a) In Corollary 4.4 one cannot expect a better convergence of the
sequence (S") (see [23, 2.6 Remark (a)]).

(b) We do not know if the conclusion of Theorem 4.2 and Corollary 4.3 still holds
without the spectral condition on T. At least in that case one knows that} S" x : n e N}
is relatively weakly compact for all x e E, that is, S is weakly almost periodic.

We conclude with an application of Theorem 3.1. Recall that an operator T on a
Banach space E is uniformly ergodic if the Cesaro means Tn := YllZo Tk/n, n e N,
are uniformly convergent. The limit PT := lim« Tn is called the ergodic projection
corresponding to T. It is well known that T is uniformly ergodic if and only if
\\mn | |r"||/rc = 0 and 1 is a pole of the resolvent /?(., T) (see [8, Theorem 3.16]). In
this case PT coincides with the spectral projection corresponding to the spectral set
{1} (see [8, Theorem 2.23]). Thus T is uniformly ergodic with ergodic projection of
finite rank if and only if limn || T" \\/n = 0 and 1 is a Riesz point of T.

Now we obtain the following generalization of a result of Caselles [5, Corollary
4.6].

THEOREM 4.5. Let E be a Banach lattice and let S,T G ££(E) be operators such
that S is dominated by T. IfT is uniformly ergodic with ergodic projection of finite
rank, then S is uniformly ergodic with ergodic projection of finite rank.

PROOF. Our assumptions imply r(S) < r(T) < 1. If r(S) < 1 there is nothing to
prove. lfr(S) = r(T) = l,then 1 is a Riesz point of T. Theorem 3.1 yields ress(S) <
1. In particular 1 is a Riesz point of 5. On the other hand, || 5" || < || T" ||, n e N, and
hence limn ||5" \\/n = 0. Thus the assertion follows from the previous discussion.

FINAL REMARK. The authors obtained corresponding results for pseudo-resol-
vents. This is the subject of a forthcoming paper.
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