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Abstract

We investigate the relationship between the peripheral spectrum of a positive operator 7 on a Banach
lattice E and the peripheral spectrum of the operators § dominated by 7', that is, |Sx| < T[x| for all
x € E. This can be applied to obtain inheritance results for asymptotic properties of dominated operators.
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Introduction

The investigation of operators on Banach lattices leads to the natural question which
properties of a positive operator 7 on a Banach lattice E are inherited by the operators
S dominated by T, that is, |Sx| < T|x| for all x € E. For certain properties one has
to impose the additional assumption, that the operator S is also positive.

There are numerous results on inheritance of operator properties such as com-
pactness, weak compactness, or being a kernel or a Dunford-Pettis operator (see, for
example, [1,4,7,9, 13, 14, 20, 27]; see also [2, 19, 22, 28] for a comprehensive survey
and further developments). Only recently the inheritance of spectral and asymptotic
properties of an operator has been investigated (see, for example, [3, 5, 17, 18, 21,
23-25)).

In the present paper we are mainly interested in properties of the peripheral spectrum
of a dominated operator. We always assume that the dominating operator T satisfies a
certain growth condition (G). Then for positive operators S dominated by 7 one has
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2] Properties of dominated operators 17

o(S)Nr(T)Y[ € o(T)Nr(T)T, that is, either the spectral radii satisfy »(S) < r(T)
or the peripheral spectrum o (S) N r(S)T of S is contained in the peripheral spectrum
o(T)Nr(T)T of T (see Theorem 1.4). If T satisfies an ergodicity condition and/or
the Banach lattice E has order continuous norm or is a K B-space, one obtains the
corresponding inclusion Po (S) N r(T)I" € Po(T) N r(T)I" for the point spectrum
(see Theorem 2.2, Corollary 2.4 and Theorem 2.6). If r(T) is a Riesz point of T
and S a (not necessarily positive) operator dominated by T, then r(S) < r(T) or
the peripheral spectrum of S contains only Riesz points (see Theorem 3.1). This
generalizes a result of Caselles [5, Theorem 4.1], where S is assumed to be positive.
Finally we apply the above resuits and investigate inheritance of asymptotic properties
such as uniform convergence of §"*' — S$" to 0 (see Theorem 4.1), almost periodicity
and strong convergence of the powers S (see Theorem 4.2 and Corollary 4.3), and
uniform ergodicity of S (see Theorem 4.5). In particular we generalize a result of
Caselles [5, Corollary 4.6] and extend results of Réabiger [24, 25].

Our notation is standard and follows mainly the books of Meyer-Nieberg [19] and
Schaefer [26]. Unexplained terminology can be found there. We briefly recall some
frequently used notions. By I' := {A € C : |A| = 1} we denote the unir circle.
Throughout the whole paper we consider spaces over C. If E is a Banach space, then
Z(E) is the space of all bounded linear operators on E and E’ the (topological) dual
of E. ForT € Z(E)letT' € £ (E") be the adjoint of T. Moreover, o (T) denotes the
spectrum, r(T) := sup{|A| : A € o(T)} the spectral radius, Po (T) :={A e o(T) : A
is an eigenvalue of T} the point spectrum, and p(T) := C\ o (T) the resolvent set of
T.Forx € p(T)yweset R(A, T) := (A —T)™\.

Now let E be a (complex) Banach lattice with modulus |.|. Then E, ;= {x € E :
x = |x|} is the set of all positive elements in E. The dual space E’ is again a Banach
lattice and x’ € E’ is positive if and only if (x’, x) > O for all x € E.. For operators
S, T ¢ X(E)wewrite S < Tif (T —S)E, C E,,and T is called positive if 0 < T.

1. The peripheral spectrum of dominated positive operators

In this section we show that for operators 0 < S < T on a Banach lattice E one
always has o (S) Nr(T)I" € o(T) Nr(T)I" provided that T satisfies a certain growth
condition (G).

At first we recall some well-known facts and fix some notations. Let T € .Z(E) be
a bounded linear operator on a Banach space E. If G is a closed linear subspace of E
suchthat TG C G we denote by T, = T; therestrictionof T to G and by T, = T the
induced operator on the quotient space E/G givenby T)(x + G) :=Tx+ G, x € E.
The following lemma is well-known (see [26, V, Exercise 5]).
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LEMMA 1.1. Under the conditions above one has

O (U@ Nr(II Cco(T)Nr(T)I.

(i) max(r (7)), r (T})) = r(T).

(iii) A € r(T)T is a pole of the resolvent R(., T) (of order k) if and only if A is a
pole of R(., T\) and R(., T;) (of order k, and k,, respectively), and then sup(k, k;) <
k < k +k,. Moreover, if P is the residuum of R(., T) at X, then PG < G and P, and
P, is the residuum of R(., T)) and R(., T)) at A, respectively.

In the sequel we make use of the following construction. For details we refer
to [26, V.1]. If E is a Banach space let [,(E) be the space of bounded F-valued
sequences endowed with the sup-norm. For a free ultrafilter 7 on N we consider
the closed subspace ¢y (E) := {(x,) € I(E) : limg ||x,|| = 0}. The quotient space
Ey =1 (E)/cq (E)iscalled ultrapower or % -power of E. For (x,)+c4 (E) € E4
we also write @ The mapping x +— (x, x, ... ) is an isometric embedding of E
into E4 and thus E can be considered a closed subspace of Eq . Every operator
T € Z(E) induces an operator Ty, € £ (E4) by means of Ty (x,) := (Tx,). Its
restriction to E satisfies Ty = T. Moreover, the following holds (see {26, V.1]).

LEMMA 1.2. ) T2l = IIT].

(i1) 0 (T ) = o(T).

(1)) 6 (T4 ) Nr(THI' € Po(Ty).

(vi) R(A, Ty) = R(A, Ty forall A € p(T).

(v) A € o(T) is a pole of order k of R(., T) if and only if the same holds for
R(.,Ty).

If E is a Banach lattice and 7 € £(E) is a positive operator, then E4 is again a
Banach lattice and 7y, € Z(F 4 ) is positive. For ()x\,,) € E4 one has |(7r\,,)| = ([x,]).

Now let 0 < § < T be operators on a Banach lattice E. In the following lemma
we present a condition under which an eigenvalue of § is also an eigenvalue of T.

LEMMA 1.3. Let E be a Banach lattice and let S, T € £ (F) be suchthat0 < § <
T. Suppose there is @ € T and x € E such that Sx = ax and T |x| = |x|. Then
Tx =ax.

PROOF. The assumptions imply |x| < S|x| < T|x| = {x|. Thus 0 < (T — S)x| <
(T — S)|x| = |x| ~ Sjx| <0,and hence Tx = Sx = ax.

REMARK. The conditions of the lemma are satisfied if 0 < § < 7, Sx = ax for
a € I and x € E, and there is a strictly positive linear form x" € E’_ such that
T'x' < x'. (Recall that x" € E', is strictly positive if (x', y) > Oforall y € E, \ {0}.)
In fact, from O < T{x| — |x]and O < (T|x| — |x],x") = (|x|, (T" — Dx") < 0 we
obtain T'|x| = |x| by the strict positivity of x'.
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Now we come to the main result of this section. Recall that an operator T on a
Banach space E satisfies the growth condition (G) iflim sup, |, , [(A—=r(T))R(A, T)||
< oco. Lemma 1.2 implies that then T, € £ (E4) has also property (G) for
every ultrapower E4 of E. Clearly every operator with uniformly bounded powers
and spectral radius 1 satisfies (G). Moreover a positive operator T on a Banach
lattice £ with »(T) = 1 has property (G) if and only if the Cesaro means T, =
n~' Y17  T*, n € N, are uniformly bounded (see {10, 1.5, 1.7]).

THEOREM 1.4. Let E be a Banach latticeandlet S, T € L (E) suchthat0 < S < T
and T satisfies (G). Then o (S) N r(T)I' Co(T)yNr(T)I.

PROOF. The assumptions imply 0 < r(S) < r(T). If r(T) = O there is nothing
to prove. Otherwise we may assume r(7) = 1 and, by passing to an ultrapower,
c(S)YNT C Po(S). Leta € 0(S) NT and choose 0 # x € FE such that Sx = «x.
Then |x| < S|x| < T|x|. Fory € E let p(y) := limsup,,(A — DR, T)|yl|l
(see also [19, proof of 4.1.11]). Since T satisfies (G) the mapping p is a continuous
lattice seminorm. Then J := ker p is a closed ideal in E. From p(Ty) < | T||p(y)
we obtain TJ € J and SJ C J. Let §, and 7, be the operators on E/J induced by
S and T, respectively. From |x| < T|x]| it follows that p(x) > |lx| > 0, and hence
X :=x+J #0. Clearly S,;x = ax. Moreover, since T satisfies (G),

p(Tix| — |x|) = limsup(x — DR, THT — A+ 4 = DIx]]
Al

= limsup(r — 1)?|R(x, T)|x||| = 0.
All

Thus T'{x| — |x| € J; thatis, T,|x| = |X|. Now Lemma 1.3 implies 7,)x = ax. Hence
o € o(T) by Lemma 1.1.

As in the proof of [26, V.4.9], one can extend Theorem 1.4 to operators T which are
(G)-solvable. Recall that a positive operator T on a Banach lattice E is (G)-solvable,
if there exist finitely many closed T-invariant ideals {0} =1, C L, € --- C I, = E
such that the operator 7, induced on I, /I, _, satisfies (G) forall2 < k < n.

COROLLARY 1.5. Let E be a Banach lattice and S, T € £ (E) operators such that
0<S<T.IfT is (G)-solvable, then o (S) Nr(T)T Co(T)Nr(T)T.

If T is a positive operator and »(7T') is a pole of the resolvent map A — R(1, T),
then T is (G)-solvable (see [26, p.326, Example 4]). In particular, this is the case if
r(T) is a Riesz point of T, that is, a pole of the resolvent map R(., T') with finite
dimensional residuum.
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COROLLARY 1.6. Let E be a Banach lattice and S, T € £ (E) operators such that
0<S<T. Ifr(T)isaRiesz point, thena (S) Nr(II Co(T)Nr(T)I.

REMARK. If r(S) = r(T), then by a result of Caselles [5, Theorem 4.1] r(S) is
a Riesz point of S, and hence o (S) N r(S)I" consists entirely of Riesz points (see
[26, V.5.5)). In Theorem 3.1 we will show that this conclusion actually holds for any
operator S such that |Sx| < T|x| forall x € E.

2. The peripheral point spectrum of dominated positive operators

In this section we give analogues of Theorem 1.4 for the point spectrum. At
first we recall some well-known facts from ergodic theory and the theory of Banach
lattices. The following proposition is a special case of a general ergodic theorem due
to Eberlein [9, Theorem 3.1].

PROPOSITION 2.1. Let T € £ (E) be an operator on a Banach space E and suppose
that r(T) = 1 and T satisfies (G). Then for x € E the following assertions are
equivalent:

(1) limy,, (A — 1)R(A, T)x exists in E.
(1) (X = DR, T)x),.., has a weak cluster point (as L — 1).

In this case y := lim, ;| (A — 1)R(X, T)x satisfies Ty = y.
An operator T € Z(E) is called Abel ergodic if

Prx = Allin; (A —r(T)HR(A, T)x exists forall x € E.
r(T)

From (A —r(T)R(A,T) = (ar—ar(T))R(ar,aT), A € p(T),a > 0, it follows that
T is Abel ergodic if and only if aT is Abel ergodic for alla > 0. If T is Abel ergodic
and r(T) > 0, then Pr € Z(F) is a projection, P,E = {x € E : Tx = r(T)x},
and ker Pr = (r(T) — T)E (see [16, 2.1.9]). By the uniform boundedness principle,
every Abel ergodic operator satisfies (G).

For our next theorem we need a construction from the theory of Banach lattices
(see [26, 11.8, Example 1]). Let E be a Banach lattice and y’ € E. The mapping
p: E - R, x — (y,|x|) is a continuous lattice seminorm on E with kernel
kerp = N(y) == {x € E : (y',|x|) = 0}). Then p induces a lattice norm on
E/ker p. Let (E, y') be its (norm) completion, which is again a Banach lattice, and
let j. : E — (E,y’) be the lattice homomorphism induced by the quotient map
qg : E — E/kerp. It turns out that (E, y') is an AL-space, that is, on (E, y'), the
norm is additive . If T € Z(E) is a positive operator such that 7'y’ < y’, then
TN(y) € N(¥). Hence T induces an operator T, on E/ker p which is a positive
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contraction for the norm induced by p. Thus 7, has a unique contractive positive
extension T € Z((E, y')). We call T the operator on (E, ¥') induced by 7.
Now we can state the following inheritance result for the point spectrum.

THEOREM 2.2. Let E be a Banach latticeandlet S, T € Z(E) suchthatQ < S<T
and oT is Abel ergodic for alla € T'. Then Po(S)Nr(T)I' € Po(T)Nr(T)I.

PROOF. Firstly letr(T) = 0. Clearly, T satisfies (G), and hence sup, _, |AR(X, T)|
< o0. From [AR(A, T)x| < |MR(A], T)x|, » € C\ {0}, x € E, we obtain
sup; ccyo) IAR(, T)|| < 0o. Then A > AR(A, T) = I + TR(A, T) has a removable
singularity at 0. Thus T R(A, T) has a holomorphic extension to the whole complex
plane. Since lim_.. TR(A, T) = 0, Liouville’s theorem implies TR(.,T) = 0,
and hence T = 0.

Now let r(T) > 0. Without loss of generality we may assume r(7) = 1. Let
a € Po(S)NT and choose 0 # x € E such that Sx = ax. Then |x| < S|x| < T|x]|.
Since T is Abel ergodic, y := limy (A — )R(A, T)|x| existsand 0 < |x| < y = Ty.
Let x' € E’ be such that (x’, [x]) > 0. Again by Abel ergodicity, y' := o (E’, E)-
lim, (A — DR(A, TYx  exists and 0 < §'y' < T'y’ = y'. Moreover, {y', |x|) =
lim, ), ((A—=DR, TYx', |x]) = {(x', y) = {x', |x]) > 0. Let S and 7 be the operators
on the AL-space (E, y') induced by S and T, respectively. Then 0 < § < T and S‘
and T are contractions. Let ¥ := Jyx. We have Sk = aX% and |X] = (¥, |x]) >
hence & € Po(S). Moreover || < S|x| < T|%|. Since the norm of (E, y') is Strlctly
monotone on (E, y'), and T is contractive we obtain T|x| |X]. Then Lemma 1.3
implies T% = a%. Now a~'T is Abel ergodic. Then z := limy;; (A — DR(A,a™ ' T)x
exists in £ and Tz = az. Thus

jez = lim je(h = DR @' Tx = lm( — DRO. «' ) jox

= mu — DR o' =% #0.

Hence z # 0 which shows o € Pa(T)NT.

REMARK. The proof shows that a positive operator T is the zero operator if r(T) =
0 and T satisfies (G).

If the powers of T converge strongly, then aT is Abel ergodic for all ¢ € I" and
Po(T)NT C {1}. Thus we obtain the following result.

COROLLARY 2.3. Let E be a Banach lattice and let S, T € £ (E) be such that
0 < S <Tand(T") is strongly convergent. Then Po(S)NT" C Po(T)NT < {1}.
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If E is a Banach lattice with order continuous norm we can relax the conditions
on the operator T. Recall that a Banach lattice E has order continuous norm if every
decreasing net (x,)qcq in E, such that inf, x, = 0 satisfies lim, ||x, || = 0. Examples
of such spaces are ¢y, L? for | < p < o0, and all reflexive Banach lattices. Order
continuity of the norm is equivalent to the fact that for every relatively weakly compact
set C C E, the solid hull soC := {y € E : |y| < x for some x € C} is relatively
weakly compact as well (see [2, 13.8]), or that every closed ideal in E is a projection
band (see [26, 11.5.14}).

COROLLARY 2.4. Let E be a Banach lattice with order continuous norm and let
S, T € L(E)suchthat0 < S < T and T is Abel ergodic. Then Po(S) Nr(T)I" C
Po(T)Yynr(T)T.

PROOF. We have to consider only the case 7(7) > 0 (see the remark after Theorem
2.2) and without loss of generality we may assume r(7) = 1. Now leta € I'. If
A > l and x € E then

A= DR o' Dixf <=1 A"Vl T"|x|
<A -=DRA, T)|x|.

Since T is Abel ergodic, T and hence o' T satisfies (G). Moreover C := {(A — 1)
R(A, T)|x| : 1 < A < 2} is relatively compact and D := {(A — )R(A,a”'T)x :
1 < A < 2} is contained in the solid hull of C. The order continuity of the norm
then implies that D is relatively weakly compact. Thus a™'T is Abel ergodic by
Proposition 2.1. The assertion follows now from Theorem 2.2.

The next lemma is a pointwise version of Corollary 2.4.

LEMMA 2.5. Let E be a Banach lattice with order continuous norm and let S, T €
ZL(E) be such that 0 < S < T and T satisfies (G). Letx e r(T)I'and 0 # x € E
be such that Sx = ax. Iflim, ,7y(A —r(T))R(A, T)|x| existsin E, thena € Po(T).

PROCF. If r(T) = 0, then by the remark after Theorem 2.2 we have T = 0,
and hence 0 € Po(T). Now let r(T) > 0. Without loss of generality we may
assume (7)) = 1. Then |x| < S|x| < T|x|. Since T satisfies (G) there exists
x' € E/ such that T'x" = x" and (x', [x]) > O (see [26, V4.8]). Let N(x') :=
{y € E: (x',|y]) = 0}. Since E has order continuous norm the closed ideal N(x')
is a projection band (see [26, 11.5.14]), and hence E = N(x') & N(x')*, where
N(x)* :={u € E : inf(|u], |v]) = Oforall v € N(x')}. Let Q be the band projection
from E onto N(x')*. Since 0 < §'x’ < T'x’ = x’ the operators S and T leave N (x’)
invariant, thatis, S(/ — Q)E CU-Q)FandT(U—-Q)E C (I-Q)E. If werepresent
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S and T as operator matrices according to the decomposition E = N(x') & N(x")*,

we obtain
_ Sl S2 _ TI T2
S_(O S3) and T_<0 T3>
where S; = QSpr and T; = QT gg. In particular 0 < §; < T5. Let X' := xl’QE. Then
X' € (QFE) is strictly positive and for y € QF we have

(X' Tsy) = (x', QTy) = (x', QTy) + (x', (I — Q)Ty)
=, Ty) =" y) =&,y

thatis, T;x" = X'. Let X := Qx. From |x| = |Qx] + |({ — Q)x| it follows that
(X 1x0) = & 10x] + 1 — Q)x) = (X, |x]) > 0,

and hence X # 0. The S-invariance of N(x') yields S;0x = QSx, and hence
S3¥ = aX. The remark after Lemma 1.3 then implies 75X = «X.
Letnow A > 1 and y € E. Then

n

T
Z an)\‘r.:—l

n>0

T"
< B ga .

—1 _
|R()\.,C¥ T).Y'— — )\’n+1

Thus -

sup || (x — l)R(A,a‘lT)ll <sup|[(A —1)R(A, T)|| < oo and

A>1 A1

(A= DRGLa ' T)x:1 <i <2} Cso{(h— DR, T)lx|: 1 <A <2}

Since the limit lim, (A — 1)R(A, T)|x| exists and E has order continuous norm,
{A = DR, a7 'T)x : 1 < A < 2} is relatively weakly compact. Proposition 2.1
then implies that z := lim, ;; (A — DR(A, @' T)x exists in E, and Tz = az.

It remains to show z = 0. The T-invariance of N(x’) implies T:Qy = QTy for
every y € E. Hence T;'Qy = QT"y foralln ¢ Nand y € E. Thus

lT n —nTn
QZ = llm()\ - 1) Z Q(a)\n-t-l ) ()\ B l) Z }Ln-H
n=0
= lim( - 1) Z S =5 #0,
n=0

and hence z # 0.
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If in Theorem 2.2 the Banach lattice E is a K B-space we can further relax the
conditions on 7. Recall that a Banach lattice E is a K B-space if E is a (projection)
band in its bidual E”. In this case every increasing uniformly bounded sequence (x,)
in E, converges in norm (see [26, [1.5.15]). Note that every K B-space has order
continuous norm. Examples of K B-spaces are L” for 1 < p < o0, and all reflexive
Banach lattices.

THEOREM 2.6. Let E be a K B-spaceand let S, T € L (E) be suchthatQ < S < T
and T satisfies (G). Then Pa(S) N r(T)T C Po(T)Nr(T)I.

PROOF. If r(T) = 0 the assertion follows from the remark after Theorem 2.2. As
above, the case r(T') > Ocanbereducedtothecaser(7) = 1. Let Sx = axfora e I
and 0 # x € E. Then |x| < §|x| < T|x|. Hence the sequence (7"|x]) is increasing.
On the other hand, if A > 1, then (A — DR(A, T)|x| > (A — I)Zmz" T x|/Am+! >
A7"T"|x| for every n € N. Property (G) implies that (7"|x|) is uniformly bounded.
Since E isa K B-space y := lim, T"|x| existsin E and |x| < y =Ty. Thusif A > 1
then 0 < (A — DR(X, T)jx| < y. Hence {(A — 1)R(A, T)|x| : A > 1} is contained in
the order interval {0, y} which is weakly compact (see [26, 11.5.10]). By Proposition
2.1 the limit lim, ;; (A — 1)R(A, T)|x| exists. Now Lemma 2.5 implies &« € Po(T)
and the proof is finished.

The following example shows that in Theorem 2.2 and Corollary 2.4 the condition
on T (Abel ergodicity) and in Theorem 2.6 the condition on E (K B-space) cannot be
omitted. ‘

EXAMPLE 2.7. Let E = ¢, be the space of all sequences converging to 0. Define op-
erators Sand T on E by Sx := (§,,0,6,&,...)and Tx := (§,&.5,&,...), x =
(.)€ E. Then0 < S < T, |T|| =1 and Se¢; = e¢; where ¢; = (1,0,0,...). In
particular 1 € Po(S). On the other hand, let x = (§,) € E be such that Tx = x.
Then &, = & = .... However, the only constant sequence belonging to E is the zero
sequence, hence 1 ¢ Po(T). Since (A — 1)R(X, T)e, does not converge as A | 1
the operator T is not Abel ergodic. Finally, if « € I" \ {1}, then an easy computation
shows that 1 is not an eigenvalue of a7’. Thus, by [16, Theorem 2.1.4, Theorem
2.1.5], the operator «T is Abel ergodic for each @ € ' \ {1}.

From the results on the point spectrum we can deduce inheritance properties for
the residual spectrum. In fact, if T € Z(FE) is an operator on a Banach space E,
consider Ro(T) :={A € C: (A — T)E is not dense in E}, the residual spectrum of
T. Then Ro(T) = Po(T’) by the Hahn-Banach Theorem. Thus Theorem 2.6 leads
to the following result.
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THEOREM 2.8. Let E be a Banach lattice such that E' has order continuous norm
andlet S, T € L(E) be suchthat0 < § < T, and T satisfies (G). Then Ro(S) N
r(TH)I' C Ro(T) Nr(T)I.

PROOF. The assumptions on S and 7 imply that 0 < §' < T' and 7T’ satisfies (G).
If E’ has order continuous norm, then E’ is already a K B-space (see [19, 2.4.14]).
Thus Theorem 2.6 yields

Ro(S) N r(T)T = Pa(S)Nr(T)T C Po(T)Nr(T)I" = Ro(T) N r(T)T.

REMARK. One also obtains analogues of Theorem 2.2 and Corollaries 2.3 and 2.4
for the residual spectrum.

3. The essential spectrum of dominated operators

If 0 < § < T are operators on a Banach lattice E and r(T') is a Riesz point of T,
then by a result of Caselles [5, Theorem 4.1] either r(S) < r(T) or r(T) is a Riesz
point of S. In this section we show that an analogous conclusion holds for every
operator S which is dominated by T, that is, such that |Sx| < T|x| forall x € E.

Let us make this more precise. For an operator T € £ (E) on a Banach space
Elet ®(T) := {x € C: ker(A — T) and E/(A — T)E are finite dimensional}
be the Fredholm domain, o.s(T) := C\ ®(T) the (Wolf) essential spectrum, and
Tess (T) 1= sup{|A] 1 A € 0 (T)} the essential spectral radius of T. If o.(T) = 0, we
set res (T) = —o0. It is well-known that 0.,(T) € o (T) is compact and 0.(T) # @
if E is infinite dimensional (see [11, XI, p.205]). Recall that > € o (T') is a Riesz point
of T if A is a pole of the resolvent map with residuum of finite rank. It turns out that
{A € 0(T) : |Al > re(T)} contains only Riesz points (see [11, X1.8.4]). Conversely,
every Riesz point of T belongs to 6 (T') \ 0(T) (see [11, X1.5.3]). If r(T) = 0 and
0 is a Riesz point, then 7 is nilpotent and hence E is finite dimensional (notice that
the Neumann series is the Laurent expansion of the resolvent R(., T)).

If T is a positive operator on a Banach lattice E and r(T) is a Riesz point of T,
then by a result of Niiro and Sawashima all elements of o (T) N r(T)T" are poles
of the resolvent. An inspection of the proof given by Lotz and Schaefer (see {26,
V.5.5]) even shows that o (T') N r(T)T" consists entirely of Riesz points (see also [18,
Corollary 2.3]). Now the result of Caselles {5, Theorem 4.1] reads as follows (see
also [18, Proposition 2.5]):

PROPOSITION. If 0 < § < T are operators on a Banach lattice E such that r(T)
is a Riesz point of T, then re(S) < r(T).
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Our aim is to prove the following generalization of Caselles’ result.

THEOREM 3.1. Let E be a Banach lattice and let S, T € £ (E) be operators such
that S is dominated by T, and r(T) is a Riesz point of T. Then r.(S) < r(T). In
particular, 0 (S) N r(T)I contains only Riesz points.

The proof of Theorem 3.1 is divided into several ‘auxiliary results’. Our first
lemma is due to Greiner [12, Proposition 1.32] (see also [6, Lemma 8.9]) and has its
origin in a result of Schaefer [26, V.5.1, V.7.4]. If E is a Banach lattice and z € E,,
then E_ denotes the ideal generated by z endowed with the norm p_(x) := inf{r > 0 :
|x| < rz}. The space E. is a Banach lattice (see [26, I11.7.2]). Moreover there is an
isometric lattice isomorphism from E. onto a space C(K), K compact, which maps
zto 1g (see [26,11.7.2, 11.7.4]).

LEMMA 3.2. Let S, T € ZL(E) be operators on a Banach lattice E such that S
is dominated by T. Suppose there is ¢ € T" and 0 # z € E such that Sz = «az
and T\z| = |z|. Then there is a surjective isometry V € £ (m) such that Sx =
aVTV~'x forallx € E,.

If T is an operator on a Banach space E, G C E a closed T - invariant subspace
and X € o(T) Nr(T)T a Riesz point of T, then Lemma 1.1 implies that A is a Riesz
point or belongs to the resolvent set of the induced operators 7, and 7, on G and E/G,
respectively. In case G is an ideal in a Banach lattice E, Caselles [5, Lemma 4.4] has
shown that the converse is true. We formulate his result in a slightly different form.

LEMMA 3.3. Let E be a Banach lattice, T € £(E), I C E a closed T -invariant
ideal, and T, and T, the induced operators on I and E /I, respectively. Suppose that
A € Cis a Riesz point of T, and T,, or a Riesz point of either T) or T, and belongs to
the resolvent set of the other operator. Then A is a Riesz point of T.

Now we prove a special case of Theorem 3.1. Recall that a positive operator T
on a Banach lattice E is irreducible if {0} and E are the only closed T-invariant
ideals in E. We call u € E, a topological order unit if the ideal generated by u
is dense in E. For 7/ € E’ and z € E we denote by 7' ® z the operator given by
Z®x:=( x)z, x € E.

LEMMA 3.4. Let E be a Banach lattice and let S, T € £ (E) be operators such
that S is dominated by T, r(T) is a Riesz point of T, and T is irreducible. Then
Tess(8) < r(T).

PROOF. If E is finite dimensional there is nothing to prove. Otherwise we have
r(T) > 0 and without loss of generality we may assume »(7) = 1. If r(S) < 1
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the assertion holds. Now let r(§) = 1 and A € o(S) N I". Consider an ultrapower
E4 of E and the operator S¢ induced by S. Then A € Po(S%) by Lemma 1.2.
Choose 0 # ¥ € E4 such that S50 = av. Clearly, So is dominated by Ty . The
irreducibility of 7 implies that 1 is a pole of order 1 of R(., T') and the residuum P at 1
is givenby P = ' @ u, where 2’ € E’, is strictly positive and u € E. is a topological
order unit (see [26, V.5.1, V.5.2]). Lemma 1.2 implies that 1 is a pole of order 1 of
R(., Ty ) with residuum Py =2’ ® i, where it := (u, u,...Y € E9 and 2’ € (Eg),
is given by (Z', X) := limg (', x,,), x = (x/,,\) € E4 . Thus P, has rank 1, and hence
1 is a Riesz point of T .

Since T,z = 7' the closed ideal I := {x € E4 : (Z', |X|) = 0} C E4 is invariant
for T and So, respectively. Let (T%), and (S%), be the induced operators on 1.
From P4 I = {0} and Lemma 1.1 it follows that 1 € p((T%),). Since (T ), is positive
this implies r((T )) < 1 (see [26, V.4.1]), and hence r((S%);) < 1. In particular
vel.

Let W := (T4 ), and U := (S4), be the induced operators on F := E4 /I and let
z and y be the canonical images of ¥ and & in F, respectively. Then U is dominated by
W, 1 is a Riesz point of W with corresponding residuum Q := (Py), = 2’ ® y, and
03 az =Uz. Since [0 =[Sz 0| < Ty |0]and T, 2" = 2" we obtain Ty |0] — [U] € 1,
and hence W|z| = |z| = Ay for some A > 0.

Let J be the closed ideal in F generated by y. Then J is invariant for W, Q and
U.LetW,, U and W,, Q,, U, be the induced operators on J and F/J, respectively.
Then Q, = 0, and hence 1 € p(W,). Since W, is positive and U, is dominated by
W, we obtain r(U;) < r(W,) < 1. On the other hand, 1 is a Riesz point of W, and
W, U, « and 7 satisfy the assumptions of Lemma 3.2. Thus the operators U, and o W,
are similar, and hence « is a Riesz point of U,. Now Lemma 3.3 and r (U,) < 1 imply
that « is a Riesz point of U = (S4),. Since r((S%),;) < 1 by the same argument, we
obtain that « is a Riesz point of S5 . Thus « is a Riesz point of § = Sy ¢.

Now we prove Theorem 3.1. We follow the lines of a proof of Lotz and Schaefer
(see [26, V.5.5] and [5, Theorem 4.1]).

PROOF OF THEOREM 3.1. If E is finite dimensional the assertion is obvious. Now
let E be infinite dimensional. Since »(T') is a Riesz point we have »(T) > 0. Then
without loss of generality we may assume r(T) = 1. The proof is now divided into
three steps.

(1) We first assume that »(T) = 1 is a pole of order one of R(.,T) and its
residuum P is strictly positive, that is, Px € E, \ {0} forall x € E, \ {0}. Then
PE = Fix(T) (see [8, Theorem 2.17]) and from [26, III.11.5] it follows that PE is a
finite dimensional sublattice of E. Thus P F is the linear span of normalized, mutually
orthogonal vectors ey, ... ,e, € (PE),. Let J;, 1 < k < n, be the closed ideal in
E generated by ¢,. Then T J;, C J, and by [26, 111.8.5] each T, := T,, is irreducible.
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Since S is dominated by T, each J, is invariant for S. Hence we can apply Lemma
3410 T, and S; := S, and obtain r.(S;) < 1 for1 <k <n.Now J := 3/ _ Jiis
a closed ideal (see [26, I11.1.2]) which is invariant for T and S. Since PE C Jand T
is positive, the induced operator T, on E/J satisfies r(T;) < 1. Therefore the same
holds for the induced operator S, on E/J. On the other hand, r.(S;;) < 1 by the
foregoing reasoning. Hence the assertion follows from Lemma 3.3.

(2) Next, let r(T) = 1 be a pole of order one of R(., T) with (not necessarily
strictly positive) residuum P. Since TP = PT, theideal J := {x € E : P|x| = 0}
is invariant under T and r(7};) < 1. Thus SJ € J and r(S,;) < 1. For the induced
operators T, and S, on E/J we are in the situation of (1). Hence the assertion follows
from Lemma 3.3.

(3) Finally, let7(T) = 1 beapoleoforderk > 1. Then Q := lim,,,(A—1)*R(A, T)
is a positive operator on E satisfying Q% = 0. Since TQ = QT the ideal J := {x €
E : Q|x} = 0} is T-invariant. For the induced operators 7T) and 7, on J and E/J,
respectively, we obtain that 1 is a pole of order & — 1 of R(., 7)) and a pole of order 1
of R(., T)). Moreover, SJ < J and the induced operators S, and S, on J and E/J are
dominated by 7, and T, respectively. Thus the assertion follows by induction over k
and applying Lemma 3.3.

4. Asymptotic properties of dominated operators

In this section we apply the previous results to investigate inheritance of asymp-
totic properties. Recall that by the theorem of Katznelson-Tzafriri [15, Theorem 1]
an operator T on a Banach space E with uniformly bounded powers 7" satisfies
lim, |T" — T"*!'|) = Oifand only if o (T) N " C {1}. Now the following result is an
immediate consequence of Theorem 1.4.

THEOREM 4.1. Let E be a Banach lattice and let S, T € ZL(E) be such that
0<S <T,sup, |IT"|| <ooandlim, ||T" — T"*'|| = 0. Then lim, ||S" — S"*'|| = 0.

In [24] and [25] it is shown that for operators 0 < § < T on a Banach lattice E
with order continuous norm strong convergence of (7") to a projection Pr of finite
rank implies strong convergence of ($"). We will see that the rank condition on Py
can be replaced by a spectral condition on 7.

At first we prove an inheritance result for a property which is slightly more general
than strong convergence of the powers 7", n € N. An operator T on a Banach space
E is called almost periodic, if {T"x : n € N} is relatively compact for all x € E. In
this case the Jacobs-Glicksberg-deLeeuw splitting theorem (see [16, §2.4]) yields a
decomposition £ = E, @ E, of E where

Eo=Ey(T)={x € E:limT"x =0} and
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E, = E.(T)=1lin{x € E : Tx = ax for some & € I'}.

Now we obtain the following inheritance result for almost periodicity (see [24, Pro-
position 3.10] and [25, Theorem 4.6}). Notice that we do not impose any restriction
on the projection Q7 from E onto E,.

THEOREM 4.2. Let E be a Banach lattice with order continuous norm and let
S, T € L(E) be suchthat 0 < S < T and T is almost periodic. If 6(T)NT # T,
then S is almost periodic.

PROOF. By the uniform boundedness principle, sup, ||S"|| < sup, [|T"]| < oo, and
hence r(T) < 1. If r(T) < 1, then r(S) < r(T) < 1, which implies lim, ||S"|| = O.
Thus we may assume r(T) = 1. By aresult of Lotz (see [26, V.4.9]) o (T')NT is cyclic,
thatis, A € o(T)NT implies A" € o(T) foralln € Z. Since o (T)NT is not the whole
unit circle it must be a finite union of finite subgroups of I'. Hence there exists m € N
such that o (T")NT = {1}. By Theorem 1.4 we have o (S")NI C o (T")NT = {1}.
On the other hand, {T""x : n € N} is relatively compact for x € E. Since E has
order continuous norm {S™"x : n € N} C so{T™|x| : n € N} is relatively weakly
compact for all x € E. If A > 1 then (A — 1)R(X, $™)x is in the closed convex
hull of {S™x : n € N} which is again weakly compact by Eberlein’s theorem. Then
Proposition 2.1 implies that S is Abel ergodic and £ = Fix(§™) & (I — S")E.
Since o (§")NT" C {1}, the Katznelson-Tzafriri theorem (see [15, Theorem 1]) yields
lim, ||S™ — $"®+D|| = 0. Thus lim, $"x = 0 for all x € (I — $™)E, and hence
(S™)nen is strongly convergent. Thus {S"x : n € N} € |J;_, S{{S™" Px : n € N} is
relatively compact for all x € E.

If (T™") is strongly convergent we obtain strong convergence of (5").

COROLLARY 4.3. Let E be a Banach lattice with order continuous norm and let
S, T € £(E) besuchthat0 < S < T and (T") is strongly convergent. If o (T)NT" #
", then (S") is strongly convergent.

PROOF. By Theorem 4.1 the operator S is almost periodic. Then the Jacobs-
Glicksberg-deLeeuw decomposition yields E = Ey(S) @ E, (S). By Corollary 2.3 we
have Pa(S)NT € Pa(T)NT C {1}. Thus E,(S) = Fix(S). Hence (S") is strongly
convergent.

If (T") is uniformly convergent, then 1 € p(T) or 1 is isolated in o (T) (see [16,
2.2.71). So we obtain the following result.

COROLLARY 4.4. Let E be a Banach lattice with order continuous norm and let
S, T € L(E) be such that 0 < § < T and (T") is uniformly convergent. Then (S")
is strongly convergent.
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REMARKS. (a) In Corollary 4.4 one cannot expect a better convergence of the
sequence (S§") (see [23, 2.6 Remark (a)]).

(b) We do not know if the conclusion of Theorem 4.2 and Corollary 4.3 still holds
without the spectral condition on 7'. At least in that case one knows that {S"x : n € N}
is relatively weakly compact for all x € E, that is, S is weakly almost periodic.

We conclude with an application of Theorem 3.1. Recall that an operator T on a
Banach space E is uniformly ergodic if the Cesaro means T, := 3 ;s T*/n, n € N,
are uniformly convergent. The limit Pr := lim, 7, is called the ergodic projection
corresponding to 7. It is well known that T is uniformly ergodic if and only if
lim, {|T"[|/n = 0 and 1 is a pole of the resolvent R(., T) (see [8, Theorem 3.16]). In
this case Pr coincides with the spectral projection corresponding to the spectral set
{1} (see [8, Theorem 2.23]). Thus T is uniformly ergodic with ergodic projection of
finite rank if and only if lim, |[7"||/n = 0 and 1 is a Riesz point of T.

Now we obtain the following generalization of a result of Caselles [5, Corollary
4.6].

THEOREM 4.5. Let E be a Banach lattice and let S, T € £ (E) be operators such
that S is dominated by T. If T is uniformly ergodic with ergodic projection of finite
rank, then S is uniformly ergodic with ergodic projection of finite rank. '

PROOF. Our assumptions imply r(S) < r(T) < 1. If 7(S) < 1 there is nothing to
prove. If r(S) = r(T) = 1, then 1 is a Riesz point of T. Theorem 3.1 yields r.(S) <
1. In particular 1 is a Riesz point of S. On the other hand, ||$"|| < ||T"||, n € N, and
hence lim, ||$"||/n = 0. Thus the assertion follows from the previous discussion.

FINAL REMARK. The authors obtained corresponding results for pseudo-resol-
vents. This is the subject of a forthcoming paper.
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