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Abstract. Stellar winds may be important for angular momentum transport from accreting
T Tauri stars, but the nature of these winds is still not well-constrained. We present some
simulation results for hypothetical, hot (~ 10° K) coronal winds from T Tauri stars, and we
calculate the expected emission properties. For the high mass loss rates required to solve the
angular momentum problem, we find that the radiative losses will be much greater than can be
powered by the accretion process. We place an upper limit to the mass loss rate from accretion-
powered coronal winds of ~ 107 Mg yr=!. We conclude that accretion powered stellar winds
are still a promising scenario for solving the stellar angular momentum problem, but the winds
must be cool (e.g., 10* K) and thus are not driven by thermal pressure.
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1. Introduction

Observations (e.g., Herbst et al. 2007) reveal that a large fraction of accreting T
Tauri stars (CTTSs) spin slowly, that is at ~ 10% of breakup speed. This is surprising
because the accretion of disk material adds angular momentum to the star (e.g., Matt
& Pudritz 2007). One promising scenario to explain how the slowly spinning stars rid
themselves of this accreted angular momentum, proposed by Hartmann & Stauffer (1989),
is that a stellar wind carries it off. For this to work, the mass outflow rate should be
approximately proportional to the accretion rate. Depending on the stellar magnetic field
strength (among other things), in order to solve the stellar angular momentum problem,
the wind outflow rate needs to be of the order of 10% of the accretion rate (Matt &
Pudritz 2005).

Since the “typical” mass accretion rate observed in the CTTSs is M, ~ 1078 Mg yr~
(Johns-Krull & Gafford 2002), this means the stellar wind should have a mass outflow rate
of My, ~ 1079 My yr~'. A wind this massive requires a lot of power to accelerate it, and
Matt & Pudritz (2005) suggested that a fraction of the potential energy liberated by the
accretion process goes into driving the wind. In the case of a coronal wind (i.e., ~ 10° K,
thermally driven), for example, this requires ~ 10% of the accretion power (Matt &
Pudritz 2005). There is some observational evidence for accretion-powered stellar winds
in these systems (Edwards et al. 2006; Kwan et al. 2007).

But what is the nature of T Tauri stellar winds? How massive are they, and what drives
them? The mass outflow rates of stellar winds is very poorly constrained observationally
(e.g., Dupree et al. 2005). This is basically due to the extreme difficulty in disentangling
the signatures of a stellar wind from signatures of a wind from the inner edge of a disk and
a host of other energetic phenomena exhibited by CTTSs. The wind driving mechanism
is also not constrained and is the primary focus of this paper.
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2. The T Tauri coronal wind hypothesis

T Tauri stars are magnetically active and possess hot, energetic corona (for a review,
see Feigelson & Montmerle 1999). They are 4-5 orders of magnitude more luminous in
X-rays than the sun. Thus, it stands to reason that they drive solar-like coronal winds,
but more powerful. In this case, the wind is primarily thermal pressure-driven, and the
wind temperature needs to be ~ 10° K for the pressure force to overcome gravity. As a
first step, we make the hypothesis here that some of the accretion power is transferred
to heat in the stellar corona, and thus drives a coronal wind.

There is only one calculation in the literature (that we are aware of) that constrains
the mass outflow rate of coronal winds from CTTSs. Specifically, Bisnovatyi-Kogan &
Lamzin (1977) calculated the X-ray emission from coronal winds. From these calculations,
Decampli (1981) concluded that, in order for the wind emission to be consistent with
the observed X-ray luminosities, the outflow rate of a T Tauri coronal wind must be less
than ~ 1079 M yr~!. As discussed above, a wind this massive may still be important
for angular momentum transport, and thus we proceed.

3. Coronal wind simulations

To calculate realistic wind solutions, we carried out 2.5D (axisymmetric) ideal magne-
tohydrodynamic (MHD) simulations of coronal winds. For simplicity, we did not include
the accretion disk. We employ the numerical code and method described by Matt & Bal-
ick (2004). This allows us to obtain steady-state wind solutions for a Parker-like coronal
wind (Parker 1958), as modified by the presence of stellar rotation and a rotation-axis-
aligned dipole magnetic field. We assume a polytropic equation of state (P o p7), with
no radiative cooling. The fiducial parameters are given in Table 1, adopted to represent
values for a “typical” CTTS.

Table 1. Fiducial stellar wind parameters

Parameter Value

M, 0.5 Mg

R. 2.0 R,

B, (dipole) 200 G

f 0.1

M, 1.9 x 1079 Mg yr~!
T, 1.3 x 10° K

¥ 1.40

In Table 1, M, and R, are the stellar mass and radius; B, is the magnetic field strength
of the dipole magnetic field at the surface and equator of the star; f is the spin rate of
the star, expressed as a fraction of the breakup rate; T, is the temperature at the base
of the corona; and ~y is the polytropic index.

Figure 1 illustrates the steady-state wind solution for the fiducial case. We find that
this wind carries away enough angular momentum to counteract the spin up torque from
an accretion rate of M, ~ 5 x 1072Mg yr=!. We also carried out a parameter study
(Matt & Pudritz 2007, in preparation), which generally validates the idea that a stellar
wind can indeed remove the accreted angular momentum in CTTSs.
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Figure 1. Greyscale of log density, velocity vectors, and magnetic field lines illustrate the
structure of the steady-state wind solution for our fiducial case. The dashed line represents the
Alfvén surface, where the wind speed equals the local Alfvén speed. The rotation axis is vertical,
along the left side of the plot.

4. Emission properties of coronal wind

The simulation results of the previous section provide detailed solutions for the den-
sity and temperature in coronal stellar winds. Although the simulations did not include
radiative cooling effects, it is instructive to examine the emission properties expected
from these winds, ex post facto. For this, we employ the CHIANTI line database and
IDL software (Dere et al. 1997; Landi et al. 2006), which allows us to calculate spectra
and total radiative cooling rates in the wind.

The CHIANTI package assumes, among other things, that the ionization and excitation
levels in the plasma are in a steady-state; all lines are optically thin; the plasma is
in coronal equilibrium, so that the ionization state is in LTE. These assumptions are
appropriate for the purposes of this work, and we also adopt cosmic abundances for the
gas.

4.1. Illustrative synthetic spectrum

For illustrative purposes, Figure 2 shows a spectrum, computed by CHIANTI, of an
isothermal plasma with a temperature of 10° K. It is clear that the cooling is dominated
by line emission. In this case, the three strongest emission lines (of Fe IX 171.1 A, Fe
X 174.5 A, and Mg IX 368.1 A) account for approximately 20% of the total luminosity.
Furthermore, only about 1% of the total energy is emitted shortward of 30 angstroms
(i-e., in X-rays), and the vast majority of the emission is in the extreme UV.
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Figure 2. Synthetic spectrum of isothermal, 10° K, optically thin coronal plasma. Flux units
are arbitrary. The figure is generated by CHIANTI software.

4.2. Total radiative losses

CHIANTI also provides a tool to calculate the total cooling rate (i.e., radiated luminosity
in erg s~!; which is essentially an integration of the emission spectrum over wavelength)
for any given coronal density, temperature, and emitting volume. With this, we calculate
the cooling in each computational gridcell of our simulations, and sum over all gridcells,
to obtain the total luminosity of the simulated wind solution. For the fiducial case, the
total wind luminosity is a few times 10?4 erg s~!. Since optically thin emission is propor-
tional to density squared, and since the mass outflow rate in the wind is approximately
proportional to density, we express the luminosity of the wind as

. 2
M
34 -1 w
Ly ~10°% ergs (10_9 . yr—1> . (4.1)

As suggested by the example spectrum (Fig. 2), if ~ 1% of this emission is emitted in
X-rays, the X-ray luminosity of the wind is ~ 10%? erg s~!. This is significantly higher
than the typically observed X-ray luminosity of CTTSs of ~ 103" erg s—! (Feigelson
& Montmerle 1999). Of course, we have calculated the total cooling rate, which is not
exactly the observed luminosity. Consider that approximately half of this radiation will
be blocked by the star, and there will likely be significant absorption of these soft X-rays.
Still, it does not seem avoidable that the predicted X-ray luminosity from the fiducial
coronal wind solution is much higher than typically observed.
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4.3. Accretion power

More importantly, we must consider the energy budget of the wind. The total cooling
rate, Ly, of the fiducial wind is two orders of magnitude larger than the kinetic energy in
the wind (0.5M,v2,, where v2 is the wind speed)—this is approximately equivalent to
saying that the cooling time is two orders of magnitude shorter than the wind acceleration
time. Thus, it takes a lot more energy to keep this plasma hot (while it radiates) than it
does to accelerate the matter away from the star.

In the accretion-powered stellar wind scenario, the energy in the wind somehow de-
rives from the gravitational potential energy released by accreting gas (~ GM, M, /R.).
This accretion power, assuming the fiducial stellar mass and radius, can be expressed

approximately as
f M,
Ly ~ 10%? R [P———— 4.2
‘ e’ 105 Mg, yr- 1 (42)

As discussed in §1, in order for stellar winds to solve the angular momentum problem,
torque balance requires My, / M, ~ 0.1. Thus, if we fix this ratio of mass flow rates, it
is clear from equations 4.1 and 4.2 that there is not enough accretion energy to keep
coronal winds hot, in the fiducial case.

4.4. An upper limit on T Tauri coronal winds

If we fix the ratio M, /MrL ~ 0.1, it is evident from equations 4.1 and 4.2 that there will
be enough accretion power to drive a coronal wind when the wind outflow rate is

M, S 107 Mg yrh (4.3)

Thus, in principle, accretion-powered coronal winds can remove the accreted angular
momentum for M, ~ 1071 Mg yr—!. However, for accretion rates this low, the spin up
torque from accretion is so small that the time for the star to spin up from this torque
is comparable to the entire pre-main-sequence lifetime (e.g., Matt & Pudritz 2007). In
other words, for these low accretion rates, there is no angular momentum problem. The
logical conclusion is that, in order for accretion-powered stellar winds to solve the angular
momentum problem, the winds cannot be as hot as we have considered here.

5. On the validity of our simulated wind solutions

We showed in §4 that the expected emission properties of our fiducial, coronal winds
effectively rules them out. In other words, our assumption in this paper that the wind
is driven by thermal-pressure is not realistic. However, it is important to note that the
angular momentum carried in the wind does not depend on what drives the wind. Instead,
the angular momentum outflow rate depends only on B, the rotation rate, My, R., and
the wind velocity. As long as “something” accelerates the wind to speeds similar to what
we see in our simulations (of the order of the escape speed), the torque we calculate is
approximately correct.

For example, if the wind is cold and driven by Alfvén waves, the driving force can
be parameterized as being proportional to —V¢ (where ¢ is the wave energy density;
Decampli 1981). This has the same functional form as the thermal-pressure force (—V P)
used in our simulations, so there is some form of £ that will result in a wind solution with
exactly the same density and kinematics as our simulations (but a different temperature).
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Thus, while the thermodynamic properties of our simulations have been invalidated,
the conclusion that stellar winds are capable of carrying off accreted angular momentum
is not affected.

6. Conclusion

Based on the emission properties of ~ 10% K coronal plasmas, we rule out hot coronal
winds as a likely candidate for accretion-powered stellar winds. The coronal wind hy-
pothesis fails. Instead, for mass loss rates comparable to our fiducial value of 10~° M,
yr~!, the winds must be as cool as ~ 10* K, where radiative cooling becomes much less
efficient than for a coronal plasma. At temperatures this low, the pressure force cannot
overcome the gravity of the star, and accretion-powered winds are thus not driven by
thermal pressure.

To date, possibly the best observational evidence for accretion-powered stellar winds
from CTTSs comes from measurements of blue-shifted absorption features in the He I
emission line at 10830 A (e.g., Edwards et al. 2003, 2006; Dupree et al. 2005). Fur-
thermore, radiative transfer modeling by Kurosawa et al. (2006) suggests that a stellar
wind may contribute significantly to the Ha line profile. At densities where collisions
between particles are important, both He I and H start to become substantially ionized
at a temperature of a few times 10 K. If the wind is much hotter than this, it may
be difficult to explain the prominence of He I and H I features in observed spectra (see
also Johns-Krull & Herczeg 2007). Thus these works also support the conclusion that the
winds are much cooler than a coronal plasma.

Accretion-powered stellar winds remain a promising scenario for solving the stellar
angular momentum problem. But, the question remains, what is the nature of these
winds? What drives them? Possible scenarios include Alfvén wave driving (Decampli
1981), episodic magnetospheric inflation (Goodson et al. 1999; Matt et al. 2003), and
reconnection X-winds (Ferreira et al. 2000, 2006).

Acknowledgements

We thank the organizers for a stimulating conference and for the opportunity to present
this work. Gibor Basri deserves credit for issuing a friendly challenge to our coronal wind
hypothesis, six months prior to this meeting. He wins the challenge, as it turns out, since
he correctly surmised there would be too much X-ray emission. Thanks also to Jiirgen
Schmitt for making us aware of the CHIANTTI software and database and for discussion
about calculating radiative losses.

CHIANTT is a collaborative project involving the NRL (USA), RAL (UK), and the
following Univerisities: College London (UK), Cambridge (UK), George Mason (USA),
and Florence (Italy). The research of SM was supported by the University of Virginia
through a Levinson/VITA Fellowship partially funded by The Frank Levinson Family
Foundation through the Peninsula Community Foundation. REP is supported by a grant
from NSERC.

References

Bisnovatyi-Kogan, G. S. & Lamzin, S. A. 1977, Soviet Astronomy, 21, 720

Decampli, W. M. 1981, ApJ, 244, 124

Dere, K. P., Landi, E., Mason, H. E., Monsignori Fossi, B. C., & Young, P. R. 1997, AéAS, 125,
149

Dupree, A. K., Brickhouse, N. S.; Smith, G. H., & Strader, J. 2005, ApJ, 625, 1131

https://doi.org/10.1017/51743921307009659 Published online by Cambridge University Press


https://doi.org/10.1017/S1743921307009659

The nature of stellar winds 305

Edwards, S., Fischer, W., Hillenbrand, L., & Kwan, J. 2006, ApJ, 646, 319

Edwards, S., Fischer, W., Kwan, J., Hillenbrand, L., & Dupree, A. K. 2003, ApJ, 599, L41

Feigelson, E. D. & Montmerle, T. 1999, ARA&A, 37, 363

Ferreira, J., Dougados, C., & Cabrit, S. 2006, A&A, 453, 785

Ferreira, J., Pelletier, G., & Appl, S. 2000, MNRAS, 312, 387

Goodson, A. P., Bohm, K., & Winglee, R. M. 1999, ApJ, 524, 142

Hartmann, L. & Stauffer, J. R. 1989, AJ, 97, 873

Herbst, W., Eisloffel, J., Mundt, R., & Scholz, A. 2007, in Protostars and Planets V, ed.
B. Reipurth, D. Jewitt, & K. Keil, 297-311

Johns-Krull, C. M. & Gafford, A. D. 2002, ApJ, 573, 685

Johns-Krull, C. M. & Herczeg, G. J. 2007, ApJ, 655, 345

Kurosawa, R., Harries, T. J., & Symington, N. H. 2006, MNRAS, 370, 580

Kwan, J., Edwards, S., & Fischer, W. 2007, ApJ, 657, 897

Landi, E., Del Zanna, G., Young, P. R., Dere, K. P., Mason, H. E., & Landini, M. 2006, ApJS,
162, 261

Matt, S. & Balick, B. 2004, ApJ, 615, 921

Matt, S. & Pudritz, R. E. 2005, MNRAS, 356, 167

Matt, S. & Pudritz, R. E. 2007, to appear in proceedings of the 14th Cambridge Workshop on
Cool Stars, Stellar Systems, and the Sun, astro-ph/0701648

Matt, S., Winglee, R., & Bohm, K.-H. 2003, MNRAS, 345, 660

Parker, E. N. 1958, ApJ, 128, 664

https://doi.org/10.1017/51743921307009659 Published online by Cambridge University Press


https://doi.org/10.1017/S1743921307009659

S. Matt & R. E. Pudritz

https://doi.org/10.1017/51743921307009659 Published online by Cambridge University Press



https://doi.org/10.1017/S1743921307009659

