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Abstract
In this paper, an adaptive neural output-constrained control algorithm is proposed for a class of non-affine kinetic
kill vehicle (KKV) systems. The key point is that the non-affine control law can be designed and the output of the
KKV system conform to the output limit with the aid of the proposed method. Due to the aerodynamic moments,
the actual control torque is non-affine, which can be addressed by introducing an integral process to the design of
the controller. Besides, in order to improve the control precision, a nonlinear mapping is put forward so that the
output constraint can be transformed to the constraint of the introduced dynamic signal that can be simply achieved.
From the simulation results it can be concluded that the states of the KKV system can track the desired trajectories
in spite of different working conditions and the control precision is higher compared with other control methods.

1.0 Introduction
In recent years, there have been a number of control techniques and strategies for uncertain nonlinear
systems [1–3]. In those schemes, it is assumed that the control system is affine commonly [4, 5]. However,
the control input in practice applications have nonlinear characteristics, that is to say, the system is
considered to be nonaffine, such as aircraft systems [6], chemical processes [7], wind energy systems
[8] and so on. Compared with affine system, there is no proportional relationship between input and
control gain. Therefore, the control design of nonaffine systems becomes a challenging topic.

During the past few decades, considerable attempts have been made for the nonlinear control sys-
tem with nonaffine input form. For a class of uncertain nonlinear systems, an adaptive output feedback
control scheme based on linear parameterised neural network is proposed [9]. In [10], the Taylor series
expansion is utilised to transform the nonaffine system into affine system. Meanwhile, the state observer
is introduced to estimate the system state. Only one adaptive parameter needs to be considered in the
backstepping process by using this control strategy. Then, a synthesis method is designed for a class
of nonaffine systems [11]. In this work, the fixed-point and control effectiveness term assumptions are
eliminated. The adaptive dynamic surface control (DSC) [12] is applied for a class of nonaffine system,
so that the complexity caused by the repeated differentiation of the virtual input in back-stepping method
has been alleviated. In [13], combining a low-pass filter with state transformation, a new transformation
method is designed to avoid the difficulty introduced by nonaffine properties.

Practical systems often need to meet different kinds of constraints, such as precision specification
[14], aircraft dynamics characteristics [15] and so on. For the purpose of satisfying such requirements,
the output constrained control problem have been developed during the recent decades. In the initial stage
of those process, the barrier Lyapunov function (BLF), introduced into the nonlinear system, is employed
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to ensure the stability of systems with output constraints [16–18]. The neural networks (NN) as a kind
of approximator is utilised to estimate the system uncertainties [19, 20]. Compared with the Quadratic
Lyapunov Function, it is proven that an asymmetric BLF as a generalised method designed in [21] relaxes
the initial condition requirements. Furthermore, the time-varying output constraints problem has been
solved by using transformation techniques [22], backstepping DSC scheme [23], time-varying BLF [24]
and so on. In [25], a variable separation strategy is introduced to deal with the difficulty caused by the
nonstrict-feedback structure.

As an advanced adjacent space vehicle, kinetic kill vehicle (KKV) has attracted the attention of
researchers in recent years. The angle of KKV is adjusted in a wide range to search for targets [26].
Then, it is very important to control the attitude angle of KKV quickly and precisely after locating the
target [27]. When it comes to the terminal guidance phase, the system can be considered as a MIMO
nonlinear system with strong coupling uncertainties which leads to the control difficulties [28]. Many
attempts have been conducted in this topic. In early phase, several guidance schemes are designed with
large energy consumption, such as time-varying biased proportional navigation guidance (PNG) [29],
elliptical arc guidance [30] and integrated PNG [31, 32]. Moreover, to meet the higher performance
requirements, novel guidance laws based on optimal control theory arise at the historic moment. By using
a simplified mathematical model, an energy optimal guidance law (OGL) is proposed to achieve the
optimal performance of KKV [33]. In [34], combining the optimal control theory with the sliding-mode
control theory, an optimal sliding-mode terminal guidance law is proposed.

In spite of the fruitful research that has been mentioned above, it should be pointed out that none of
the research respect to KKV takes into consideration the nonaffine dynamics, output constraint as well
as the unmodeled dynamics universally. Due to the aerodynamic moments, the actual control torque
is nonaffine, which lead to difficulties in the process of the controller design. Besides, only a small
deviation of the attitude angle may cause the attitude control system of KKV out of control. That’s the
reason why high control precision is essential in the design of attitude control systems. Motivated by the
aforementioned problems, we will investigate the problem of output constrained neural adaptive control
for a class of KKVs with non-affine inputs and unmodeled dynamics. The main contributions of this
paper are summarised as follows:

• As the authors know, it is the first neural adaptive output-constrained control algorithm for a
class of KKVs with non-affine inputs and unmodeled dynamics.

• By designing an indirect control signal as well as integrating it, the control law can be obtained
in the presence of nonaffine dynamics.

• Thanks to the presented nonlinear mapping, the output constraint can be transformed to the
limitation of the introduced dynamic signal which is simple to achieve. The high control precision
can be guaranteed.

2.0 Problem formulation and preliminaries
2.1 Dynamic model of KKV systems
Neglecting the flexible dynamics, the dynamic model of the kinetic kill vehicle can be formulated as
follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ̇ =ωx − tan ϑ
(
ωy cos γ −ωz sin γ

)
ψ̇ = ωy cos γ −ωz sin γ

cos ϑ

ϑ̇ =ωy sin γ +ωz cos γ

Jxω̇x + (Jz − Jy

)
ωyωz = Mx + dM,x(t)

Jyω̇y + (Jx − Jz) ωzωx = My + dM,y(t)

Jzω̇z + (Jy − Jx

)
ωxωy = Mz + dM,z(t)

(1)
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where γ ,ψ , ϑ represent the roll angle, yaw angle and pitch angle of KKV separately.ωx,ωy,ωz represent
the angular velocities respect to the inertial coordinate system. Mx, My, Mz denote the control torque
acting on the KKV. dM,x, dM,y, dM,z are the disturbances torque generated by the aerodynamic uncertainties
or environmental factors. Jx, Jy, Jz denote the rotary inertias of the KKV.

Taking into consideration that KKV is influenced by not only the control torque but also aerodynamic
moments existing in the process of near space flight, the certain part of the actual control torque is non-
affine. Due to the existence of the disturbances induced by the jet stream and the external flow field, the
actual control torque possess uncertainties. The actual control torque can be described by⎧⎪⎨

⎪⎩
Ma,x(t)= g1(Fx)+�Mx(t)

Ma,y(t)= g2

(
Fy

)+�My(t)

Ma,z(t)= g3(Fz)+�Mz(t)

(2)

where Ma,x, Ma,y, Ma,z are the components of actual control torque. g1(Fx) , g2

(
Fy

)
, g3(Fz) represent the

non-affine part of the control torque.�Mx,�My and�Mz are the uncertainties of actual control torque.
Define ξ(t)=[ϑ(t) ,ψ(t) , γ (t)

]T
,ω(t)=[ωz(t) ,ωy(t) ,ωx(t)

]T
, u(t)=[Fz(t) , Fy(t) , Fx(t)

]T , then we
can formulate the dynamic model of KKV system as:

ξ̇ (t)= G(t) ω(t)

ω̇(t)= J−1f (ξ(t) ,ω(t))+ J−1ḡ[u(t)] + J−1d0(t)
(3)

where

G =

⎡
⎢⎢⎢⎣

cos γ sin γ 0

− sin γ

cos ϑ

cos γ

cos ϑ
0

tan ϑ sin γ − tan ϑ cos γ 1

⎤
⎥⎥⎥⎦ (4)

J =
⎡
⎢⎣

Jz 0 0

0 Jy 0

0 0 Jx

⎤
⎥⎦ , f (ξ ,ω)=

⎡
⎢⎣
(
Jy − Jx

)
ωxωy

(Jx − Jz) ωzωx(
Jz − Jy

)
ωyωz

⎤
⎥⎦

d0(t)=
⎡
⎢⎣

dM,z(t)+�Mz(t)

dM,y(t)+�My(t)

dM,x(t)+�Mx(t)

⎤
⎥⎦ , ḡ[u(t)] =

⎡
⎢⎣

g3(Fz)

g2

(
Fy

)
g1(Fx)

⎤
⎥⎦

(5)

Define h(ξ ,ω)= J−1f (ξ ,ω), d(t)= J−1d0(t), g[u(t)] = J−1ḡ[u(t)], we can rewrite (3) as

ξ̇ (t)= G(t) ω(t)

ω̇(t)= h(ξ(t) ,ω(t))+ g[u(t)] + d(t)
(6)

In the process of KKV’s flight, coupled uncertainties should be noticed. Coupled uncertainties
include couplings between control system channels. Define coupled uncertainty χ(ξ(t) ,ω(t) , η(t))
which is affected by system states. The dynamic behaviour of the unmeasured state η(t) can be
formulated by

η̇(t)= fη(η(t) , ξ(t) ,ω(t)) (7)

In practical, the fuel consumption during attitude control process and the manufacturing errors of the
KKVs cannot be ignored. Considering these factors, we can rewrite (6) as

https://doi.org/10.1017/aer.2023.44 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.44


The Aeronautical Journal 137

ξ̇ (t)= [G(t)+�G(t)]ω(t)

ω̇(t)= h(ξ(t) ,ω(t))+�h(ξ(t) ,ω(t))+ g[u(t)]

+ χ(ξ(t) ,ω(t) , η(t))+ d(t) (8)

η̇(t)= fη(η(t) , ξ(t) ,ω(t))

u̇(t)= v(t)

y(t)= ξ(t)

where �G(t) ,�h(ξ(t) ,ω(t)) are the uncertain parts of G(t) , h(ξ(t) ,ω(t)), respectively and v(t) is the
indirect control signal. y(t) denotes the output of the system.

Our objective is to design a dynamic control signal such that the outputs of the KKV attitude dynamic
system (8) can track the desired signal yd(t) asymptotically in the presence of the nonaffine dynamics,
output constraint as well as time unmodeled dynamics.

In this paper, the following assumptions are made:

Assumption 1. The disturbances torque induced by the aerodynamic uncertainties or environmental
factors are all bounded. That is to say, there exists a constant d̄ such that ∀t ≥ 0,‖d(t)‖ ≤ d̄.

Assumption 2. In the vicinity of the equilibrium the uncertain part of G remain unchanged. In other
words, it is supposed that d�G/dt ≈ 0.

Assumption 3. The coupled uncertainty has properties as follows

χ(ξ(t) ,ω(t) , η(t))≤ ϕ1(ξ(t) ,ω(t))+ ϕ2(η(t)) (9)

where ϕ1(·), ϕ2(·) are unknown non-negative smooth functions. Additionally, the unmeasured state η(t)
is exponentially input-to-state practically stable. That is, there exists a Lyapunov function Vη(η(t))
satisfying

α1(η(t))≤ Vη(η(t))≤ α2(η(t))

∂Vη(η(t))

∂η(t)
κ(η(t) , ξ(t) ,ω(t))≤ −γ1Vη(η(t))+ ρ(ξ(t) ,ω(t))+ γ2

(10)

where α1(·), α2(·) are functions of class K∞, γ1, γ2 are positive constants. ρ(ξ(t) ,ω(t))=
ξ T(t) ξ(t)+ωT(t) ω(t).

Remark 1. All the disturbances existing in the attitude control system of the KKV must be bounded
with the upper bound d̄. Otherwise, the disturbance will be beyond the control capability of the system
and the anti-disturbance controller will be difficult to design. Besides, the structural uncertainty �G
is mainly caused by model simplification. As a result, the uncertain part contains coupling factors and
it is essential to employ Assumption 2 to facilitate the control design process. Moreover, in order to
deal with the coupled uncertainty caused by the unmodeled dynamics, Assumption 3 is also necessary,
which can be seen in many similar papers. With what has been mentioned above, the assumptions made
in this paper are all proper and reasonable.

2.2 Supporting definitions and lemmas

Lemma 1 [35]. The following inequality holds for any ε > 0 and z ∈R

0 ≤|z| − z tanh
( z

ε

)
≤ κε (11)

where κ = 0.2785.
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Lemma 2. In the process of KKV’s flight, there exist positive scalars ϑmax <

π
/

2,ψmax <π
/

2, γmax <π
/

2 that enable matrix G invertible for any (ϑ ,ψ , γ ) in A :=
{(ϑ ,ψ , γ )||ϑ |<ϑmax,|ψ |<ψmax,|γ |< γmax }.

Proof: It has been calculated that

det(G)= − sin2γ

cos ϑ
− cos2γ

cos ϑ
= − 1

cos ϑ
(12)

det(G) is a continuous function of ϑ . According to the properties of continuous function, for any|ϑ |<
ϑmax, where ϑmax <π

/
2 is a positive scalar, there exist positive scalars ψmax <π

/
2, γmax <π

/
2 which

enable det(G) < 0 if|ψ |<ψmax,|γ |< γmax. The proof is completed.

Lemma 3. Given any constant ε > 0 and vector ξ ∈R
n, the following inequality holds

‖ξ‖< ξ Tξ√
ξ Tξ + ε2

+ ε (13)

Proof : Due to ε > 0, it is obvious that[
ξ Tξ+ε√ξ Tξ + ε2

]2 −
[
‖ξ‖√ξ Tξ + ε2

]2
= 2εξ Tξ

√
ξ Tξ + ε2 + ε4 > 0 (14)

Hence we can learn from
√
ξ Tξ + ε2 > 0 that

‖ξ‖√ξ Tξ + ε2 < ξ Tξ+ε√ξ Tξ + ε2 (15)

Divide both sides of the inequality by
√
ξ Tξ + ε2, which completes the proof.

Lemma 4 [36]. For any ε > 0, define set �ε ={x|‖x‖< 0.2554ε }. Then, for any x /∈�ε, this inequality
holds

1 − 16tanh2
( x

ε

)
≤ 0 (16)

Lemma 5 [37]. f : R→R is a continuously differentiable function defined on [0, ∞). lim
t→∞

f (t) exists

and is bounded. If ḟ (t) is uniformly continuous in [0, ∞), then lim
t→∞

ḟ (t)= 0.

2.3. Neural approximation
For an arbitrary continuous function F(z) defined on a compact set �z, a radial basis function neural
network (RBFNN) can be used to approximate it.

y(z)= θ̂TΦ(z) (17)

where z = [z1, z2, · · · , zn]
T ∈R

n is the input vector of the RBFNN. y is the output of the RBFNN.
θ̂ T =
[
θ̂1, θ̂2, · · · , θ̂m

]
∈R

m is the weight matrix.Φ(z)=[Φ1(z) ,Φ2(z) , · · · ,Φm(z)]
T ∈R

m, n is the input
number and m represents the node number. Φi(·) is chosen as the Gaussian function in this paper.

Φi(z)= exp

[−(z −μi)
T
(z −μi)

σ 2
i

]
, i = 1, 2, . . . , m (18)

where μi is the center of the receptive field and σi is the width of the Gaussian function. For continuous
function F(z), there exists an optimal weight matrix θ such that

F(z)= θ TΦ(z)+ ε (19)

where ε is the approximation error that can be arbitrarily small by increasing the node number. Generally,
θ is chosen as the value that minimises the distance between F(z) and y(z) in the sense of L2 norm.
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Figure 1. The structure of the proposed control scheme for KKV.

3.0 Main results
In this section, an adaptive neural output-constrained controller is designed. Based on the attitude
angles and angular velocities of the KKV, an adaptive law is put forward to approximate the structural
uncertainty and the virtual control signal of the inner loop is presented. In addition, a Super-Twisting
Disturbance Observer (STDO) as well as a RBFNN are employed to attenuate the disturbance and the
actuator faults respectively. As a result, the virtual control signal of the outer loop can be proposed. Last
but not least, by means of introducing an integral process to the indirect control signal, the control signal
can be obtained in spite of the non-affine dynamics. The block of the proposed control method can be
seen in Fig. 1.

3.1 Output constraint transformation
For the purpose of guaranteeing the constraints of the system output signal, a nonlinear mapping is
introduced as

η̄(t)=Ξ
(
y(t) , yup(t) , ylow(t)

)
(20)

where yup(t) , ylow(t) are the constraints of the output signal. Ξ
(
y(t) , yup(t) , ylow(t)

)
is selected to satisfy

that

Ξ−1
(
η̄(t) , yup(t) , ylow(t)

)= yup(t)− ylow(t)

2
tanh(η̄(t))+ yup(t)+ ylow(t)

2
(21)

It is obvious that
lim

η̄(t)→+∞
Ξ−1
(
η̄(t) , yup(t) , ylow(t)

)= yup(t)

lim
η̄(t)→−∞

Ξ−1
(
η̄(t) , yup(t) , ylow(t)

)= ylow(t)
(22)

Considering that Ξ (·) is a one to one mapping from y(t) to η̄(t), we can know that if η̄(t)is con-
strained to be bounded by any constant, then y(t)will be limited to stay in the time-varying open
interval

(
yup(t) , ylow(t)

)
. Hence, it is easy to know that the output constrained control problem has been

transformed to the stable controller design for the dynamic equation of η̄(t).
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Define the tracking errors as e1(t)= η̄(t)− η̄d(t) , e2(t)= G(t) ω(t)− β1(t) , e3(t)= g[u(t)] − β2(t),
where β1(t) , β2(t) are the virtual control signals and

η̄d(t)=Ξ
(
yd(t) , yup(t) , ylow(t)

)
(23)

Then we can get that

ė1(t)= ∂Ξ

∂y
[G(t)+�G]ω(t)+ ∂Ξ

∂yup

ẏup + ∂Ξ

∂ylow

ẏlow −
[
∂Ξ

∂y
ẏd(t)+ ∂Ξ

∂yup

ẏup + ∂Ξ

∂ylow

ẏlow

]

= ∂Ξ

∂y

[
[G(t)+�G]ω(t)− ẏd(t)

]
=Ξy

[
e2(t)+ β1(t)+�Gω(t)− ẏd(t)

]
(24)

where Ξy = ∂Ξ
/
∂y.

3.2 Adaptive neural controller design
Our objective is transformed to design β1(t)to force e1(t) to converge. Hence, the virtual control law
β1(t) can be designed as

β1(t)= −kξΞ
−1
y e1(t)− kξ ,0Ξ

−1
y

∫ t

0

e1(τ ) dτ −Ξ−1
y �Ĝω(t)+ ẏd(t) (25)

where �Ĝ is the estimation of �G.
Substituting (25) into (24) yields

ė1(t)=Ξye2(t)− kξe1(t)− kξ ,0

∫ t

0

eξ (τ ) dτ −�G̃ω(t) (26)

Choose the Lyapunov function as follows:

V1 = 1

2
eT

0 (t) e0(t)+ 1

2
eT

1 (t) e1(t)+ 1

2
Tr
[
�G̃T

Gη
−1
G �G̃G

]
(27)

where �G̃ =�Ĝ −�G, e0(t)=
∫ t

0
e1(τ ) dτ . ηG > 0 is the adaptive gain. Tr(A) denotes the trace of

matrix A. Along (26), we can take the differential of V1 as

V̇1 = eT
0 (t) e1(t)+ eT

1Ξye2 − kξe
T
1 (t) e1(t)− kξ ,0eT

1 (t) e0(t)

− eT
1 (t) �G̃ω(t)+ Tr

[
�G̃Tη−1

G �
˙̂G
]

(28)

Define Eξ =[eT
0 (t) , eT

1 (t)
]T . It is obvious that

V̇1 ≤ −ET
ξ (t)QEξ (t)− eT

1 (t) �G̃ω(t)+ eT
1 (t) Ξye2(t)+ Tr

[
�G̃Tη−1

G �
˙̂G
]

(29)

where

Q =
[

0 −I3

kξ ,0I3 kξ I3

]
(30)

Since for any vector x, y ∈R
n, xTy = Tr

(
yxT
)

holds, we can rewrite (28) as

V̇1 = −ET
ξ (t)QEξ (t)+ eT

1 (t) Ξye2(t)+ 1

ηG

Tr
[
�G̃T
(
�

˙̂G − ηGe1(t) ω
T(t)
)]

(31)

Hence, in the framework of σ - modification, the adaptive law of �Ĝ can be designed as

�
˙̂G = ηG

(
e1(t) ω

T(t)− σG�Ĝ
)

(32)

https://doi.org/10.1017/aer.2023.44 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.44


The Aeronautical Journal 141

Substituting (32) into (31) yields that

V̇1 = −ET
ξ (t)QEξ (t)+ eT

1 (t) Ξye2(t)− σGTr
[
�G̃T�Ĝ

]
(33)

With the aid of

−Tr
[
�G̃T�Ĝ

]
≤ −1

2
Tr
[
�G̃T�G̃

]
+ 1

2
Tr
[
�GT�G

]
(34)

It can be obtained that
V̇1 = −ET

ξ (t)QEξ (t)− σG

2
Tr
[
�G̃T�G̃

]
+ eT

1 (t) Ξye2(t)+ σG

2
Tr
[
�GT�G

]
(35)

Introducing dynamic signal r(t) which satisfies
ṙ(t)= −γ0r(t)+ ρ(ξ(t) ,ω(t)) , r(0)= r0 (36)

where γ0 ∈(0, γ3). r(t) has the following properties [38]:
r(t)≥ 0, ∀t ≥ 0

Vη(η(t))≤ r(t)+ εr

(37)

where εr = Vη(η(0))+ γ2

/
γ1.

According to (9), we can get that
eT

2 (t)G(t) χ(ξ(t) ,ω(t) , η(t))≤∥∥eT
2 (t)G(t)

∥∥(ϕ1(ξ(t) ,ω(t))+ ϕ2(η(t))) (38)
According to Lemma 3, it is obvious that∥∥eT

2 (t)G(t)
∥∥ ϕ1(ξ(t) ,ω(t))≤ eT

2 (t)G(t) ϕ̄1(ξ(t) ,ω(t))+ εϕ1∥∥eT
2 (t)G(t)

∥∥ ϕ2(η(t))≤
∥∥eT

2 (t)G(t)
∥∥ ϕ2 ◦ α−1

1 (2r(t))+∥∥eT
2 (t)G(t)

∥∥ ϕ2 ◦ α−1
1 (2εr) (39)

where εϕ1 > 0 is any positive constant and

ϕ̄1(ξ(t) ,ω(t))= ϕ1(ξ(t) ,ω(t)) eT
2 (t)G(t) ϕ1(ξ(t) ,ω(t))√[

eT
2 (t)G(t) ϕ1(ξ(t) ,ω(t))

]2 + ε2
ϕ1

(40)

With the aid of Young’s inequality,∥∥eT
2 (t)G(t)

∥∥ ϕ2(η(t))≤ eT
2 (t)G(t) ϕ̄2(r(t))+ εϕ2 + 1

4
eT

2 (t)G(t)GT(t) e2(t)+ εϕ3 (41)

where εϕ2 > 0 is any positive constant,

ϕ̄2(e2(t) , r(t))= ϕ2 ◦ α−1
1 (2r(t)) eT

2 (t)G(t) ϕ2 ◦ α−1
1 (2r(t))√[

eT
2 (t)Gϕ2 ◦ α−1

1 (2r(t))
]2 + ε2

ϕ2

εϕ3 =[ϕ2 ◦ α−1
1 (2εr)

]2
(42)

Next, the virtual control law of the outer loop will be given. By using the second equation of (8), we
can take the time derivative of e2(t) as

ė2(t)= G(t)

[
h(ξ(t) ,ω(t))+�h(ξ(t) ,ω(t))+ g[u(t)]

+χ(ξ(t) ,ω(t) , η(t))+ d(t)

]
− β̇1(t) (43)

A RBFNN is introduced in order to approximate the unknown nonlinearities. Apparently, it can be
known thatΘTΦ(ξ(t) ,ω(t) , r(t))+ εΘ = ϕ̄1(ξ(t) ,ω(t))+ ϕ̄2(e2(t) , r(t))+�h(ξ(t) ,ω(t)). Moreover,
the STDO is introduced to handle the time-varying disturbances.

It is obvious that
ė2(t)= G(t) h(ξ(t) ,ω(t))+ G(t) �h(ξ(t) ,ω(t))+ G(t) e3 + G(t) β2

+ G(t) χ(ξ(t) ,ω(t) , η(t))+ G(t) d(t)− β̇1(t)
(44)
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Hence, β2(t) can be designed as

β2(t)= G−1(t)
[−kωe2(t)−Ξ T

y e1(t)− 3
4
e2 + β̇1(t)− ϕρ(ξ(t) ,ω(t) , e2(t))

]
− h(ξ(t) ,ω(t))− Θ̂TΦ(ξ(t) ,ω(t) , r(t))− d̂(t)

(45)

where Θ̂ are the estimate of Θ . εD is a design constant. ϕρ(ξ(t) ,ω(t) , e2(t)) will be mentioned below.
d̂(t) is the output of a super-twisting disturbance observer, which can be given by:

˙̂d(t)= −kd

(
d̂(t)− p1(t)

)

ṗ1(t)= −kp,1

ω̂(t)−ω(t)∥∥ω̂(t)−ω(t)
∥∥1/2

+ p2(t)

ṗ2(t)= −kp,2

ω̂(t)−ω(t)∥∥ω̂(t)−ω(t)
∥∥

˙̂ω(t)= h(ξ(t) ,ω(t))+ g[u(t)] + d̂(t)

+ Θ̂TΦ(ξ(t) ,ω(t) , r(t))+ 1

4
eT

2 (t)G(t)GT(t) e2(t) (46)

where kd, kp,1, kp,2 are the gains of the super-twisting disturbance observer, p1(t) , p2(t) , ω̂(t) are the
internal states.

For any constant vector z(t)= [z1(t) , z2(t) , · · · , zm(t)]
T ∈R

m, Tanh(z) is defined as

Tanh(z(t))= [tanh z1(t) , tanh z2(t) , · · · , tanh zm(t)]
T (47)

Choose the following Lyapunov function

V2 = 1

2
eT

2 (t) e2(t)+ 1

2
Tr
[
Θ̃Tη−1

Θ
Θ̃
]
+ r(t)

Γr

(48)

Hence,

V̇2 ≤ −
(

kω + 3

4

)
eT

2 (t) e2(t)− eT
2 (t) Ξ

T
y e1(t)+ eT

2 (t)G(t) e3(t)− eT
2 (t)G(t) d̃(t)

+
3∑

i=1

εϕi + eT
2 (t) εΘ − eT

2 (t) Θ̃
TΦ(ξ(t) ,ω(t))

+ Tr
[
Θ̃Tη−1

Θ

˙̂
Θ
]
− eT

2ϕρ(ξ(t) ,ω(t) , e2(t))− γ0

Γr

r(t)+ ρ(ξ(t) ,ω(t))

Γr

(49)

According to Lemma 4, it is obvious that

ρ(ξ(t) ,ω(t))

Γr

= ρ(ξ(t) ,ω(t))

Γr

(
1 − 16TanhT

(
e2(t)
ερ

)
Tanh
(

e2(t)
ερ

))
+ eT

2 (t) ϕρ(ξ(t) ,ω(t) , e2(t)) (50)

where

ϕρ(ξ(t) ,ω(t) , e2(t))= 16e2(t) ρ(ξ(t) ,ω(t))

ΓreT
2 (t) e2(t)

TanhT
(

e2(t)
ερ

)
Tanh
(

e2(t)
ερ

)
(51)
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ϕρ(ξ(t) ,ω(t) , eω(t)) is a nonsingular functional vector. Considering (49) we can get that

V̇2 ≤ −
(

kω + 3

4

)
eT

2 (t) e2(t)− eT
2 (t) Ξ

T
y e1(t)+ eT

2 (t)G(t) e3(t)− eT
2 (t)G(t) d̃(t)

+
3∑

i=1

εϕi + eT
2 (t) εΘ + Tr

[
Θ̃Tη−1

Θ

˙̂
Θ
]
− eT

2 (t) Θ̃
TΦ(ξ(t) ,ω(t))− γ0

Γr

r(t)

+ ρ(ξ(t) ,ω(t))

Γr

(
1 − 16TanhT

(
e2(t)
ερ

)
Tanh
(

e2(t)
ερ

))
(52)

It is obvious that

−eT
2 (t)G(t) d̃(t)≤ 1

2
eT

2 (t) e2(t)+ 1

2
d̃T(t)GT(t)G(t) d̃(t)

≤ 1

2
eT

2 (t) e2(t)+ 1

2
λmax

(
GT(t)G(t)

)∥∥∥d̃(t)∥∥∥2 (53)

Moreover, it can be verified that

eT
2 (t) εΘ ≤ 1

4
eT

2 (t) e2(t)+ ε2
Θ

(54)

With the aid of (53) and (54), we know that

V̇2 ≤ −kωeT
2 (t) e2(t)− eT

2 (t) Ξ
T
y e1(t)+ eT

2 (t)G(t) e3(t)+ 1

2
λmax

(
GT(t)G(t)

)∥∥∥d̃(t)∥∥∥2

+
3∑

i=1

εϕi + ε2
Θ

+ Tr
[
Θ̃Tη−1

Θ

˙̂
Θ
]
− eT

2 (t) Θ̃
TΦ(ξ(t) ,ω(t))− γ0

Γr

r(t)

+ ρ(ξ(t) ,ω(t))

Γr

(
1 − 16TanhT

(
e2(t)
ερ

)
Tanh
(

e2(t)
ερ

))
(55)

In the framework of σ - modification, the adaptive laws are designed as
˙̂
Θ = ηΘΦ(ξ(t) ,ω(t) , r(t)) eT

2 (t)− ηΘσΘΘ̂ (56)

Substituting (56) into (55), we can obtain that

V̇2 ≤ −kωeT
2 (t) e2(t)− eT

2 (t) Ξ
T
y e1(t)+ eT

2 (t)G(t) e3(t)+ 1

2
λmax

(
GT(t)G(t)

)∥∥∥d̃(t)∥∥∥2

+
3∑

i=1

εϕi + ε2
Θ

− σΘTr
[
Θ̃TΘ̂
]
− γ0

Γr

r(t)

+ ρ(ξ(t) ,ω(t))

Γr

(
1 − 16TanhT

(
e2(t)
ερ

)
Tanh
(

e2(t)
ερ

))
(57)

Furthermore, it can be derived that

V̇2 ≤ −kωeT
2 (t) e2(t)− eT

2 (t) Ξ
T
y e1(t)+ eT

2 (t)G(t) e3(t)− σΘ

2
Tr
[
Θ̃TΘ̃
]

− γ0

Γr

r(t)+ ρ(ξ(t) ,ω(t))

Γr

(
1 − 16TanhT

(
eω(t)
ερ

)
Tanh
(

eω(t)
ερ

))
+ ε2 (58)

where

ε2 = 1

2
λmax

(
GT(t)G(t)

)∥∥∥d̃(t)∥∥∥2 + σΘ

2
Tr
[
ΘTΘ
]+ ε2

Θ
+

3∑
i=1

εϕi (59)
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Afterwards, the control law will be given. It is obvious that

ė3(t)= dg[u(t)]

du(t)
· v(t)− β̇2(t) (60)

Hence, v(t) can be designed as

v(t)= 1
dg[u(t)]

du(t)

[−k3e3(t)− GT(t) e2(t)+ β̇2(t)
]

(61)

Substituting (61) into the fourth equation of (8), the actual control law will be obtained

u(t)=
∫ t

0

v(τ ) dτ + u(0) (62)

Substituting (61) into (60), we can get that
ė3(t)= −k3e3(t)− GT(t) e2(t) (63)

Choosing Lyapunov function as follows:

V3 = 1

2
eT

3 (t) e3(t) (64)

Hence
V̇3 = −k3eT

3 (t) e3(t)− eT
3 (t)GT(t) e2(t) (65)

3.3 Stability analysis

Theorem 1. Consider a kinetic kill vehicle system (1), the controller (62), the parame-
ter update laws (32), (56) in the presence of disturbances and coupling uncertainties under
Assumption 1∼Assumption 3, then the boundedness of all the signals can be ensured and the tracking
errors can converge to zero.

Proof : Choosing Lyapunov function as follows:
V = V1 + V2 + V3 (66)

According to (35), (58) and (65), we can get that

V̇ ≤ −ET
ξ (t)QEξ (t)− σG

2
Tr
[
�G̃T�G̃

]
+ σG

2
Tr
[
�GT�G

]− kωeT
2 (t) e2(t)

− σΘ

2
Tr
[
Θ̃TΘ̃
]
− γ0

Γr

r(t)+ ρ(ξ(t) ,ω(t))

Γr

(
1 − 16TanhT

(
e2(t)
ερ

)
Tanh
(

e2(t)
ερ

))
+ ε2

− k3eT
3 (t) e3(t)

≤ −γV + ρ(ξ(t) ,ω(t))

Γr

(
1 − 16TanhT

(
e2(t)
ερ

)
Tanh
(

e2(t)
ερ

))
+ εf (67)

where
γ = min{2λmin(Q) , ηGσG, 2kω, λmin(ηΘ) σΘ , γ0, 2k3}

εf = σG

2
Tr
[
�GT�G

]+ 1

2
λmax

(
GT(t)G(t)

)∥∥∥d̃(t)∥∥∥2 + σΘ

2
Tr
[
ΘTΘ
]+ ε2

Θ
+

3∑
i=1

εϕi (68)

Define closed sets
�f ={ξ ,ω ∈R

3|V(ξ(t) ,ω(t))≤ γ2/γ1

}
�ρ ={e2

∣∣‖e2‖< 0.2554ερ
}

(69)
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Table 1. The parameters of uncertainties and nonlinearities in
simulation

�G �h

Case 1 03×3

⎡
⎢⎣

0.2 sin(6.28t/5)

0.3 sin(6.28t/5)

0.4 sin(6.28t/5)

⎤
⎥⎦

Case 2

⎡
⎢⎣

0.5 0 0

0.2 0.1 0

0 0 0.05

⎤
⎥⎦

⎡
⎢⎣

0.2 sin(6.28t/5)

0.3 sin(6.28t/5)

0.4 sin(6.28t/5)

⎤
⎥⎦

Case 3

⎡
⎢⎣

0.5 0 0

0.2 0.1 0

0 0 0.05

⎤
⎥⎦

⎡
⎢⎣

sin(6.28t/5)

1.5 sin(6.28t/5)

2 sin(6.28t/5)

⎤
⎥⎦

Figure 2. The trajectory of the pitch angle of KKV under different conditions.

According to Lemma 4, if e2(t) ∈�f ∩�ρ , the solutions of the KKV system
[
e0, e1, e2, e3,�G̃, Θ̃

]
are all bounded. If e2 /∈�f ∩�ρ , V̇ < 0 and V(t) will finally converge to set �f ∩�ρ . In addition, due
to the boundedness of e0(t), according to Lemma 5 we can get that lim

t→∞
e1(t)= 0, i.e. the tracking error

of the KKV system converge to zero, which completes the proof.

4.0 Simulation study
In this section, a numerical example is performed to verify the effectiveness of our algorithm. In order to
illustrate the strengths of the proposed method, we compared it with disturbance observer based control
(DOBC) and method without adaptive laws. Moreover, without losing generality, we investigated the
performance of the proposed method under three different conditions.
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Figure 3. The trajectory of the yaw angle of KKV under different conditions.

Figure 4. The trajectory of the row angle of KKV under different conditions.

The initial states are set as:
[
ϑ ψ γ

]T =[10/57.3 10/57.3 1/57.3
]T

rad,
[
ωz ωy ωx

]T =
[0.5 0.5 0.5]Trad/s. The matrix of rotary inertias is diag

{
1 0.5 0.2

}
. The desired attitude angles

are set as ϑd = 10square(0.2π t)deg, ψd = 10square(2π t/15)deg, γd = 0 deg. To compute the value
of β̇1(t) , β̇2(t) in equation (45) and (61), two first-order filters are employed with the following
formulation:

τ˙̄βi = −β̄i + βi, β̄i(0)= βi(0) , i = 1, 2

where β̄i is the output of the filter and τ > 0 is a constant.
The disturbances are supposed to be d0(t)= [0.02 + 0.04 sin(6.28t/5)0.03 + 0.03 sin(6.28t/5)

0.04 + 0.02 sin(6.28t/5)]T . Some constants are set as Γr = ερ = 1, ηΘ = ηG = 5, σΘ = 0.9, σG = 0.1.
The unmeasured state is η̇(t)= −3η(t)+ ϑ(t) ψ(t) γ (t)+ωx(t) ωy(t) ωz(t) , η(0)= 0 while
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Figure 5. The trajectories of the angular velocities of KKV under different conditions.

Figure 6. The trajectories of the adaptive parameters under different conditions.
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Figure 7. The trajectories of the norm of the control signal under different conditions.

Figure 8. The trajectory of the pitch angle of KKV with different methods.

the dynamic signal is ṙ(t)= −5r(t)+ ξ T(t) ξ(t)+ωT(t) ω(t) , r(0)= 0. The uncoupled uncer-
tainties are χ(ξ(t) ,ω(t) , η(t))= 0.5ξ(t) sin(t)+ η(t)(ξ(t)+ω(t)). The output constraints are
yup = ξd +[2, 2, 2]T , ylow = ξd −[ 2 2 2

]T . The non-affine input is set as g[u(t)] = g · u(t),
g = diag(tanh(u1), tanh(u2), tanh(u3)). The parameters of uncertainties and nonlinearities are shown in
Table 1.

The gains of the controller are kξ = 5, kξ0 = 1, kω = 20, k3 = 30 and the gains of STDO are set as
kd = kp1 = kp2 = 0.1.

The simulation results of the proposed method under different conditions are showed in Figs. 2–7.
Figures 2–4 show the trajectories of the roll angle, yaw angle and pitch angle separately, from which we
can see that the system states track the desired signals properly in the presence of output constraint as
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Figure 9. The trajectory of the yaw angle of KKV with different methods.

Figure 10. The trajectory of the row angle of KKV with different methods.

well as non-affine dynamics and the output of the system satisfy the output constraint all the time. The
stability and robustness of Fig. 5 displays the trajectories of the angular velocities while Fig. 6 exhibits
the trajectories of the adaptive parameters. The trajectories of the control signal can be seen in Fig. 7.
In conclusion, the KKV system performs appropriately with the aid of the proposed method in spite of
the non-affine dynamics as well as the output constraint. Thanks to the proposed algorithm, the tracking
errors of the attitude angles can be limited within 2 deg and the disturbances are well suppressed. The
stability and robustness of the system can be seen explicitly.

The simulation results of the comparison between the proposed method and two other methods are
displayed in Figs. 8–10. It can be concluded that without the designed control approach, the disturbances
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and uncertainties cannot be suppressed well so that the system states miss the desired signals to some
extent. Moreover, other control algorithms cannot guarantee the restriction of output signals. The high
efficiency of the proposed method can be seen clearly.

5.0 Conclusions
In order to solve the control problem of a class of non-affine KKV systems with output constraint suf-
fering from unmodeled dynamics, this paper proposes an adaptive neural output-constrained control
algorithm. By introducing an integral process to the design of the controller, the non-affine input signal
can be obtained. Moreover, benefiting from the presented nonlinear mapping, the requirement of out-
put constraint can be met. From the simulation results we can tell that the system states can track the
desired signals under different conditions with the proposed method and the algorithm has remarkable
advantages compared with other algorithms.
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