Unimodular Roots of Special Littlewood Polynomials

Idris David Mercer

Abstract

We call $\alpha(z)=a_{0}+a_{1} z+\cdots+a_{n-1} z^{n-1}$ a Littlewood polynomial if $a_{j}= \pm 1$ for all j. We call $\alpha(z)$ self-reciprocal if $\alpha(z)=z^{n-1} \alpha(1 / z)$, and call $\alpha(z)$ skewsymmetric if $n=2 m+1$ and $a_{m+j}=(-1)^{j} a_{m-j}$ for all j. It has been observed that Littlewood polynomials with particularly high minimum modulus on the unit circle in \mathbb{C} tend to be skewsymmetric. In this paper, we prove that a skewsymmetric Littlewood polynomial cannot have any zeros on the unit circle, as well as providing a new proof of the known result that a self-reciprocal Littlewood polynomial must have a zero on the unit circle.

1 Introduction and Statement of Results

We let \mathcal{L}_{n} denote the set of all 2^{n} polynomials of the form

$$
\alpha(z)=a_{0}+a_{1} z+\cdots+a_{n-1} z^{n-1}, \quad \text { where } a_{j}= \pm 1 \text { for all } j
$$

and we call such a polynomial a Littlewood polynomial. Erdős, Littlewood, and others have formulated conjectures about how "flat" a polynomial in \mathcal{L}_{n} can be on the unit circle

$$
\mathbb{S}:=\{z \in \mathbb{C}:|z|=1\} .
$$

One conjecture $[3,6]$ says that for infinitely many n, there exists $\alpha \in \mathcal{L}_{n}$ that satisfies

$$
\begin{equation*}
K_{1} \sqrt{n} \leq|\alpha(z)| \leq K_{2} \sqrt{n} \quad \text { for all } z \in \mathbb{S} \tag{1}
\end{equation*}
$$

where K_{1} and K_{2} are positive constants independent of n.
No one has shown the existence of an infinite family of Littlewood polynomials satisfying just the lower bound in (1). A family satisfying just the upper bound is given by the Rudin-Shapiro polynomials (see [1, Chapter 4]), which exist when n is a power of 2 and satisfy $|\alpha(z)| \leq \sqrt{2} \cdot \sqrt{n}$ on \mathbb{S}. Moreover, Spencer [10] used probabilistic methods to show that for sufficiently large fixed K, the number of polynomials $\alpha \in \mathcal{L}_{n}$ satisfying $|\alpha(z)| \leq K \sqrt{n}(z \in \mathbb{S})$ is eventually bounded below by an exponential function of n (so there are many Littlewood polynomials whose modulus on \mathbb{S} is at most $K \sqrt{n}$).

In this paper, we are interested in two special classes of Littlewood polynomials. We call $\alpha \in \mathcal{L}_{n}$ self-reciprocal if $\alpha(z)=z^{n-1} \alpha(1 / z)$ (informally, if the coefficient sequence of α is palindromic). If $n=2 m+1$, we call $\alpha \in \mathcal{L}_{n}$ skewsymmetric if $a_{m+j}=$ $(-1)^{j} a_{m-j}$ for $1 \leq j \leq m$. Littlewood [7] describes skewsymmetric polynomials as

[^0]having "a central term and two stretches of $n / 2$ terms on either side, the end one having the coefficients of the front one written backwards, but affected with signs alternately - and +" (but note that his n is our $n-1$).

For modest values of n, an exhaustive search can find the polynomial in \mathcal{L}_{n} having highest minimum modulus on \mathbb{S}. Computations in [9] show that for all odd n from 11 to 25 , the polynomial in \mathcal{L}_{n} with highest minimum modulus happens to be skewsymmetric, and satisfies $|\alpha(z)| \geq 0.6 \sqrt{n}$ for $z \in \mathbb{S}$. So roughly speaking, if the modulus of $\alpha(z) \in \mathcal{L}_{n}$ does not become small for $z \in \mathbb{S}$, then there is a tendency for $\alpha(z)$ to be skewsymmetric. A kind of converse of this tendency is the main result of this paper.

Theorem 1 A skewsymmetric Littlewood polynomial has no zeros on \mathbb{S} (in other words, no roots of unit modulus, or unimodular roots).

In contrast, it is known [2] that a self-reciprocal Littlewood polynomial must have a zero on \mathbb{S}. We give a new proof of this fact by deriving it, along with one of the results in [5], as corollaries of Theorem 2 below.

Theorem 2 If $f:[0, \pi] \rightarrow \mathbb{R}$ is a function of the form

$$
\begin{equation*}
f(\theta)=\cos (n \theta)+a_{n-1} \cos ((n-1) \theta)+\cdots+a_{1} \cos (\theta) \tag{2}
\end{equation*}
$$

where a_{1}, \ldots, a_{n-1} are real, then $f(\theta)=+1$ for some $\theta \in[0, \pi]$ and $f(\theta)=-1$ for some $\theta \in[0, \pi]$.

One can use basic properties of Chebyshev polynomials to prove the weaker version of Theorem 2 obtained by replacing "and" with "or", but such a technique does not seem to immediately yield Theorem 2 as written. However, Theorem 2 does have a quick proof using complex analysis discovered by the referee of this paper.

A trivial corollary of Theorem 2 is that a function of the form

$$
\begin{equation*}
f(\theta)=a_{n} \cos (n \theta)+a_{n-1} \cos ((n-1) \theta)+\cdots+a_{1} \cos (\theta) \quad\left(a_{j} \in \mathbb{R}\right) \tag{3}
\end{equation*}
$$

must attain both of the values a_{n} and $-a_{n}$. Expressions of the form (3) are called "zero-mean cosine polynomials" in [4], where the following question is answered: what is the largest β (necessarily $\beta<\pi$) such that there exists a nontrivial function of the form (3) that is nonnegative on $[0, \beta]$?

2 Relevant Facts About Chebyshev Polynomials

Before commencing our proofs of Theorems 1 and 2, we will find it useful to recall some relevant facts about cosine sums and Chebyshev polynomials.

Let θ be a real variable and let $c:=\cos \theta$. For nonnegative integers n, each of the expressions

$$
\begin{aligned}
T_{n} & :=\cos (n \theta), \\
U_{n} & :=\frac{\sin ((n+1) \theta)}{\sin \theta}
\end{aligned}
$$

is a polynomial in c of degree n, called the Chebyshev polynomials of the first and second kind respectively. It is easy to check that

$$
\begin{array}{ll}
T_{0}=1, & U_{0}=1 \\
T_{1}=c, & U_{1}=2 c
\end{array}
$$

and one can use well-known trigonometric identities to show that for $n \geq 1$, we have

$$
\begin{aligned}
T_{n+1} & =2 c T_{n}-T_{n-1} \\
U_{n+1} & =2 c U_{n}-U_{n-1}
\end{aligned}
$$

Some facts about Chebyshev polynomials are easy to prove by induction. For instance:

- Both T_{n} and U_{n} are odd when n is odd, and even when n is even. (An odd polynomial is one containing only odd powers of the variable; an even polynomial is defined analogously.)
- For $n \geq 1$, the leading term of T_{n} is $2^{n-1} c^{n}$. For $n \geq 0$, the leading term of U_{n} is $2^{n} c^{n}$.

Since T_{n} has degree n, any polynomial in c of degree n can be written uniquely as a linear combination of $T_{0}, T_{1}, \ldots, T_{n}$. In particular, it is natural to ask how to write U_{n} as a linear combination of $T_{0}, T_{1}, \ldots, T_{n}$. The answer to this question is that

$$
\begin{gather*}
U_{2 m}=T_{0}+\sum_{k=1}^{m} 2 T_{2 k} \tag{4}\\
U_{2 m+1}=\sum_{k=0}^{m} 2 T_{2 k+1} \tag{5}
\end{gather*}
$$

for all $m \geq 0$, which can be proved by induction and which appears as part of Problem 16 in Part VI of [8].

If we define the new variable $x:=2 c$, then of course T_{n} and U_{n} can be regarded as polynomials in x. It is easy to show by induction that U_{n} and $2 T_{n}$ have integer coefficients when regarded as polynomials in x, since we have

$$
\begin{gathered}
2 T_{n+1}=4 c T_{n}-2 T_{n-1}=x \cdot 2 T_{n}-2 T_{n-1} \\
U_{n+1}=2 c U_{n}-U_{n-1}=x U_{n}-U_{n-1}
\end{gathered}
$$

Thus $T_{0}, 2 T_{1}, 2 T_{2}, \ldots$ and $U_{0}, U_{1}, U_{2}, \ldots$ belong to $\mathbb{Z}[x]$, where as usual, $\mathbb{Z}[x]$ denotes the ring of polynomials in x with integer coefficients. Notice that when U_{n} is regarded as a polynomial in $\mathbb{Z}[x]$, its leading term is x^{n}. The same is true of $2 T_{n}$ if $n \geq 1$. From now on, we will write U_{n} and $2 T_{n}$ as $\overline{U_{n}}$ and $\overline{2 T_{n}}$, respectively, if regarding them as polynomials in x, in order to avoid possible ambiguity.

3 Proof of Theorem 1

We define $\mathbb{Z}_{2}:=\mathbb{Z} /(2 \mathbb{Z})$ (the integers $\left.\bmod 2\right)$. Let φ be the natural homomorphism from \mathbb{Z} to \mathbb{Z}_{2}, and let Φ be the homomorphism from $\mathbb{Z}[x]$ to $\mathbb{Z}_{2}[x]$ defined by

$$
\Phi\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)=\varphi\left(a_{0}\right)+\varphi\left(a_{1}\right) x+\cdots+\varphi\left(a_{n}\right) x^{n}
$$

(that is, Φ simply reduces all coefficients mod 2). The crucial ingredient in our proof of Theorem 1 is the following lemma.

Lemma 3 Let n be a nonnegative integer, and let $A(x), B(x)$ be two polynomials in $\mathbb{Z}[x]$ satisfying

- $\operatorname{deg} A(x)=n+1$,
- $\operatorname{deg} B(x)=n$,
- $\Phi(A(x))=\Phi\left(\overline{U_{n+1}}\right)$,
- $\Phi(B(x))=\Phi\left(\overline{U_{n}}\right)$,
- one of $A(x), B(x)$ is odd and the other is even.

Then no complex number is a root of both $A(x)$ and $B(x)$.
Proof If $n=0$, the hypotheses of the lemma say $B(x)$ is an odd nonzero constant and hence has no roots whatsoever. Assume the lemma is true for n, and let $A(x), B(x) \in \mathbb{Z}[x]$ satisfy

- $\operatorname{deg} A(x)=n+2$,
- $\operatorname{deg} B(x)=n+1$,
- $\Phi(A(x))=\Phi\left(\overline{U_{n+2}}\right)$,
- $\Phi(B(x))=\Phi\left(\overline{U_{n+1}}\right)$,
- one of $A(x), B(x)$ is odd and the other is even.

We wish to show $A(x)$ and $B(x)$ have no common roots. The hypotheses imply that the leading term of $A(x)$ is $a x^{n+2}$ where a is odd, and that the leading term of $B(x)$ is $b x^{n+1}$ where b is odd. Define $r:=\operatorname{lcm}(a, b), s:=r / a$, and $t:=r / b$, so r, s, t are odd integers. Then $C(x):=s A(x)-t x B(x)$ is a linear combination of $A(x)$ and $B(x)$ where the x^{n+2} term has been "killed". Notice that $C(x)$ is odd if $A(x)$ is odd, and is even if $A(x)$ is even. Thus $\operatorname{deg} C(x) \leq n$. Furthermore, any common root of $A(x)$ and $B(x)$ is also a root of $C(x)$. We now observe that

$$
\begin{aligned}
\Phi(C(x)) & =\Phi(s A(x)-t x B(x)) \\
& =\Phi(s) \Phi(A(x))+\Phi(-t x) \Phi(B(x)) \\
& =\Phi(1) \Phi\left(\overline{U_{n+2}}\right)+\Phi(-x) \Phi\left(\overline{U_{n+1}}\right) \\
& =\Phi\left(\overline{U_{n+2}}-x \overline{U_{n+1}}\right) \\
& =\Phi\left(\overline{-U_{n}}\right)=\Phi\left(\overline{U_{n}}\right) .
\end{aligned}
$$

This means that $B(x)$ and $C(x)$ satisfy the induction hypothesis, so $B(x)$ and $C(x)$ have no common roots. This implies $A(x)$ and $B(x)$ have no common roots, as required.

Proof of Theorem 1 Let $\alpha(z)$ be a skewsymmetric Littlewood polynomial. Hence $\alpha(z)$ has even degree, so say

$$
\alpha(z)=a_{0}+a_{1} z+\cdots+a_{2 m} z^{2 m} \quad\left(a_{j}= \pm 1\right)
$$

where $a_{m+j}=(-1)^{j} a_{m-j}$ for $j \in\{1,2, \ldots, m\}$. We then have

$$
\begin{aligned}
\frac{\alpha(z)}{z^{m}} & =a_{0} \frac{1}{z^{m}}+\cdots+a_{m-1} \frac{1}{z}+a_{m}+a_{m+1} z+\cdots+a_{2 m} z^{m} \\
& =a_{m}+\sum_{j=1}^{m}\left(a_{m+j} z^{j}+a_{m-j} \frac{1}{z^{j}}\right) \\
& =a_{m}+\sum_{j=1}^{m} a_{m+j}\left(z^{j}+(-1)^{j} \frac{1}{z^{j}}\right)=: f(z) .
\end{aligned}
$$

Showing $\alpha(z)$ has no zeros on \mathbb{S} is equivalent to showing $f(z)$ has no zeros on \mathbb{S}, which in turn is equivalent to showing $f(i z)$ has no zeros on \mathbb{S}. Observe that

$$
\begin{aligned}
f(i z) & =a_{m}+\sum_{j=1}^{m} a_{m+j}\left((i z)^{j}+(-1)^{j} \frac{1}{(i z)^{j}}\right) \\
& =a_{m}+\sum_{j=1}^{m} a_{m+j}\left(i^{j} z^{j}+\left(\frac{-1}{i}\right)^{j} \frac{1}{z^{j}}\right) \\
& =a_{m}+\sum_{j=1}^{m} a_{m+j} i^{j}\left(z^{j}+\frac{1}{z^{j}}\right) \\
& =a_{m}+\sum_{j=1}^{m} a_{m+j} i^{j} \cdot 2 \cos (j \theta) \quad\left(\text { where } z=e^{i \theta}\right) .
\end{aligned}
$$

To show $f(i z)$ is never 0 on \mathbb{S}, it suffices to show that $\operatorname{Re} f(i z)$ and $\operatorname{Im} f(i z)$ cannot both be 0 . Recalling that each a_{j} is ± 1, and defining $r:=\lfloor m / 2\rfloor$, we see that

$$
\begin{aligned}
& \operatorname{Re} f(i z)= \pm 1 \pm 2 \cos (2 \theta) \pm 2 \cos (4 \theta) \pm \cdots \pm 2 \cos (2 r \theta) \\
& \operatorname{Im} f(i z)= \pm 2 \cos (\theta) \pm 2 \cos (3 \theta) \pm 2 \cos (5 \theta) \pm \cdots \pm 2 \cos ((2 r \pm 1) \theta)
\end{aligned}
$$

which, using the notation defined earlier, can be rewritten as

$$
\begin{aligned}
\operatorname{Re} f(i z) & = \pm 1 \pm 2 T_{2} \pm 2 T_{4} \pm \cdots \pm 2 T_{2 r} \\
\operatorname{Im} f(i z) & = \pm 2 T_{1} \pm 2 T_{3} \pm 2 T_{5} \pm \cdots \pm 2 T_{2 r \pm 1}
\end{aligned}
$$

Now let $A:=\operatorname{Re} f(i z)$ and let $B:=\operatorname{Im} f(i z)$. Both A and B can be regarded as polynomials in x with integer coefficients, where as before, $x:=2 c:=2 \cos \theta$. Notice
that one of A, B is odd and the other is even, and that $\operatorname{deg} A$ and $\operatorname{deg} B \operatorname{differ}$ by 1 . We now observe that

$$
\begin{aligned}
\Phi(A) & =\Phi\left(\pm 1 \pm \overline{2 T_{2}} \pm \overline{2 T_{4}} \pm \cdots \pm \overline{2 T_{2 r}}\right) \\
& =\Phi(\pm 1)+\Phi\left(\pm \overline{2 T_{2}}\right)+\Phi\left(\pm \overline{2 T_{4}}\right)+\cdots+\Phi\left(\pm \overline{T_{2 r}}\right) \\
& =\Phi(1)+\Phi\left(\overline{2 T_{2}}\right)+\Phi\left(\overline{2 T_{4}}\right)+\cdots+\Phi\left(\overline{T_{2 r}}\right) \\
& =\Phi\left(1+\overline{2 T_{2}}+\overline{2 T_{4}}+\cdots+\overline{2 T_{2 r}}\right) \\
& =\Phi\left(\overline{U_{2 r}}\right) \quad \text { by }(4)
\end{aligned}
$$

and by similar reasoning, we have $\Phi(B)=\Phi\left(\overline{U_{2 r \pm 1}}\right)$. Thus A and B (in some order) satisfy the hypotheses of Lemma 3. Hence $\operatorname{Re} f(i z)$ and $\operatorname{Im} f(i z)$ are never both zero, and the theorem is proved.

4 Proof of Theorem 2

The following short proof using complex analysis is essentially due to the referee. As in the statement of Theorem 2, we have

$$
f(\theta)=\cos (n \theta)+a_{n-1} \cos ((n-1) \theta)+\cdots+a_{1} \cos (\theta)
$$

where a_{0}, \ldots, a_{n-1} are real.

Proof of Theorem 2 Note that $f(\theta) \pm 1=\operatorname{Re}\left(p\left(e^{i \theta}\right)\right)$, where

$$
p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z \pm 1
$$

Since the product of all roots of p is ± 1, we conclude p has at least one root inside or on the unit circle. Let Γ denote the closed curve formed by $p\left(e^{i \theta}\right)$ for $\theta \in[0,2 \pi]$. If p has a root on the unit circle, then certainly Γ passes through the origin and thus intersects the line $\operatorname{Re} z=0$. If p has no roots on the unit circle, then p has at least one root inside the unit circle. By the Argument Principle, we then conclude Γ goes around the origin at least once and thus intersects the line $\operatorname{Re} z=0$. In either case, $f(\theta) \pm 1=\operatorname{Re}\left(p\left(e^{i \theta}\right)\right)$ must have at least one real zero.

This yields quick proofs of Corollaries 5 and 6 of this paper, which appear in the next section. Corollary 4, by contrast, is a corollary of the author's original proof of Theorem 2, as opposed to a corollary of the statement of Theorem 2. We therefore now give a sketch of the author's original proof of Theorem 2.

Sketch of alternate proof of Theorem 2 We define

$$
\begin{equation*}
g(\theta)=a_{n-1} \cos ((n-1) \theta)+\cdots+a_{1} \cos (\theta) \tag{6}
\end{equation*}
$$

so we have $f(\theta)=\cos (n \theta)+g(\theta)$. Observe that since f has average value 0 on $[0, \pi]$, it suffices to show that $f(\theta) \geq+1$ for some θ and that $f(\theta) \leq-1$ for some θ. We now consider two cases.

Case 1 Suppose n is even; say $n=2 m$. Then $\cos (n \theta)=+1$ at each of the $m+1$ points

$$
\theta=0, \frac{2 \pi}{n}, \frac{4 \pi}{n}, \ldots, \pi
$$

and $\cos (n \theta)=-1$ at each of the m points

$$
\theta=\frac{\pi}{n}, \frac{3 \pi}{n}, \frac{5 \pi}{n}, \ldots, \frac{(n-1) \pi}{n}
$$

We show that the $m+1$ values

$$
g(0), g\left(\frac{2 \pi}{n}\right), g\left(\frac{4 \pi}{n}\right), \ldots, g(\pi)
$$

cannot all be negative by showing they cannot all have the same sign, and we show that the m values

$$
g\left(\frac{\pi}{n}\right), g\left(\frac{3 \pi}{n}\right), g\left(\frac{5 \pi}{n}\right), \ldots, g\left(\frac{(n-1) \pi}{n}\right)
$$

cannot all be positive by showing they cannot all have the same sign. We can accomplish this by proving that the identities

$$
\begin{equation*}
g(0)+2 g\left(\frac{2 \pi}{n}\right)+2 g\left(\frac{4 \pi}{n}\right)+\cdots+2 g\left(\frac{(n-2) \pi}{n}\right)+g(\pi)=0 \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
g\left(\frac{\pi}{n}\right)+g\left(\frac{3 \pi}{n}\right)+g\left(\frac{5 \pi}{n}\right)+\cdots+g\left(\frac{(n-1) \pi}{n}\right)=0 \tag{8}
\end{equation*}
$$

are true independently of the values of a_{1}, \ldots, a_{n-1}.
Case 2 Suppose n is odd; say $n=2 m-1$. Then $\cos (n \theta)=+1$ at each of the m points

$$
\theta=0, \frac{2 \pi}{n}, \frac{4 \pi}{n}, \ldots, \frac{(n-1) \pi}{n}
$$

and $\cos (n \theta)=-1$ at each of the m points

$$
\theta=\frac{\pi}{n}, \frac{3 \pi}{n}, \frac{5 \pi}{n}, \ldots, \pi
$$

Analogously to Case 1 , we show that the m values

$$
g(0), g\left(\frac{2 \pi}{n}\right), g\left(\frac{4 \pi}{n}\right), \ldots, g\left(\frac{(n-1) \pi}{n}\right)
$$

cannot all be negative by showing they cannot all have the same sign, and we show that the m values

$$
g\left(\frac{\pi}{n}\right), g\left(\frac{3 \pi}{n}\right), g\left(\frac{5 \pi}{n}\right), \ldots, g(\pi)
$$

cannot all be positive by showing they cannot all have the same sign. We can accomplish this by proving that the identities

$$
\begin{equation*}
g(0)+2 g\left(\frac{2 \pi}{n}\right)+2 g\left(\frac{4 \pi}{n}\right)+\cdots+2 g\left(\frac{(n-1) \pi}{n}\right)=0 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
2 g\left(\frac{\pi}{n}\right)+2 g\left(\frac{3 \pi}{n}\right)+\cdots+2 g\left(\frac{(n-2) \pi}{n}\right)+g(\pi)=0 \tag{10}
\end{equation*}
$$

are true independently of the values of a_{1}, \ldots, a_{n-1}.
Since we already gave a short proof of Theorem 2, we omit the details of how (7)-(10) are proved, and content ourselves with the following outline. The left side of any of the equations (7)-(10) can be rewritten as a linear combination of a_{1}, \ldots, a_{n-1}. We can then use well-known trigonometric identities to show that the coefficient of a_{k} is 0 .

Note that the following is a corollary of the alternate proof of Theorem 2, as opposed to a corollary of the statement of Theorem 2.

Corollary 4 Suppose g is of the form (6) (where n may be even or odd). Then g cannot maintain the same sign throughout the interval $[0,(n-1) \pi / n]$, and g cannot maintain the same sign throughout the interval $[\pi / n, \pi]$.

Our Corollary 4 constitutes the nonexistence portion of [4, Corollaries 1 and 3]. It is further shown in [4] that the intervals in our Corollary 4 are best possible.

5 Further Comments on Theorem 2

Connection with Chebyshev Polynomials

Any function of the form

$$
\begin{equation*}
f=\cos (n \theta)+a_{n-1} \cos ((n-1) \theta)+\cdots+a_{1} \cos (\theta) \tag{11}
\end{equation*}
$$

can of course be rewritten as

$$
\begin{equation*}
f=T_{n}+a_{n-1} T_{n-1}+\cdots+a_{1} T_{1} \tag{12}
\end{equation*}
$$

Notice that (12) is a polynomial in c of degree n whose leading coefficient is the same as that of T_{n}. Recalling that the Chebyshev polynomials have minimum supnorm on
$[-1,1]$ among polynomials of prescribed degree and prescribed leading coefficient, we conclude

$$
\max _{0 \leq \theta \leq \pi}|f|=\max _{-1 \leq c \leq 1}|f| \geq \max _{-1 \leq c \leq 1}\left|T_{n}\right|=1
$$

so we have either $f \geq+1$ somewhere or $f \leq-1$ somewhere. By continuity and the fact that the average value of (11) is 0 , we conclude that either $f(\theta)=+1$ for some $\theta \in[0, \pi]$ or $f(\theta)=-1$ for some $\theta \in[0, \pi]$. Theorem 2 is the stronger statement that both of these possibilities must occur (and does not seem to follow immediately from basic properties of Chebyshev polynomials).

Roots of Self-Reciprocal Polynomials

As a corollary of Theorem 2, we obtain a new proof of the next result (which also appears as [5, Corollary 2]).

Corollary 5 Suppose $\alpha(z)$ is a self-reciprocal polynomial of even degree, say

$$
\alpha(z)=a_{0}+\cdots+a_{m-1} z^{m-1}+a_{m} z^{m}+a_{m-1} z^{m+1}+\cdots+a_{0} z^{2 m}
$$

where a_{0}, \ldots, a_{m} are real. Suppose $\left|a_{m}\right| \leq 2\left|a_{0}\right|$ (informally, the middle coefficient is no more than twice as big as the end coefficients). Then $\alpha(z)$ has at least one root on the unit circle

$$
\mathbb{S}:=\{z \in \mathbb{C}:|z|=1\} .
$$

Proof of Corollary 5 For $\alpha(z)$ as above and $z=e^{i \theta} \in \mathbb{S}$, we have

$$
\begin{align*}
\frac{\alpha(z)}{z^{m}} & =a_{0} \frac{1}{z^{m}}+\cdots+a_{m-1} \frac{1}{z}+a_{m}+a_{m-1} z+\cdots+a_{0} z^{m} \tag{13}\\
& =a_{m}+2\left(a_{m-1} \operatorname{Re} z+\cdots+a_{0} \operatorname{Re} z^{m}\right) \\
& =a_{m}+2\left(a_{m-1} \cos (\theta)+\cdots+a_{0} \cos (m \theta)\right)
\end{align*}
$$

By Theorem 2, the expression (13) attains both of the values $a_{m}+2 a_{0}$ and $a_{m}-2 a_{0}$ on the interval $[0, \pi]$. Suppose $a_{0} \geq 0$ (the other case is similar). Then the condition $\left|a_{m}\right| \leq 2\left|a_{0}\right|$ gives us

$$
-2 a_{0} \leq a_{m} \leq+2 a_{0},
$$

which implies that the interval $\left[a_{m}-2 a_{0}, a_{m}+2 a_{0}\right]$ contains 0 . By continuity, and the fact that (13) is real-valued, we conclude that $\alpha(z) / z^{m}$ and hence also $\alpha(z)$ is equal to 0 for some $z \in \mathbb{S}$.

As an immediate consequence, we get a new proof of the next result [2, Theorem 2.8].

Corollary 6 A self-reciprocal polynomial whose coefficients are ± 1 has at least one zero on \mathbb{S}.

Proof of Corollary 6 Let α be a self-reciprocal polynomial whose coefficients are ± 1. If the degree of α is odd, it is straightforward to show that -1 is a root of α. If the degree of α is even, then the condition $\left|a_{m}\right| \leq 2\left|a_{0}\right|$ in Corollary 5 is satisfied, so α has a root on \mathbb{S}.

Acknowledgments The author would like to thank the referee for timely feedback and for supplying the short proof of Theorem 2.

References

[1] P. B. Borwein, Computational Excursions in Analysis and Number Theory. CMS Books in Mathematics 10, Springer-Verlag, New York (2002).
[2] T. Erdélyi, On the zeros of polynomials with Littlewood-type coefficient constraints. Michigan Math. J. 49(2001), no. 1, 97-111.
[3] P. Erdős, Some unsolved problems. Michigan Math. J. 4(1957), 291-300.
[4] A. D. Gilbert and C. J. Smyth, Zero-mean cosine polynomials which are non-negative for as long as possible. J. London Math. Soc. (2) 62(2000), no. 2, 489-504.
[5] J. Konvalina and V. Matache, Palindrome-polynomials with roots on the unit circle. C. R. Math. Rep. Acad. Sci. Canada 26(2004), no. 2, 39-44.
[6] J. E. Littlewood, On polynomials $\sum^{n} \pm z^{m}, \sum^{n} e^{\alpha_{m} i} z^{m}, z=e^{\theta_{i}}$. J. London Math. Soc. 41(1966), 367-376.
[7] \longrightarrow Some Problems in Real and Complex Analysis. D.C. Heath, Lexington, MA, 1968.
[8] G. Pólya and G. Szegö, Problems and Theorems in Analysis. Volume II, Springer-Verlag, New York, 1976.
[9] L. Robinson, Polynomials with plus or minus one coefficients: growth properties on the unit circle. M.Sc. thesis, Simon Fraser University 1997.
[10] J. Spencer, Six standard deviations suffice. Trans. Amer. Math. Soc. 289(1985), no. 2, 679-706.

Department of Mathematics
Simon Fraser University
Burnaby, BC
V5A 156
e-mail: idmercer@math.sfu.ca

[^0]: Received by the editors June 4, 2004; revised September 25, 2004.
 AMS subject classification: 26C10, 30C15, 42A05.
 (C)Canadian Mathematical Society 2006.

