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Wigner’s theorem characterizes isometries of the set of all rank one projections on a
Hilbert space. In metric geometry, nonexpansive maps and noncontractive maps are
well-studied generalizations of isometries. We show that under certain conditions
Wigner symmetries can be characterized as nonexpansive or noncontractive maps on
the set of all projections of rank one. The assumptions required for such
characterizations are injectivity or surjectivity and they differ in the finite and the
infinite-dimensional case. Motivated by a recently obtained optimal version of
Uhlhorn’s generalization of Wigner’s theorem, we also give a description of
nonexpansive maps which satisfy a condition that is much weaker than surjectivity.
Such maps do not need to be Wigner symmetries. The optimality of all presented
results is shown by counterexamples.
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1. Introduction and statement of main results

Throughout this note, H is a complex Hilbert space and P(H) denotes the collec-
tion of rank one projections on H. We will always assume that dim H � 2. In the
mathematical foundations of quantum mechanics, projections of rank one represent
pure states of a quantum system, and the quantity tr (PQ), the trace of the product
PQ, P, Q ∈ P(H), is the so-called transition probability between two pure states.
The famous Wigner’s unitary–antiunitary theorem [11] describes the general form
of bijective transformations of P(H) which preserve the transition probability.
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2 M. Mori and P. Šemrl

We may state Wigner’s theorem in terms of isometry. Recall that a mapping φ
from a metric space (X, d) into itself is called an isometry if

d(φ(x), φ(y)) = d(x, y), x, y ∈ X.

In this note, we consider the distance d(P, Q) = ‖P − Q‖ in P(H), where ‖ · ‖
denotes the operator norm. One can easily verify that ‖P − Q‖ =

√
1 − tr (PQ)

holds true for every pair P, Q ∈ P(H). Hence, Wigner’s theorem can be formulated
in the following way: Let φ : P(H) → P(H) be a bijective map such that

‖φ(P ) − φ(Q)‖ = ‖P − Q‖, P,Q ∈ P(H).

Then there exists a unitary or an antiunitary operator U : H → H such that

φ(P ) = UPU∗, P ∈ P(H).

Every map of this form will be called a Wigner symmetry. After all, Wigner’s
theorem says that every surjective isometry from P(H) onto itself is a Wigner
symmetry. More generally, it is known as a nonbijective version of Wigner’s theorem
that every isometry from P(H) into itself is of the form φ(P ) = UPU∗, P ∈ P(H),
for some linear or conjugate-linear isometry U : H → H (see e.g. [3]). For more
detailed explanation with many other references and some recent improvements of
Wigner’s theorem, we refer to [2, 4–9].

In this note, we will deal with the question what happens if we replace isometries
in Wigner’s theorem with maps that are nonexpansive or noncontractive. Recall
that a mapping φ from a metric space (X, d) to itself is said to be nonexpansive
(resp. noncontractive) if

d(φ(x), φ(y)) � d(x, y) (resp. d(φ(x), φ(y)) � d(x, y)), x, y ∈ X.

From the viewpoint of quantum mechanics, a nonexpansive (resp. noncontractive)
mapping of P(H) can be interpreted as a transition probability nondecreasing (resp.
nonincreasing) mapping.

The following is a well-known fact from metric geometry [1, Theorems 1.6.14 and
1.6.15].

Theorem 1.1. Let (X, d) be a compact metric space.

1. A noncontractive map from X into itself is a surjective isometry.

2. A surjective nonexpansive map from X onto itself is an isometry.

Corollary 1.2. Assume that dim H < ∞. A mapping φ : P(H) → P(H) is a
Wigner symmetry if one of the following holds.

1. φ is noncontractive.

2. φ is surjective and nonexpansive.

3. φ is injective and nonexpansive.
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Proof. If dimH < ∞, then P(H) is compact. Therefore, if φ satisfies one of the
first two conditions, then theorem 1.1 and Wigner’s theorem imply that φ is a
Wigner symmetry. To consider the third condition, let φ : P(H) → P(H) be an
injective nonexpansive map. Then φ is an injective continuous map from a compact
connected manifold P(H) into itself. By the invariance of domain, its image is
open. By the continuity, its image is compact. Hence, φ is surjective and satisfies
the second condition, so it is a Wigner symmetry. �

We study nonexpansive or noncontractive maps of P(H) under various addi-
tional assumptions, including the case of dimH = ∞. We start with a result on
noncontractive maps.

Theorem 1.3. Let φ : P(H) → P(H) be a surjective map such that

‖φ(P ) − φ(Q)‖ � ‖P − Q‖
for every pair P, Q ∈ P(H). Then φ is a Wigner symmetry.

Looking at the first item of corollary 1.2, in the finite-dimensional case we see
that the same conclusion holds without the surjectivity assumption. However, in
the infinite-dimensional case the surjectivity assumption is essential (example 4.1).

We next consider nonexpansive maps.

Theorem 1.4. Let φ : P(H) → P(H) be a surjective map such that

‖φ(P ) − φ(Q)‖ � ‖P − Q‖
for every pair P, Q ∈ P(H). Then φ is a Wigner symmetry.

In contrast, we will see in example 4.2 that an injective nonexpansive map of
P(H) can be far from a Wigner symmetry if dimH = ∞.

For P, Q ∈ P(H), we write P ⊥ Q if PQ = 0 which is equivalent to ‖P − Q‖ = 1.
For every vector x ∈ H of norm one, we denote by Px the rank one projection
onto the linear span of x. We will say that a subset {Pα : α ∈ J } ⊂ P(H) is an
orthogonal system of projections of rank one, OSP, if Pα ⊥ Pβ whenever α �= β,
and we will say that it is a complete orthogonal system of projections of rank one,
COSP, if it is an OSP and there is no rank one projection Q that is orthogonal to
each Pα. If Pα = Pxα

for some unit vectors xα, α ∈ J , then {Pα : α ∈ J } ⊂ P(H)
is a COSP if and only if {xα : α ∈ J } is an orthonormal basis of H.

Under the additional assumption dimH � 3, Uhlhorn’s improvement of Wigner’s
theorem [10] states that every bijective map φ : P(H) → P(H) with the property
that for every pair P, Q ∈ P(H) we have P ⊥ Q ⇐⇒ φ(P ) ⊥ φ(Q) is a Wigner
symmetry. This result can be further improved. A recently obtained optimal version
[9] reads as follows: Assume that H is separable and φ : P(H) → P(H) is a map
such that for every pair P, Q ∈ P(H) we have P ⊥ Q ⇒ φ(P ) ⊥ φ(Q). Suppose that
there exists a COSP {P1, P2, . . .} ⊂ P(H) such that {φ(P1), φ(P2), . . .} ⊂ P(H)
is a COSP. Then φ is a Wigner symmetry. In particular, if 3 � dim H < ∞, then
every map φ : P(H) → P(H) with the property that for every pair P, Q ∈ P(H)
we have P ⊥ Q ⇒ φ(P ) ⊥ φ(Q) is a Wigner symmetry.
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Note that every noncontractive map φ : P(H) → P(H) satisfies P ⊥ Q ⇒
φ(P ) ⊥ φ(Q), P, Q ∈ P(H). It follows that in the separable case a noncontrac-
tive map φ on P(H) with the property that there is a COSP that is mapped by φ
onto some COSP must be a Wigner symmetry. The situation becomes much more
interesting when we consider nonexpansive maps, as described below.

We first choose and fix an orthonormal basis {eα : α ∈ J } in H. For each pro-
jection P ∈ P(H) onto C(

∑
α∈J cαeα), we define Φ(P ) to be the projection onto

C(
∑

α∈J |cα|eα). Clearly, Φ is well-defined, and it maps every element of COSP
{Peα

: α ∈ J } to itself. We claim that Φ : P(H) → P(H) is a nonexpansive map.
Equivalently, we need to show that

tr (Φ(P )Φ(Q)) � tr (PQ), P,Q ∈ P(H).

This can be easily checked by the inequality

√
tr (PvPw) =

∣∣∣∣∣
∑
α∈J

vαwα

∣∣∣∣∣ �
∑
α∈J

|vα||wα| =
√

tr (Φ(Pv)Φ(Pw))

for each pair of unit vectors v =
∑

α∈J vαeα, w =
∑

α∈J wαeα ∈ H. Now we state
the main result of this note.

Theorem 1.5. Assume that dim H � 3. Let φ : P(H) → P(H) be a mapping
satisfying

‖φ(P ) − φ(Q)‖ � ‖P − Q‖, P,Q ∈ P(H),

and assume that there exists a COSP {Qα : α ∈ J } ⊂ P(H) such that {φ(Qα) :
α ∈ J } is a COSP in P(H). Then either φ is a Wigner symmetry, or there exist
unitary operators U, V : H → H such that

φ(P ) = V Φ(UPU∗)V ∗, P ∈ P(H). (1.1)

In fact, we will prove a stronger result (proposition 3.3) on an arbitrary
nonexpansive map φ : P(H) → P(H) whose image contains a COSP. If H is finite-
dimensional, dimH = n, then we identify H with Cn and P(Cn) with the set of all
idempotent hermitian rank one n × n matrices. Then the map Φ: P(Cn) → P(Cn)
with respect to the standard orthonormal basis of Cn is given by the ‘entrywise
absolute value’

Φ(P ) = [ |pij | ]1�i,j�n for P = [pij ]1�i,j�n ∈ P(Cn). (1.2)

Every nonexpansive map φ : P(Cn) → P(Cn) such that φ(P(Cn)) contains a COSP
is either a Wigner symmetry or of form (1.1). It is somewhat surprising that the
assumption n � 3 is indispensable. The general form of nonexpansive maps φ on
P(C2) such that φ(P(C2)) contains a COSP is described in proposition 2.7.

The next section will be devoted to some auxiliary results. In the third section,
we will present proofs of the main results. The last section will be devoted to
counterexamples showing the optimality of our main theorems.

https://doi.org/10.1017/prm.2024.133 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.133


Nonexpansive and noncontractive mappings 5

2. Preliminary results

In what follows, we occasionally use the following elementary facts. They are well-
known and easily verified, so we omit the proofs.

Lemma 2.1. A 2 × 2 projection of rank one is of the form

[
p z

√
p(1 − p)

z
√

p(1 − p) 1 − p

]

for some real number p, 0 � p � 1, and complex number z of modulus one.

Lemma 2.2. Let v, w ∈ H be unit vectors. Then the projections Pv and Pw in P(H)
onto Cv and Cw, respectively, satisfy

tr (PvPw) = |〈v, w〉|2, ‖Pv − Pw‖ =
√

1 − |〈v, w〉|2.

We start with a basic property of nonexpansive maps on P(H).

Lemma 2.3. Let φ : P(H) → P(H) be a map such that

‖φ(P ) − φ(Q)‖ � ‖P − Q‖, P,Q ∈ P(H), (2.1)

and let n be a positive integer. Assume that {P1, . . . , Pn} ⊂ P(H) is an OSP con-
tained in the image of φ. If Q1, . . . , Qn ∈ P(H) satisfy φ(Qj) = Pj, j = 1, . . . , n,
then {Q1, . . . , Qn} ⊂ P(H) is also an OSP. Moreover, for every Q ∈ P(H) we have

Q � Q1 + · · · + Qn ⇒ φ(Q) � P1 + · · · + Pn.

Proof. For 1 � i < j � n, we know

1 = ‖Pi − Pj‖ = ‖φ(Qi) − φ(Qj)‖ � ‖Qi − Qj‖ � 1,

which implies that {Q1, . . . , Qn} ⊂ P(H) is an OSP.
Assume that Q � Q1 + · · · + Qn. Then Q = Q(Q1 + · · · + Qn), and consequently,

1 = trQ = tr (QQ1) + · · · + tr (QQn). (2.2)

Let {e1, . . . , en} be an orthonormal set of vectors such that Pj = Pej
, j = 1, . . . , n.

Then with respect to the direct sum decomposition

H = span {e1, . . . , en} ⊕ {e1, . . . , en}⊥,

the rank one projections Pj , j = 1, . . . , n, have matrix representations

Pj = φ(Qj) =
[
Ejj 0
0 0

]
.
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Here, Ejj stands for the n × n matrix whose all entries are zero but the (j, j)-entry
which is equal to 1. Let

φ(Q) =

⎡
⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

q11 q12 · · · q1n

q21 q22 · · · q2n

...
...

. . .
...

qn1 qn2 · · · qnn

⎤
⎥⎥⎥⎦ A

A∗ B

⎤
⎥⎥⎥⎥⎥⎦ =

[
R A
A∗ B

]

be the corresponding matrix representation of the rank one projection φ(Q).
Obviously, tr (φ(Q)φ(Qj)) = qjj . From (2.1) we infer that tr (QQj) �

tr (φ(Q)φ(Qj)), j = 1, . . . , n. Hence, by (2.2) we have

1 � tr (φ(Q)φ(Q1)) + · · · + tr (φ(Q)φ(Qn)) = q11 + · · · + qnn � tr φ(Q) = 1,

and therefore, q11 + · · · + qnn = 1. This further implies that B is a positive trace
zero operator, and consequently, B = 0. Using the fact that φ(Q) is positive, we
conclude that A = 0. Hence, R is a rank one projection and

φ(Q) =
[
R 0
0 0

]
�

[
I 0
0 0

]
= P1 + · · · + Pn. �

From the first part of this lemma, we immediately see the following.

Corollary 2.4. Let φ : P(H) → P(H) be a nonexpansive mapping. Then the
following two conditions are equivalent.

• φ maps some OSP of P(H) onto a COSP of P(H).

• There is a COSP of P(H) that is contained in the image of φ.

If in addition dim H < ∞, then the above conditions are also equivalent to the
condition that φ maps some COSP of P(H) onto a COSP of P(H).

Let S1 denote the set of all complex numbers of modulus 1. We consider a
nonexpansive map on S1, that is, a function g : S1 → S1 satisfying

|g(z1) − g(z2)| � |z1 − z2|, z1, z2 ∈ S1.

Clearly, this condition is equivalent to

Re (g(z1)g(z2)) � Re (z1z2), z1, z2 ∈ S1. (2.3)

We give an easy lemma.

Lemma 2.5. Let g : S1 → S1 be nonexpansive. Then one of the following holds:

• There is c ∈ S1 such that g(z) = cz, z ∈ S1.

• There is c ∈ S1 such that g(z) = cz, z ∈ S1.
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• The image g(S1) ⊂ S1 is compact, connected and contained in some closed
half-circle.

Proof. If g is surjective, then the second item of theorem 1.1 implies that g is a
surjective isometry. It follows that g satisfies one of the first two options. Assume
that g is not surjective. The continuity of g implies that g(S1) is compact and con-
nected. We may assume by rotation that g(1) = 1 and g(S1) = {eiθ : 0 � θ � θ0}
with 0 � θ0 < 2π, without loss of generality. For every point z of S1, there is a
path in S1 from 1 to z with length at most π. Therefore, the assumption that g is
nonexpansive implies that θ0 � π. �

The following corollary will be used in the proof of proposition 3.1.

Corollary 2.6. Let g : S1 → S1 be nonexpansive. If in addition g is a group
homomorphism, i.e. if g(zw) = g(z)g(w), z, w ∈ S1, then one of the following
holds:

• g(z) = z, z ∈ S1.

• g(z) = z, z ∈ S1.

• g(S1) = {1}.

Proof. Trivial in the case of the first two options in lemma 2.5. If the third option in
lemma 2.5 holds, then g(S1) is connected and contained in some closed half-circle.
This together with the additional assumption clearly shows that g(S1) = {1}. �

Let g : S1 → S1 be a nonexpansive map. We define a map τ : P(C2) → P(C2) in
the following way: We first set

τ(E11) = E11 and τ(E22) = E22.

Let P be an arbitrary rank one projection with P �= E11, E22. By lemma 2.1,

P =
[

p z
√

p(1 − p)
z
√

p(1 − p) 1 − p

]

for some real number p, 0 < p < 1, and z ∈ S1, and for such P we define

τ(P ) =
[

p g(z)
√

p(1 − p)
g(z)

√
p(1 − p) 1 − p

]
.

Any such map will be called a standard nonexpansive map of P(C2).
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We claim that every such map satisfies

‖τ(P1) − τ(P2)‖ � ‖P1 − P2‖, P1, P2 ∈ P(C2).

Equivalently, we need to show that

tr (τ(P1)τ(P2)) � tr (P1P2), P1, P2 ∈ P(C2). (2.4)

It is trivial to verify the above inequality if any of P1, P2 is equal to any of E11, E22.
If

Pj =
[

pj zj

√
pj(1 − pj)

zj

√
pj(1 − pj) 1 − pj

]
, j = 1, 2,

with 0 < pj < 1, zj ∈ S1, j = 1, 2, then a straightforward calculation shows that
the verification of (2.4) reduces to (2.3).

Note that τ is a Wigner symmetry if one of the first two options in lemma 2.5
holds. If the third option holds, then τ is noninjective and nonsurjective.

Proposition 2.7. Let φ : P(C2) → P(C2) be a map satisfying

‖φ(P ) − φ(Q)‖ � ‖P − Q‖, P,Q ∈ P(C2),

and assume that there exists a COSP of P(C2) that is contained in the image of
φ. Then there exist 2 × 2 unitary matrices U, V and a standard nonexpansive map
τ : P(C2) → P(C2) such that

φ(P ) = V τ(UPU∗)V ∗, P ∈ P(C2).

To show this proposition, we first see by corollary 2.4 that there is a COSP
{Q1, Q2} ∈ P(C2) such that {P1, P2} is also a COSP, where φ(Qj) = Pj , j = 1, 2.
Thus, there exist 2 × 2 unitary matrices U and V such that U∗EjjU = Qj and
V ∗PjV = Ejj , j = 1, 2. It follows that the map P �→ V ∗φ(U∗PU)V , P ∈ P(C2),
sends matrices E11 and E22 to themselves. Therefore, proposition 2.7 reduces to

Proposition 2.8. Let φ : P(C2) → P(C2) be a map satisfying

‖φ(P ) − φ(Q)‖ � ‖P − Q‖, P,Q ∈ P(C2),

and φ(E11) = E11, φ(E22) = E22. Then φ is a standard nonexpansive map.

Proof. From ‖φ(P ) − φ(Q)‖ � ‖P − Q‖, P, Q ∈ P(C2), we infer that tr (φ(P )φ(Q))
� tr (PQ). Let P be an arbitrary rank one projection with P �= E11, E22.
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By lemma 2.1,

P =
[

p z
√

p(1 − p)
z
√

p(1 − p) 1 − p

]
(2.5)

for some real number p, 0 < p < 1, and some complex number z ∈ S1. Denote

Q = φ(P ) =
[

q w
√

q(1 − q)
w

√
q(1 − q) 1 − q

]
, (2.6)

where 0 � q � 1 and w ∈ S1. We have

q = tr (φ(P )φ(E11)) � tr (PE11) = p,

and similarly, 1 − q � 1 − p, and consequently, p = q.
In particular, there exists a function g : S1 → S1 such that

φ(Tu) = Tg(u), where Tu =

⎡
⎢⎣

1
2

1
2
u

1
2
u

1
2

⎤
⎥⎦ , for every u ∈ S1.

From

tr (Tg(u1)Tg(u2)) = tr (φ(Tu1)φ(Tu2)) � tr (Tu1Tu2), u1, u2 ∈ S1,

we deduce that g : S1 → S1 is nonexpansive.
Taking P , Q as in (2.5) and (2.6) (hence p = q), and applying

tr (Tg(z)φ(P )) = tr (φ(Tz)φ(P )) � tr (TzP ),

we conclude that w = g(z). That is, for every pair p, z, 0 < p < 1, z ∈ S1, we have

φ

([
p z

√
p(1 − p)

z
√

p(1 − p) 1 − p

])
=

[
p g(z)

√
p(1 − p)

g(z)
√

p(1 − p) 1 − p

]
.

The proof is complete. �

Remark 2.9. In the next section, we will need the following straightforward con-
sequence. Let φ : P(Cn) → P(Cn) be a nonexpansive map and P ∈ P(Cn) any
projection of rank one. Let further r be a positive integer, 1 � r < n. We write
P in the block form

P =
[
R1 N
N∗ R2

]

where R1 is an r × r matrix. Since both R1 and R2 are positive and of rank at most
one, and because P is a trace one matrix, we have R1 = λP1 and R2 = (1 − λ)P2

for some rank one projections P1 and P2 and for some real λ, 0 � λ � 1.

https://doi.org/10.1017/prm.2024.133 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.133


10 M. Mori and P. Šemrl

If there exist r × r projection Q1 and (n − r) × (n − r) projection Q2 such that

φ

([
P1 0
0 0

])
=

[
Q1 0
0 0

]
and φ

([
0 0
0 P2

])
=

[
0 0
0 Q2

]
,

then the argument used in the first part of the proof of proposition 2.8, combined
with lemma 2.3, yields that φ(P ) is a matrix of the form

φ(P ) =
[
λQ1 ∗
∗ (1 − λ)Q2

]
.

3. Proofs of the main results

We first give a proof of theorem 1.5 in the finite-dimensional case. Thus, we assume
that n � 3 and consider a nonexpansive mapping φ : P(Cn) → P(Cn) which maps
some COSP onto a COSP. As in the proof of proposition 2.7, it suffices to prove
the following proposition.

Proposition 3.1. Assume n � 3. Let φ : P(Cn) → P(Cn) be a mapping satisfying

‖φ(P ) − φ(Q)‖ � ‖P − Q‖, P,Q ∈ P(Cn),

and assume that φ(Ejj) = Ejj, j = 1, 2, . . . , n.
Then there is an n × n diagonal unitary matrix U whose (1, 1)-entry is 1 such

that one of the following three possibilities holds true:

φ(P ) = UPU∗, P ∈ P(Cn),

φ(P ) = UP tU∗, P ∈ P(Cn),

where At denotes the transpose of a matrix A, or

φ(P ) = UΦ(P )U∗, P ∈ P(Cn),

where Φ is given by (1.2).

Proof. We first consider the case that n = 3. Lemma 2.3 and proposition 2.8 imply
that there is a nonexpansive mapping f12 : S1 → S1 such that

φ

⎛
⎝

⎡
⎣ p z

√
p(1 − p) 0

z
√

p(1 − p) 1 − p 0
0 0 0

⎤
⎦

⎞
⎠ =

⎡
⎣ p f12(z)

√
p(1 − p) 0

f12(z)
√

p(1 − p) 1 − p 0
0 0 0

⎤
⎦

for every p ∈ [0, 1] and z ∈ S1. Similarly, there are nonexpansive mappings
f13, f23 : S1 → S1 such that

φ

⎛
⎝

⎡
⎣ p 0 z

√
p(1 − p)

0 0 0
z
√

p(1 − p) 0 1 − p

⎤
⎦

⎞
⎠ =

⎡
⎣ p 0 f13(z)

√
p(1 − p)

0 0 0
f13(z)

√
p(1 − p) 0 1 − p

⎤
⎦
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and

φ

⎛
⎝

⎡
⎣0 0 0

0 p z
√

p(1 − p)
0 z

√
p(1 − p) 1 − p

⎤
⎦

⎞
⎠ =

⎡
⎣0 0 0

0 p f23(z)
√

p(1 − p)
0 f23(z)

√
p(1 − p) 1 − p

⎤
⎦

for every p ∈ [0, 1] and z ∈ S1.
Let p ∈ [0, 1] and z ∈ S1. Using remark 2.9 for the pair of orthogonal rank one

projections ⎡
⎣ p z

√
p(1 − p) 0

z
√

p(1 − p) 1 − p 0
0 0 0

⎤
⎦ and E33,

we see the following: For every P ∈ P(C3) that is of the form⎡
⎣ λp λz

√
p(1 − p) ∗

λz
√

p(1 − p) λ(1 − p) ∗
∗ ∗ 1 − λ

⎤
⎦

with 0 � λ � 1, the projection φ(P ) is of the form⎡
⎣ λp λf12(z)

√
p(1 − p) ∗

λf12(z)
√

p(1 − p) λ(1 − p) ∗
∗ ∗ 1 − λ

⎤
⎦ .

We repeat the same arguments with E11 and E22 instead of E33. It follows that the
three mappings f12, f13, f23 satisfy

φ

⎛
⎜⎝

⎡
⎢⎣

λ2
1 zλ1λ2 wλ1λ3

zλ1λ2 λ2
2 zwλ2λ3

wλ1λ3 zwλ2λ3 λ2
3

⎤
⎥⎦

⎞
⎟⎠ =

⎡
⎢⎣

λ2
1 f12(z)λ1λ2 f13(w)λ1λ3

f12(z)λ1λ2 λ2
2 f23(zw)λ2λ3

f13(w)λ1λ3 f23(zw)λ2λ3 λ2
3

⎤
⎥⎦

for any nonnegative real numbers λ1, λ2, λ3 with λ2
1 + λ2

2 + λ2
3 = 1 and z, w ∈ S1.

Since the right-hand side belongs to P(C3), we obtain

f12(z)f23(zw) = f13(w), z, w ∈ S1.

By substituting 1 for z, we see that f12(1)f23(w) = f13(w), and by substituting
1 for w, we see that f12(z)f23(z) = f13(1). It follows that f13(1)f23(z)f23(zw) =
f12(1)f23(w). Thus, we obtain g(zw) = g(z)g(w) for every pair z, w ∈ S1, where
g(z) := f13(1)f12(1)f23(z), z ∈ S1. In other words, g : S1 → S1 is a group homo-
morphism.

Since f23 is nonexpansive, so is g. Therefore, corollary 2.6 implies that one of the
three possibilities g(z) = z for every z ∈ S1, g(z)=z for every z ∈ S1, or g(S1)={1}
holds true. It is now straightforward to conclude that

• φ is a Wigner symmetry induced by a diagonal unitary matrix whose (1, 1)-
entry is 1 if one of the first two options holds, and
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• there is a diagonal unitary matrix U whose (1, 1)-entry is 1 such that
φ([pij ]1�i,j�3) = U [ |pij | ]1�i,j�3U

∗ for every P ∈ P(C3) if the third option
holds.

This completes the proof in the special case when n = 3.
Now let us consider the general case by induction on n. We assume that the

theorem holds for n − 1, n � 4. By lemma 2.3 and the induction hypothesis, we can
assume with no loss of generality that either

φ

([
P 0
0 0

])
=

[
P 0
0 0

]
, P ∈ P(Cn−1), (3.1)

or

φ

([
P 0
0 0

])
=

[
Φ(P ) 0

0 0

]
, P ∈ P(Cn−1). (3.2)

Here we use the same symbol Φ for two different maps, one on P(Cn−1) and the
other one on P(Cn), both of them sending any projection P of rank one to a rank
one projection Q whose entries are the absolute values of the corresponding entries
of P .

Applying lemma 2.3 and the induction hypothesis once again, we see that there
is a diagonal (n − 1) × (n − 1) unitary matrix U whose (1, 1)-entry is 1 such that
one of the following three possibilities occurs:

φ

([
0 0
0 P

])
=

[
0 0
0 UPU∗

]
, P ∈ P(Cn−1), (3.3)

φ

([
0 0
0 P

])
=

[
0 0
0 UP tU∗

]
, P ∈ P(Cn−1),

or

φ

([
0 0
0 P

])
=

[
0 0
0 UΦ(P )U∗

]
, P ∈ P(Cn−1). (3.4)

By considering projections of the form
⎡
⎣0 0 0

0 P 0
0 0 0

⎤
⎦

for P ∈ P(Cn−2), we see that (3.1) implies (3.3), and that (3.2) implies (3.4). More-
over, in both cases all diagonal entries but the (n − 1, n − 1)-entry of U are 1. Thus,
by considering the mapping

P �→
[
1 0
0 U∗

]
φ(P )

[
1 0
0 U

]

instead of φ, we may additionally assume U = I.
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Let P = [pij ]1�i,j�n ∈ P(Cn) be any rank one projection. Then one may take a
projection Q ∈ P(Cn−1) such that

P =
[
(1 − pnn)Q ∗

∗ pnn

]
.

If (3.1) holds, then we have

φ

([
Q 0
0 0

])
=

[
Q 0
0 0

]
.

Thus, remark 2.9 together with the assumption φ(Enn) = Enn shows that

φ(P ) = φ

([
(1 − pnn)Q ∗

∗ pnn

])
=

[
[pij ]1�i,j�n−1 ∗

∗ pnn

]
. (3.5)

Similarly, we obtain

φ(P ) =
[
p11 ∗
∗ [pij ]2�i,j�n

]
(3.6)

because φ(E11) = E11 and (3.3) holds with U = I. Since φ(P ) is a projection of
rank one, (3.5) and (3.6) imply that φ(P ) = P holds for every P ∈ P(Cn) with
P �� E11 + Enn. By the continuity of φ, we see that φ(P ) = P holds for every P ∈
P(Cn).

In a parallel manner, if (3.2) holds, then we have

φ(P ) =
[
[ |pij | ]1�i,j�n−1 ∗

∗ pnn

]
=

[
p11 ∗
∗ [ |pij | ]2�i,j�n

]

for every P = [pij ]1�i,j�n ∈ P(Cn). This leads to φ(P ) = Φ(P ) for every P ∈
P(Cn). �

Remark 3.2. The following facts can be verified easily.
The unitary matrix U in the statement of proposition 3.1 is unique. It cannot hap-

pen that two different possibilities in the statement of proposition 3.1 are fulfilled
simultaneously.

Let U be a diagonal n × n unitary matrix. Define V : Cn → Cn by V x = Ux,
x ∈ Cn, where x = (xi)1�i�n for x = (xi)1�i�n ∈ Cn. Then V is an antiunitary
operator satisfying

UP tU∗=V PV ∗, P ∈ P(Cn).

Let φ : P(H) → P(H) be a nonexpansive map. Assume that there is an OSP
{Qα : α ∈ J } ⊂ P(H) such that {Pα : α ∈ J } ⊂ P(H) is a COSP, where Pα =
φ(Qα), α ∈ J . Corollary 2.4 implies that this assumption is fulfilled if and only if
some COSP is contained in the image of φ. Note that the latter condition is much
weaker than the surjectivity of φ.

We take a unit vector eα ∈ PαH for each α ∈ J . Then {eα : α ∈ J } is an
orthonormal basis of H. A unitary operator V : H → H is said to be diago-
nal (with respect to the orthonormal basis {eα : α ∈ J }) if there exist complex
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numbers {zα : α ∈ J } ⊂ S1 such that V eα = zαeα for every α ∈ J . For each
projection P ∈ P(H) onto C(

∑
α∈J cαeα), Φ(P ) stands for the projection onto

C(
∑

α∈J |cα|eα). For a closed subspace K ⊂ H, we identify P(K) with a subset of
P(H) in a natural manner.

Proposition 3.3. Let dim H � 3 and let φ : P(H) → P(H) be a map such that

‖φ(P ) − φ(Q)‖ � ‖P − Q‖

for every pair P, Q ∈ P(H). Let {Qα : α ∈ J } ⊂ P(H) be an OSP such that {Pα :
α ∈ J } ⊂ P(H) is a COSP, where Pα = φ(Qα), α ∈ J . Let K := (

∨
α∈J Qα)H

and let Φ be as above. Then one of the following holds:

• K = H and φ is a Wigner symmetry.

• There are a bijective linear isometry U : K → H and a diagonal unitary
operator V : H → H such that φ(P ) = V Φ(UPU∗)V ∗ for all P ∈ P(K).

Proof. Let {fα : α ∈ J } be an orthonormal basis of K such that the image of each
Qα is spanned by fα and {eα : α ∈ J } an orthonormal basis of H such that the
image of each Pα is spanned by eα. We first define the linear bijective isometry
U : K → H by Ufα = eα, α ∈ J . Observe that UQαU∗ = Pα = φ(Qα) holds for
every α ∈ J . We choose and fix distinct elements α1, α2, α3 ∈ J . Using proposition
3.1 and lemma 2.3 (see also remark 3.2) we see that for every finite subset K ⊂ J
satisfying α1, α2, α3 ∈ K, either

• there exists a uniquely determined unitary or antiunitary operator VK :
span {eα : α ∈ K} → span {eα : α ∈ K} such that VKeα1 = eα1 and φ(Q) =
VKUQU∗V ∗

K for every Q ∈ P(K) with Q �
∑

α∈K Qα; or

• there exists a uniquely determined unitary operator VK : span {eα : α ∈ K} →
span {eα : α ∈ K} such that VKeα1 = eα1 and φ(Q) = VKΦ(UQU∗)V ∗

K for
every Q ∈ P(K) with Q �

∑
α∈K Qα.

Obviously, if K1, K2 ⊂ J are finite subsets satisfying α1, α2, α3 ∈ K1 ⊂ K2 then
either we have for both sets K1 and K2 the first possibility above, or we have for
both sets the second possibility. In both cases VK1 is the restriction of the operator
VK2 . It follows that either

• there exists a bijective linear or conjugate-linear isometry W : K → H such
that φ(P ) = WPW ∗ for every P ∈ P(K) that is dominated by a sum of finitely
many projections in {Qα : α ∈ J }; or

• there exists a diagonal unitary operator V : H → H such that φ(P ) =
V Φ(UPU∗)V ∗ for every P ∈ P(K) that is dominated by a sum of finitely many
projections in {Qα : α ∈ J }.

By the continuity of φ, we see that one of the above possibilities holds for every
P ∈ P(K).
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Assume that the first option holds and K �= H. Let v ∈ K and w ∈ K⊥ be
unit vectors and 0 < c � 1 a real number. Then we may take a unique pro-
jection Q ∈ P(K) such that φ(Pcv+

√
1−c2w) = φ(Q). For every unit vector u ∈

K with Qu = 0, the projection φ(Pu) = WPuW ∗ is orthogonal to WQW ∗ =
φ(Q) = φ(Pcv+

√
1−c2w). Since φ is nonexpansive, we see that Pu is orthogonal

to Pcv+
√

1−c2w. Hence u is orthogonal to v. Because this is true for every u ∈ K
satisfying Qu = 0, we conclude that Q = Pv, thus φ(Pcv+

√
1−c2w) = φ(Pv).

Since Pcv+
√

1−c2w converges to Pw when c tends to zero and since v ∈ K and
w ∈ K⊥ are arbitrary unit vectors, we see that φ is not continuous at every point
of P(K⊥). This contradicts our assumption, and we obtain K = H. Thus, we have
shown that φ is a Wigner symmetry. �

Proof of theorem 1.5. In the formulation of theorem 1.5 the orthonormal basis {eα :
α ∈ J } is fixed in advance. In proposition 3.3 the orthonormal basis {eα : α ∈ J }
was determined using a given CONS. Thus, in order to show that theorem 1.5 follows
from proposition 3.3, we only need to check that if {eα : α ∈ J } and {e′α : β ∈ J ′}
are two orthonormal bases of H and Φ and Φ′ are the corresponding nonexpansive
maps, then there exists a unitary operator W : H → H such that WΦ(P )W ∗ =
Φ′(WPW ∗), P ∈ P(H). There exists a bijection τ : J → J ′. It is straightforward
to verify that the unitary operator W given by Weα = e′τ(α), α ∈ J , has the desired
property. �

Proof of theorem 1.4. If dim H = 2 then the second item of corollary 1.2 leads to
the desired conclusion. In what follows we assume that dim H � 3. The surjectivity
of φ together with corollary 2.4 implies that φ satisfies the assumption of proposition
3.3.

Assume that φ is of the form as in the second option of the statement of propo-
sition 3.3. The goal of this proof is to show that φ is never surjective. From
now on, we use the same symbols as in proposition 3.3. After replacing the map
φ by P �→ V ∗φ(P )V , P ∈ P(H), we may assume that V = I. Fix three indices
α1, α2, α3 ∈ J . Fix any complex numbers c1, c2, c3 ∈ C of modulus one such that
0 ∈ C is contained in the interior of the convex hull of {c1, c2, c3}. For example, we
may choose the cube roots of 1.

We can find ε > 0 such that D(0, ε) = {z ∈ C : |z| < ε} is contained in the
convex hull of {c1, c2, c3}. Then there exists δ > 0 such that D(0, ε/2) is con-
tained in the convex hull of {c′1, c′2, c′3} for all complex numbers c′1, c′2, c′3 satisfying
|c′j − cj | < δ.

Let P ∈ P(H) denote the projection onto C(c1eα1 + c2eα2 + c3eα3). We can find
η > 0 such that if P ′ ∈ P(H) satisfies ‖P − P ′‖ < η, then we may take c′1, c′2, c′3 ∈
C and v ∈ {eα1 , eα2 , eα3}⊥ such that P ′ is the projection onto C(c′1eα1 + c′2eα2 +
c′3eα3 + v) and

|c′j − cj | < δ and ‖v‖ <
ε

2
.

Let P ′ ∈ P(H) be a projection satisfying ‖P − P ′‖ < η and let c′1, c′2, c′3 ∈ C and
v ∈ {eα1 , eα2 , eα3}⊥ be as above. Let further {aα : α ∈ J \ {α1, α2, α3}} be any
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family of nonnegative real numbers such that
∑

α∈J\{α1, α2, α3} a2
α < 1. Then∣∣∣∣∣∣

〈
v,

∑
α∈J\{α1,α2,α3}

aαeα

〉∣∣∣∣∣∣ <
ε

2
.

Thus, we can find aα1 , aα2 , aα3 > 0 such that aα1 + aα2 + aα3 = 1 and

aα1c
′
1 + aα2c

′
2 + aα3c

′
3 = −

〈
v,

∑
α∈J\{α1,α2,α3}

aαeα

〉

hold. It follows that the projection E onto C(
∑

α∈J aαeα) is orthogonal to P ′.
Observe that the following holds: For any family of complex numbers {bα : α ∈ J },
with |bα| = aα for all α ∈ J , the projection F onto C(

∑
α∈J bαfα) satisfies φ(F ) =

E. By the assumption that φ is nonexpansive, we see that such an F is orthogonal
to any projection in φ−1(P ′).

The arbitrariness of {aα : α ∈ J \ {α1, α2, α3}} and {bα : α ∈ J } ensures that
the one-dimensional image of any projection in φ−1(P ′) is actually orthogonal to
K. It follows that φ−1({P ′ ∈ P(H) : ‖P − P ′‖ < η}) ⊂ P(K⊥). The continuity of
φ implies that the left-hand side is open in P(H). However, the interior of P(K⊥)
is empty in P(H). Therefore, we obtain φ−1({P ′ ∈ P(H) : ‖P − P ′‖ < η}) = ∅. In
particular, φ is not surjective. �

Proof of theorem 1.3. Obviously, φ is bijective. By theorem 1.4, the inverse of φ is
a Wigner symmetry. Therefore, φ is a Wigner symmetry. �

4. Optimality of results

The surjectivity assumption is essential in theorem 1.3.

Example 4.1. Assume dim H = ∞. Then there is a noncontractive map φ :
P(H) → P(H) such that no linear or conjugate-linear isometry U : H → H satisfies
φ(P ) = UPU∗ for every P ∈ P(H).

Proof. Note that an infinite-dimensional Hilbert space H can be identified with the
orthogonal direct sum of two copies of H, H ≡ H ⊕ H. Then a map φ on P(H)
can be considered as a map from P(H) to P(H ⊕ H). We represent operators in
P(H ⊕ H) with 2 × 2 operator matrices. Choose and fix ∅ �= A � P(H). It is trivial
to verify that the map φ : P(H) → P(H ⊕ H) given by

φ(P ) =
[
P 0
0 0

]
, P ∈ P(H) \ A,

and

φ(P ) =
[
0 0
0 P

]
, P ∈ A

is noncontractive but there is no linear or conjugate-linear isometry U : H → H ⊕ H
such that φ(P ) = UPU∗ for every P ∈ P(H). �
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We next give a wild example of an injective nonexpansive map.

Example 4.2. Let H be an infinite-dimensional separable Hilbert space. There is
an injective nonexpansive map φ : P(H) → P(H) such that no linear or conjugate-
linear isometry U : H → H satisfies φ(P ) = UPU∗ for every P ∈ P(H).

Proof. We will identify P(H) with the projective space P(H) = {[x] : x ∈ H \ {0}}
over the Hilbert space H. Here, [x] denotes the one-dimensional subspace of H
spanned by x. Of course, we identify a projection of rank one with its image. By
lemma 2.2, we need to find an injective map φ : P(H) → P(H) with the property
that for any unit vectors x, y ∈ H and for any unit vectors u ∈ φ([x]) and v ∈ φ([y])
we have

|〈u, v〉| � |〈x, y〉|, (4.1)

but there is no linear or conjugate-linear isometry U : H → H satisfying φ([x]) =
[Ux] for every unit vector x ∈ H.

We choose and fix a sequence (Pn) ∈ P(H) with the property that the set {Pn :
n ∈ N} is dense in P(H). Let (xn) ⊂ H be a sequence of unit vectors such that
the image of Pn is the linear span of xn, n = 1, 2, . . .. We next choose and fix
an orthonormal set {e1, f1, e2, f2, . . .} in H. For any unit vector x ∈ H, we set
|〈x, xn〉| = tn, n = 1, 2, . . ., and define

φ([x]) =

[ ∞∑
n=1

tn
2n/2

en +
∞∑

n=1

√
1 − t2n
2n/2

fn

]
.

It is trivial to see that φ is well-defined.
Let x, y ∈ H be any unit vectors. Set |〈x, xn〉| = tn and |〈y, xn〉| = sn, n = 1,

2, . . .. Denote

u =
∞∑

n=1

tn
2n/2

en +
∞∑

n=1

√
1 − t2n
2n/2

fn

and

v =
∞∑

n=1

sn

2n/2
en +

∞∑
n=1

√
1 − s2

n

2n/2
fn.

A straightforward computation shows that u and v are unit vectors. Clearly, [u] =
φ([x]) and [v] = φ([y]). We need to show (4.1). We have

|〈u, v〉| =
∞∑

n=1

1
2n

(tnsn +
√

1 − t2n
√

1 − s2
n)

and therefore it is enough to check that

|〈x, y〉| � tnsn +
√

1 − t2n
√

1 − s2
n, n = 1, 2, . . . . (4.2)
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Let z ∈ H be an arbitrary unit vector. Denote w1 = x − 〈x, z〉z and w2 = y −
〈y, z〉z. Then

|〈x, y〉| = |〈x, z〉〈y, z〉 + 〈w1, w2〉|
� |〈x, z〉| |〈y, z〉| + ‖w1‖ ‖w2‖
= |〈x, z〉| |〈y, z〉| +

√
1 − |〈x, z〉|2

√
1 − |〈y, z〉|2.

Substituting z = xn, we get the desired inequality (4.2). Moreover, if [x] �= [y], then
the assumption that {Pn : n ∈ N} is dense in P(H) implies that {xn, x, y} is lin-
early independent for some n. For such an n and z = xn, we see that {w1, w2} is
linearly independent. Thus, we have strict inequality in (4.2) and (4.1). It fol-
lows that there is no linear or conjugate-linear isometry U : H → H satisfying
φ([x]) = [Ux] for every unit vector x ∈ H.

It remains to show that φ is injective. Here we prefer to work with P(H) rather
than with P(H). Thus, let P and Q be rank one projections such that φ(P ) = φ(Q).
Then

tr (PPn) = tr (QPn), n = 1, 2, . . . ,

and since {Pn : n = 1, 2, . . .} is dense in P(H), we have

tr (PR) = tr (QR)

for every R ∈ P(H). Therefore, P = Q, as desired. �

Our last example will show that when the second possibility in proposition 3.3
occurs, it may happen that K is a proper subspace of H. Indeed, let H be an infinite-
dimensional Hilbert space and {fα : α ∈ J } an orthonormal set of vectors such
that K = span {fα : α ∈ J } is a proper subspace of H. Let further {eα : α ∈ J }
be an orthonormal basis of H and U : K → H a bijective linear isometry defined
by Ufα = eα, α ∈ J . For each projection P ∈ P(H) onto C(

∑
α∈J cαeα), Φ(P )

stands for the projection onto C(
∑

α∈J |cα|eα). Fix an index α0 ∈ J , and for
each unit vector w =

∑
α∈J bαfα + v, v ∈ K⊥, let φ(Pw) be the projection onto

C(
∑

α∈J\{α0} |bα|eα +
√‖v‖2 + |bα0 |2eα0). We denote Pfα

= Qα and Peα
= Pα,

α ∈ J . Then clearly, φ(Qα) = Pα, α ∈ J , and φ(P ) = Φ(UPU∗), P ∈ P(K). It
remains to show that φ is a nonexpansive map, that is, we have to verify that

tr (φ(Pw)φ(Pz)) � tr (PwPz)

for every pair of unit vectors w, z ∈ H. Let

w =
∑
α∈J

bαfα + v and z =
∑
α∈J

cαfα + u,

v, u ∈ K⊥, be such vectors. Applying the Cauchy–Schwarz inequality in the two-
dimensional Euclidean space, we get

|bα0 | |cα0 | + ‖v‖ ‖u‖ �
√
‖v‖2 + |bα0 |2

√
‖u‖2 + |cα0 |2.
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Therefore,

√
tr (PwPz) = |〈w, z〉| =

∣∣∣∣∣
∑
α∈J

bαcα + 〈v, u〉
∣∣∣∣∣ �

∑
α∈J

|bα| |cα| + |〈v, u〉|

� |bα0 | |cα0 | + ‖v‖ ‖u‖ +
∑

α∈J\{α0}
|bα| |cα|

�
√
‖v‖2 + |bα0 |2

√
‖u‖2 + |cα0 |2 +

∑
α∈J\{α0}

|bα| |cα|

=
√

tr (φ(Pw)φ(Pz)).
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