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The use of thin liquid films has expanded beyond lubrication and coatings, and into
applications in actuators and adaptive optical elements. In contrast to their predecessors,
whose dynamics can be typically captured by modelling infinite or periodic films, these
applications are characterized by a finite amount of liquid in an impermeable domain.
The global mass conservation constraint, together with common boundary conditions
(e.g. pinning), create quantitatively and qualitatively different dynamics than those of
infinite films. Mathematically, this manifests itself as a non-self-adjoint problem. This
work presents a combined theoretical and experimental study for this problem. We provide
a time-dependent closed-form analytical solution for the linearized non-self-adjoint system
that arises from these boundary conditions. We highlight that, in contrast to self-adjoint
problems, here, special care should be given to deriving the adjoint problem to reconstruct
the solution based on the eigenfunctions properly. We compare these solutions with
those obtained for permeable and periodic boundary conditions, representing common
models for self-adjoint thin-film problems. We show that, while the initial dynamics
is nearly identical, the boundary conditions eventually affect the film deformation as
well as its response time. To experimentally illustrate the dynamics and to validate the
theoretical model, we fabricated an experimental set-up that subjects a thin liquid film to a
prescribed normal force distribution through dielectrophoresis, and used high-frame-rate
digital holography to measure the film deformation in real time. The experiments agree
well with the model and confirm that confined films exhibit a different behaviour which
could not be predicted by existing models.

Key words: thin films, lubrication theory, electrokinetic flows

† Email address for correspondence: amirgat@technion.ac.il

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 969 A17-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

55
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:amirgat@technion.ac.il
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.550&domain=pdf
https://doi.org/10.1017/jfm.2023.550


I. Gabay and others

1. Introduction

The deformation of thin liquid films has been investigated for more than a century (Bénard
1900; Rayleigh 1916), owing to their importance in a wide range of natural phenomena
(Simpson 1982; Fink & Griffiths 1990; McGraw & Wong 1996; Grotberg & Jensen 2004;
Hewitt, Balmforth & Bruyn 2015) and engineering applications (Oron, Davis & Bankoff
1997; Craster & Matar 2009; Backholm et al. 2014; Zheng et al. 2018b). To date, solutions
to the thin-film problem have focused on boundary conditions describing infinite films
(Gjevik 1970; Deissler & Oron 1992), periodic films (Williams & Davis 1982; Frumkin
& Oron 2016; Chappell & O’Dea 2020) or those that give rise to self-similar solutions
(Backholm et al. 2014; Dallaston et al. 2017; Zheng et al. 2018a,b). Surprisingly, despite
the fact that a large number of applications and phenomena involve films that are pinned
on impermeable boundaries, analytical modelling of this fundamental case has been
overlooked. While existing solutions provide general insight into the thin-film dynamics,
the non-penetration conditions at the boundaries of finite domains, together with pinning
conditions, eliminate the self-adjointness of the governing equations and alter the dynamic
response of the system in a manner that existing models fail to capture.

Among the engineering applications of thin films in close domains, one of the most
active fields of research is adaptive optics, where interfacial deformations can be leveraged
to create smooth optical elements (Brown et al. 2009; Banerjee et al. 2018; Eshel et al.
2021; Zhao, Sauter & Zappe 2021). Another emerging application is in the field of
reconfigurable microfluidics (Paratore et al. 2022), where thin liquid films could be used
to dynamically deform the surface of a thin membrane of a microfluidic chip, in order
to control its functionality in real time. The film dynamics in such applications can be
described by the same set of equations, whether a liquid-fluid or a liquid-membrane
interface is used (Hosoi, Mahadevan & Peeling 2004; Kodio, Griffiths & Vella 2017;
Boyko et al. 2019, 2020). The ability to design such devices, predict their performance
and understand their fundamental limitations, would greatly benefit from a theoretical
framework that allows their analysis.

We here present a combined theoretical and experimental study of the dynamics of
a thin liquid film that is pinned at the boundaries of an impermeable finite domain,
and subjected to a normal stress distribution at its liquid-air interface. We provide a
time-dependent closed-form analytical solution for the linearized evolution problem,
which is non-self-adjoint. We compare this solution with existing solutions for the
same configuration but with self-adjoint boundary conditions and show that, while the
initial dynamics is identical, the difference in boundary conditions quickly affects the
entire domain, and the response time of the system. To experimentally illustrate the
dynamics and to validate the model, we developed a set-up that enables high-frame-rate
measurements of microscale deformations based on digital holography. We use this set-up
to investigate the deformation of a thin liquid film actuated by an array of electrodes
imposing a dielectrophoretic (DEP) force on the interface (Gabay et al. 2021), showing
good agreement to the theory.

2. Analytical model

Figure 1 presents an illustration of the investigated configuration. Consider a shallow
chamber of depth h̃0 and length l̃c filled with a Newtonian liquid of mass density ρ̃,
dynamic viscosity μ̃ and volume Ṽ . The liquid-air interface has a surface tension γ̃ and is
subjected to a normal force distribution f̃ (x̃, t̃) that induces a spatio-temporal deformation
of the interface, h̃(x̃, t̃). Under the assumptions of shallow geometry (h̃0 � l̃c) and
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Figure 1. (a) Two-dimensional illustration of the investigated model comprising a shallow chamber of length
l̃c and height h̃0 filled with a liquid of mass density ρ̃, dynamic viscosity μ̃ and open to the air above. The
liquid-air interface with surface tension γ̃ is subjected to a normal force distribution f̃ (x̃, t̃), resulting in a
deformed liquid height h̃(x̃, t̃). At the edges of the chamber the liquid is pinned and cannot penetrate the solid,
resulting in global mass conservation. (b) The normal force distribution along the chamber at the liquid-air
interface. (c) An illustration of a microfabricated chamber used in the experiments. The bottom of the chamber
is patterned with an array of electrodes imposing a DEP force on the liquid-air interface. (d) Example of an
experimentally observed deformation of the liquid film when subjected to a DEP force distribution.

negligible fluid inertia, the Navier–Stokes equations reduce to the lubrication equations

ũx̃ + w̃z̃ = 0, p̃x̃ = μ̃uz̃z̃, p̃z̃ = −ρ̃g̃, (2.1a–c)

where (ũ, w̃) are the velocity components in the x̃ and z̃ directions respectively, and p̃ is the
fluidic pressure. We marked the derivative with respect to x of a multivariable function,
g(x, z), as gx. Requiring no slip at the bottom surface, a stress balance at the free surface
and utilizing the kinematic boundary condition, the equations can be further simplified to
the Reynolds equation, (Oron et al. 1997; Leal 2007)

h̃t̃ = 1
3μ̃

(h̃3p̃x̃)x. (2.2)

Under the longwave approximation (linear curvature), the fluidic pressure, p̃, is given by

p̃ = ρ̃g̃(h̃ − z̃) − γ̃ h̃x̃x̃ − f̃ + C̃, (2.3)

where the first term on the right-hand side is the hydrostatic pressure, the second one
is the capillary pressure associated with the curvature of the interface, the third one is
the normal stress distribution on the interface and C̃ is a constant. We denote the film
deformation as d̃(x̃, t̃) = h̃(x̃, t̃) − h̃0, and define the non-dimensional quantities t = t̃/τ̃ ,
x = x̃/(l̃c/2), d = d̃/h̃0, f = f̃ /F̃. By further assuming small deformations, d � 1, we
obtain the non-dimensional linearized evolution equation for the deformation

dt + dxxxx − Bo × dxx = −Π fxx, (2.4)

where Bo = ρ̃g̃l̃2c/4γ̃ is the Bond number, Π = F̃l̃2c/4γ̃ h̃0 represents the non-dimensional
interfacial force magnitude and the resulting time scale is τ̃ = 3μ̃l̃4c/16h̃3

0γ̃ .
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At the boundaries we require the liquid to be pinned,

d(x = ±1, t) = 0, (2.5)

as well as no penetration through the boundaries, i.e. u(x = ±1, t) = 0. Integrating the
x-momentum equation (2.1b) with respect to z̃, yields ũ = p̃x̃(1/2μ̃)(z̃2/h̃2 − 2(z̃/h̃)),
which translates the no-penetration boundary conditions to p̃x̃ = 0 at the chamber edges.
Applying this requirement to (2.3), yields the following boundary condition on the
deformation:

dxxx(x = ±1, t) − Bo × dx(x = ±1, t) = −Π fx(x = ±1, t). (2.6)

These boundary conditions are accompanied by an arbitrary initial condition,
d(x, t = 0) = d0(x).

A straightforward approach for solving the system (2.4) with boundary conditions
(2.5) and (2.6) is by separation of variables. However, as we detail here, this set of
boundary conditions is responsible for transforming the system into a non-self-adjoint one,
requiring special treatment in the separation of variables procedure. Equations (2.7)–(2.13)
follow the standard procedure for separation of variables, yet we present it explicitly for
completeness and consistency with the derivation in (2.14)–(2.19), where we construct the
solution based on the adjoint operator.

We first homogenize the boundary conditions by expressing the deformation as d(x, t) =
d̂(x, t) + P(x, t), P(x, t) is the homogenizing function that should be selected as a
polynomial of sufficient degree in x such that the source terms will vanish from all
boundary conditions, yielding the system

d̂t + d̂xxxx − Bo × d̂xx = −Pt − Π fxx − Pxxxx + Bo × Pxx

d̂(x = ±1, t) = 0
d̂xxx(x = ±1, t) − Bo × d̂x(x = ±1, t) = 0

d̂(x, t = 0) = d0(x) − P(x, 0)

⎫⎪⎪⎬
⎪⎪⎭ . (2.7)

A compact and convenient homogenizing function can be constructed from a third-order
polynomial,

P(x, t) = �
fx(1, t) − fx(−1, t)

4Bo
(x2 − 1) + Π

fx(1, t) + fx(−1, t)
4(Bo − 3)

(x3 − x), (2.8)

which is valid for any Bond number except Bo = 0, 3. To cover these two specific cases, a
fourth-order polynomial can be constructed.

Next, by separation of variables, we suggest a solution in the form of d̂(x, t) = X(x)T(t)
and substitute it into the homogeneous form of (2.7), which yields

−T ′

T
= X(4)

X
− Bo

X′′

X
= λ4. (2.9)

The eigenvalue problem, (2.9), followed by the set of boundary conditions

X(±1) = 0, X′′′(±1) − BoX′(±1) = 0, (2.10a,b)
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Dynamics of fixed-volume pinned films

where each prime denotes a derivation with respect to the single variable of the function.
The solution of the system (2.9) and (2.10) is given by

Xn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
Bo(cosh(

√
Box) − cosh(

√
Bo))

2(sinh(
√

Bo) − √
Bo cosh(

√
Bo))

for n = 0

sin(αnx) − sin(αn)

sinh(βn)
sinh(βnx) for odd n numbers

cos(αnx) − cos(αn)

cosh(βn)
cosh(βnx) for even n numbers

, (2.11)

where

αn =
√

−Bo + √
Bo2 + 4λ4

n

2
and βn =

√
Bo + √

Bo2 + 4λ4
n

2
. (2.12a,b)

The eigenvalues are calculated from two transcendental equations, one for each set of
eigenfunctions respectively

α tan(α) = −β tanh(β)

β tan(α) = α tanh(β)

}
. (2.13)

We note that all eigenfunctions have a zero spatial integral, except for the zero
eigenfunction that corresponds to a steady state solution for a non-actuated system, and
its integral sets the volume in the chamber.

The eigenfunctions (2.11) are non-orthogonal to one another, which is an indication
of the non-self-adjointness of the system. Nonetheless, we can proceed by using the
biorthogonality relation of the system with its adjoint system, 〈L[X], Y〉 = 〈X, L+[Y]〉,
where 〈U, V〉 = ∫ 1

−1 UV dx is the basic inner product, L is the original differential
operator, L+ is the Lagrange adjoint differential operator and X and Y are their respective
solutions. We define the spatial differential operator from (2.9) as L[X] = X(4) − BoX′′.
Since this spatial differential operator has constant real coefficients and only even
derivatives, we are guaranteed that the Lagrange adjoint operator, L+, is identical to L
(Coddington & Levinson 1955). Explicitly expanding the biorthogonality relation while
integrating by parts and using the boundary conditions (2.10), yields

[X′′Y ′ + X′Y ′′]1
−1 = 0, (2.14)

which can hold only if Y ′(±1) = Y ′′(±1) = 0, thus defining the complementary boundary
conditions for Y. These conditions are clearly different from those for X, (2.10), and thus
the problem is not self-adjoint.

The solution for the adjoint system is given by

Yn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 for n = 0

sin(αnx) − αn cos(αn)

βn cosh(βn)
sinh(βnx) for odd n numbers

cos(αnx) + αn sin(αn)

βn sinh(βn)
cosh(βnx) for even n numbers

. (2.15)

The transcendental equations for the two sets of eigenvalues (for odd and even n)
are identical to those of the original system, and thus the eigenvalues are the same.
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The solution to the deformation can now be constructed by substituting the separation
of variables expression, i.e. d̂(x, t) = ∑∞

n=0 Xn(x)Tn(t), to the non-homogenous equation,
(2.7), yielding

∞∑
n=0

Xn(x)T ′
n(t) +

∞∑
n=0

X(4)
n (x)Tn(t) − Bo

∞∑
n=0

X′′
n(x)Tn(t)

=
∞∑

n=0

Xn(x)an(t) +
∞∑

n=0

Xn(x)b′
n(t), (2.16)

where

−Π fxx + Bo × Pxx − Pxxxx =
∞∑

n=0

an(t)Xn(x), P(x, t) =
∞∑

n=0

bn(t)Xn(x),

d0 − P(x, 0) =
∞∑

n=0

InXn(x). (2.17a–c)

Multiplying equation (2.16) by Ym and integrating over the domain with respect to x, as
well as using the initial condition in (2.7), yields

Tn =
∫ t

s=0
eλ

4
n(s−t)[an(s) − b′

n(s)] ds + e−λ4
ntIn. (2.18)

Thus, the solution for the deformation is given by d(x, t) = ∑∞
n=0 Tn(t)Xn(x) + P(x, t).

For a general function g(x) the series expansion by the system eigenfunctions is given
by

g(x) =
∞∑

n=0

cnXn(x); cn =
∫ 1
−1 g(x)Yn dx∫ 1
−1 XnYn dx

. (2.19a,b)

We note that, since our system has real and constant coefficients as well as homogenous
boundary conditions, and since its eigenvalues are real with no duplicity, we are guaranteed
that the eigenfunctions of both the original and the adjoint systems form a complete set
(Coddington & Levinson 1955).

3. Dynamics of the non-self-adjoint closed-chamber system and comparison with
self-adjoint periodic and open-chamber systems

In this section we present the behaviour of a thin liquid film within a closed chamber
and compare it with classical solutions for self-adjoint configurations such as periodic
and open-chamber problems (solutions for the self-adjoint problems in Appendix A).
Table 1 lists the boundary conditions for each of these cases. In the closed-chamber
problem (‘Closed’) the liquid is pinned at both edges and the side walls of the chamber are
impermeable. In the open-chamber problem (‘Open’) the liquid is also pinned, but is free
to flow in and out of the chamber (i.e. the total volume in the chamber can vary in time). In
the periodic case (‘Periodic’), there is no physical chamber, but the boundary conditions
define a domain where the film deformation and its derivatives at one end are equal to their
values at the other end. For simplicity, we consider here the case of Bo = 0, but solutions
for other Bond values are readily available and do not introduce a fundamental change in
behaviour.
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3) 4)

Terminology Illustration Boundary conditions

� � � �1, 1,xxd t f t� � �� �

×

Table 1. Summary of the three systems considered in this section.

Figure 2 presents the solutions of the deformation for all three systems, at
different times, for a harmonic ( f = 0.5[1 − cos(10πx)]), and for a Gaussian ( f =
exp[−0.5(x + 0.85)2/0.052]) force distribution with an initially flat interface, d0(x) = 0.
At early times, for both actuations, the deformation of the liquid-air interface is roughly the
same for all systems. However, with time, deviations begin to emerge from the boundaries
inward.

We note that the harmonic force is strictly positive. In the Open case, which allows
for liquid influx, we see that this positive force results in ‘ballooning’ of the film and
dominance of the lowest wavenumber. In contrast, in the Closed and Periodic systems,
mass conservation does not allow for such inflation and the deformation follows the
wavenumber of the force. Another key difference between the systems is that the amplitude
of the deformation in the Open system is significantly larger (note the two different y-axes
in figures 2d.l and 2e.l). For the localized force, the deformation in the Closed system
resembles that of the Open system (although the former is mass conserving, and the latter
is not). The most significant difference is seen here in comparison with the Periodic system
in which the film height at the boundary is not fixed, resulting in much greater deformation
(albeit mass conserving, i.e. both positive and negative deformations are accentuated).
Thus, we can see from the results that neither the Open nor the Periodic formulations can
correctly model the dynamics of a Closed system.

Figure 2 shows that the Open, Closed and Periodic systems reach a steady state at
different times. In figure 2, the localized actuation (right column) triggers a range of system
eigenfunctions, and the time to steady state scales as λ−4, where λ is the first (slowest)
eigenvalue. The eigenvalues of the system are of course dependent on its boundary
conditions. For example, at Bo = 0, the time scales for steady state in the Open, Closed
and Periodic systems are respectively τ̃ (2/π)4, τ̃ (1/2.37)4 and τ̃ (1/π)4. i.e. the Closed
system is 5-fold faster than the Open system, but 3-fold slower than the Periodic system.
Thus, solving for the accurate eigenvalues, meaning using the correct boundary conditions
of the system is crucial in order to properly predict the system dynamics.
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Figure 2. The effect of different sets of boundary conditions (BCs) on the film dynamics for harmonic (left
column, l) and localized (right column, r) force distributions. (a) The external force distributions applied on the
liquid-air interface along the chamber. (b–e) Comparison of the analytical solutions for the case of pinned film
and impermeable boundaries (‘Closed chamber’, black dashed line), pinned film and permeable boundaries
(‘Open chamber’, red dashed line) and ‘Periodic’ (light purple dashed line), at different times. All panels in
the left column present half of the chamber, with a symmetry line at x = 0. At early times, the deformation
exhibited by all systems is nearly identical. With time, deviations start evolving from the boundaries inward.
At the harmonic forcing case, since the force is strictly positive, the Open system results in a continuous influx
of liquid which ultimately leads to inflation of the interface to a ‘balloon’-like structure. In contrast, the Closed
and the Periodic systems, owing to their fixed mass, maintain short-wave deformations which follow the force
distribution even at steady state, as shown in (e.l). The film deformation of the Open system at late times is
much larger than the deformation of the other two systems. Thus, (d.l) and (e.l) present two different y axes, left
for Closed and Periodic systems, and right for the Open system. In the Gaussian forcing case the Open and the
Closed systems show similar behaviour due to the pinning condition (although the latter is not a fixed-volume
system) in contrast to the Periodic system. The solution presented for all systems is for the case of an initially
flat interface, d0(x) = 0 and Bo = 0.

4. Effect of Bond number on system dynamics: response time and deformation
magnitude

In this section we investigate the relation between the Bond number and both the response
time of the system and the magnitude of the deformation at steady state. The liquid
pressure is constant at steady state, thus substituting the non-dimensional parameters
defined in (2.4) into (2.3) yields

dxx − Bo × d + Π × f = C, (4.1)
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Figure 3. The eigenvalues of the system as a function of the Bond number. The response time of the system is
proportional to λ−4, which for large Bo is inversely proportional to Bo. Thus, as Bo increases, e.g. by increasing
the density of the liquid or increasing the size of the container, the response time of the system can shorten
significantly.

where C is a constant that depends on the liquid volume. For the case of large Bond
numbers, Bo � 1, the deformation can be written as d ≈ Π f /Bo + const. We note that
this equation holds only sufficiently far from the chamber edges; close to the edges,
the requirement for mass conservation together with pinning conditions may result in
significant curvatures, i.e. non-negligible dxx.

While τ̃ was conveniently defined in (2.4) as being independent of the Bond number,
the response time of the system is in fact strongly influenced by it, as indicated by the
relation between the eigenvalues and the Bond number in (2.11). This influence is further
enhanced through the quartic dependence of the time scale on the system eigenvalues, λn.
The eigenvalues can be obtained by solving a pair of transcendental equations (2.13), for
the odd and the even eigenvalues√√√√−Bo + √

Bo2 + 4λ4
n

Bo + √
Bo2 + 4λ4

n
tan

⎛
⎝
√

−Bo + √
Bo2 + 4λ4

n

2

⎞
⎠ = − tanh

⎛
⎝
√

Bo + √
Bo2 + 4λ4

n

2

⎞
⎠,

(4.2a)√√√√−Bo + √
Bo2 + 4λ4

n

Bo + √
Bo2 + 4λ4

n
tanh

⎛
⎝

√
Bo + √

Bo2 + 4λ4
n

2

⎞
⎠ = tan

⎛
⎝

√
−Bo + √

Bo2 + 4λ4
n

2

⎞
⎠ .

(4.2b)

The solid lines in figure 3 present the dependence of the resulting non-dimensional
response time, λ−4, on Bo. For large Bond numbers, the asymptotic solutions for the
eigenvalues are simply λ1 = √

π/2Bo1/4 and λ2 = √
πBo1/4, and are indicated by the

black and the grey dashed lines, respectively. For clarity, the square, circle, and x markers
indicate the time scale at specific Bond numbers listed in the figure’s legend. Clearly, the
effect of Bo can be quite significant; the same system at Bo = 0 would have a response
time 84-fold slower than the same system at Bo = 1000.
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Figure 4. Illustration of the fluidic chamber the experimental set-up. (a) The resulted fluidic chamber
configuration and it’s fabrication process. At first, the electrodes are created by a lift-off process using a 2
nm thick Pt layer sandwiched between two 2 nm thick Ti layers on a borosilicate wafer which forms an array of
interdigitated electrode configuration with 200 μn wide electrodes, gapped by 200 μm edge to edge. Second,
the chamber’s walls are created by patterning a 50 μm thick layer of SU-8 photoresist on top of the wafer.
Finally, we diced the wafer to separate individual devices. (b) Schematic illustration of the experimental set-up.
The device is mounted on a home-made connector composed of 3D printed housing and a printed circuit
board (PCB) containing electric pins interfacing the device with a voltage amplifier (2210-CE, TREK), which
amplifies the voltage output of a wave generator (TG5012A, AIM-TTI Instruments). The device is placed under
a digital holographic microscope (DHM R1000, Lyncee tec) allowing observation of the oil-air interface by
recording a hologram image on a digital sensor and using a numerical algorithm for real-time reconstruction.

5. Experimental validation

5.1. Experimental set-up
To experimentally study the dynamics of thin-film deformation, we fabricated a shallow
fluidic chamber with embedded electrodes which can impose a DEP force on the interface
of a thin liquid film resting in the chamber. The chamber is 4 mm long, 8 mm wide and
50 μm deep (as shown in figure 4a). We filled it with 1.6 μl of silicone oil which has a
mass density of ρ̃ = 970 kg m−3, surface tension of γ̃ = 21 × 10−3 N m−1 and electric
permittivity of ε̃ = 2.7ε̃0, where ε̃0 is the permittivity of free space. The bottom of the
chamber is patterned with an array of 200 μm wide parallel electrodes, gapped by 200 μm
edge to edge. By introducing a sinusoidal electric potential difference to the electrodes
(500 Vpp, 10 kHz), the resulting localized electric field imposes DEP forces on the oil-air
interface and deforms it. Figure 4(b) presents the digital holographic microscope (Cuche,
Marquet & Depeursinge 1999) we used to observe the time-dependent deformation of the
interface. For each experiment, we initially acquire the baseline surface topography prior
to activation of the electric field, and then subtract it from all subsequent measurements.

5.2. Experimental results
Figure 5 compares the experimental measurements with an analytical solution based on
(2.4). The analytical solution is obtain using the force distribution presented in figure 5(a),
corresponding to the DEP force on a liquid-air interface from periodic electrodes (Gabay
et al. 2021). Figure 5(b– f ) presents the evolution of the film in time, showing the gradual
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Figure 5. Validation of the analytical model against experimental measurements. (a) The DEP force
distribution at the oil-air interface resulting from an array of parallel electrodes, as obtained from an
electrostatic calculation in accordance with Gabay et al. (2021). (b– f ) The evolution of the film deformation
from early times to steady state, showing the dominance of high wavenumbers at short times, and the gradual
appearance of small wavenumbers with time. The analytical model successfully captures both the local and
the global behaviour of the film across multiple time scales. The chamber length is 4 mm, and is thus slightly
truncated on the right by the 3.8 mm field of view of the holographic microscope. In this experiment we use
silicone oil with kinematic viscosity of 200 cSt.The rest of the parameters (liquid properties and electric voltage
actuation) are listed in the § 5.1.

appearance of the different spatial modes. At very early times (0.2 ms) the highest spatial
frequency is dominant, and the ‘tooth’-shaped peaks of the force distribution are also
clearly observable in the analytical solution for the deformation. At 2 ms, the model and
the experimental measurements agree well and show that the tenth even mode of the
system has grown significantly (note the change in scale from nm to μm) and dominates
the solution. The amplitude of the periodic deformation steadily increases, until at 37 ms
a new qualitative change appears, initially in the form of a larger amplitude wave that
penetrates from the boundaries. This is predicted well by the analytical model in good
agreement with the experiments. By 3.55 s, the entire central region of the liquid has risen
at the expense of the edges. The results continue to show good agreement, although some
asymmetry begins to appear in the experimental measurements, resulting in slightly larger
quantitative deviations. This is likely due to an additional low spatial frequency of the
force distribution in the experiment that is not captured by the analytical force model, and
which therefore appears only at long times. At 100 s the system has achieved its steady
state. The deformation at the centre of the chamber is strictly positive. The overall shape
and multitude of spatial frequencies is captured well by the theory, although quantitative
differences, particularly on the right side of the chamber, are now evident.

We note that figure 5(b) (representing the deformation at 0.2 ms, or t = 5 × 10−8

in non-dimensional time) does not include experimental results, as this time scale was
too short for our imaging system to capture. To overcome this limitation, we conducted
an additional experiment using silicone oil with a kinematic viscosity five times higher
(1000 cSt) than the one presented in figure 5 (200 cSt). Additionally, we reduced the
liquid volume, resulting in a thinner film. Both modifications increased the hydrodynamic
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Figure 6. Validation of the analytical model with experimental measurements at very small non-dimensional
times, t < 10−6. (a) The DEP force distribution at the oil–air interface of a 30 μm film, as obtained from
electrostatic calculations (Gabay et al. 2021). (b– f ) Comparison between the analytical solution (black dashed
line) and the experimental measurements (black solid line) of the film deformations at different times. At short
times the ‘tooth’-shaped peaks, corresponding to the highest spatial frequency, dominate the deformation.
At later times, additional lower frequencies appear and overtake the higher frequencies in amplitude. In
this experiment we use silicone oil with kinematic viscosity of 1000 cSt. The rest of the parameters (liquid
properties and electric voltage actuation) are listed in § 5.1.

resistance of the system and consequently led to an order of magnitude slower dynamics
such that t = 2.44 × 10−8 corresponds to 2 ms. Despite the reduced liquid volume, the
liquid remained pinned at the edges of the chamber, resulting in initial conditions where
the film had a bowl shape with a height of 50 μm at the edges and approximately 20
μm at the centre of the chamber. We compared the experimental measurements with an
analytical solution assuming a film with a uniform height of 30 μm, which corresponds to
the average film thickness in the chambers.

In figure 6(a), we present the force distribution at the interface, characterized
by ‘tooth’-shaped peaks with the smallest wavelength in the system, arising from
the transition region between adjacent electrodes. As discussed in § 3, large spatial
wavenumbers are associated with a rapid temporal response. To isolate these features, we
need to focus on short times. Figure 6(b– f ) depicts the deformation of the film at different
time points. At 2 ms, only the highest spatial frequency is visible, in good agreement with
the analytical prediction. By 22 ms, a longer wavelength becomes distinctly visible and,
as time progresses, it becomes the dominant feature of the deformation.

6. Concluding remarks

Thin liquid films are found in endless applications such as spin coating, self-healing and
printing technologies, where infinite boundary conditions are appropriate for describing
the film dynamics. However, there is an entire class of problems that inherently rely on
no-penetration boundary conditions. For example, in liquid-based actuators, such as the
ones used for adaptive optics (Banerjee et al. 2018), enclosed chambers with a fixed
amount of liquid are naturally the most common implementation. Banerjee et al. have
already shown the use of a membrane suspended over a thin liquid film as a mechanism
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for achieving freeform optical corrections with up to fourth degree Zernike polynomials.
However, the performance of such devices could not be predicted a priori, as no theory
was available. The model we developed here provides insight into such systems and
reveals the underlying eigenfunctions and their individual and collective dynamics. For
diffractive optical components, the variations in surface topography are of the order of a
wavelength, and thus the solution in the small deformation regime is suitable. Clearly, for
larger deformations the nonlinear equation must be considered and would yield different
quantitative results, but it is reasonable to expect that the boundary conditions would
have a dominant effect as well. While our derivations focused on a free interface, they
directly apply to the case of a membrane under dominant tension, and could also be readily
extended to account for elastic bending. However, in order to quantitatively predict the
response of actuation devices, the theory must be extended to two-dimensional domains.

The Closed system’s boundary conditions affect both the shape of the liquid film for a
long time scale and the characteristic time scales required to achieve steady state. While
obtaining the shape of the interface for the closed system requires solving the adjoint
problem, the time scales can be readily obtained from solving the transcendental equation
of the original operator. The time scale analysis shows that the Closed system is 5-fold
faster than the Open system and 3-fold slower than the Periodic one. We further showed
that neither the open nor the periodic solutions can reasonably predict the deformation of
the thin liquid film for general actuations. Another set of boundary conditions that is often
used in the study of thin-film dynamics is that of an infinite film. We did not explicitly
consider this case as it’s a subset of an Open system where the domain size is stretched to
infinity. It thus suffers from the same issues as the open case, namely dominance of low
wavenumber eigenfunctions (‘ballooning’) at long times.

In figure 3 we presented the effect of Bond number on the eigenvalues of the of system,
representing the non-dimensional time scale of the corresponding eigenfunctions. The
figure shows that increasing the Bond number increases the eigenvalues and shortens
the response time. However, to understand the effect of the physical parameters on the
response time of the system we must consider the dimensional time scale, t̃ ∝ τ̃λ−4. The
effect of density changes, ρ̃, is straightforward as it appears only in the dependence of λ on
Bo. However, an increase in surface tension γ̃ results in a decrease in time scale through
τ̃ and an increase in time scale through Bo. At low Bo, the τ̃ dependence dominates and
increasing the surface tension will decrease the time scale. At large Bond numbers, the
increase in time scale through τ̃ will balance its decrease through the Bond number and
the system becomes insensitive to the value of the surface tension.

In our derivation we focused on the case of normal forces applied directly to
the liquid-air interface and implemented it using DEP. However, for other actuation
mechanisms such as those that dictate a slip velocity electro-osmotic flow (EOF) or an
interface velocity (thermocapillary flow), the differential operator and the impermeability
boundary conditions would be identical. The only thing that would differ is the right-hand
side of (2.4) (Rubin et al. 2017), but that would not change the solution procedure. When
dictating a spatial force/velocity distribution in combination with the evolution equation,
(2.2), care should be taken not to violate the underlying assumptions, at least not at the
leading order of the solution; e.g. if dictating a slip velocity, then no penetration at the
domain boundaries would be fully satisfied under the lubrication approximation only if its
magnitude and its spatial derivative vanish at the boundary.

Finally, we note that the non-self-adjointness is a manifestation of the mass conservation
constraint on the system, and is likely to appear in other fluidic problems that are subjected
to similar constraints, as well as in their numerical solutions.
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Appendix A. Analytical solutions for self-adjoint problems

We here present the solution for the classical self-adjoint problem, which we compare with
our non-self-adjoint solution presented in § 2.

For simplicity, we consider the equation for small deformations for the particular case
of Bo = 0

dt + dxxxx = −Π fxx, (A1)

for an initially flat film, d(x, t = 0) = 0.
The general solution using a Green’s function (Polyanin 2002) for (A1) and homogenous

boundary conditions is given by

d(x, t) =
∫ 2

0
d0(ξ)G(x, ξ, t) dξ +

∫ t

0

∫ 2

0
Φ(ξ, τ )G(x, ξ, t − τ) dξ dτ , (A2)

where d0 is the initial deformation (zero in this case), and the source term is Φ(x, t) =
−Π fxx. The Green’s function, G(x, ξ, t − τ) depends on the specific eigenfunctions and
eigenvalues of the problem, and therefore on its boundary conditions. In the case of
an ‘Open chamber’ the liquid is pinned at its boundaries but is free to flow in and
out of the chamber. The latter condition can be expressed using the pressure relation,
p = dxx − Bo × d + Π × f , and the pinning condition, as dxx(±1, t) = −Π f (±1, t).
Thus, the boundary conditions can be summarized by

d(±1, t) = 0, dxx(±1, t) = −Π f (±1, t). (A3a,b)

For the Periodic system, the boundary conditions are simply the requirement that the
deformation and its derivatives up to the third order will have equal values at both edges,
i.e.

dx,i(−1, t) = dx,i(1, t), (A4)

where the subscripts x and i mark the ith-order derivative of the deformation with respect
to x.
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In order to homogenize the boundary conditions for the open case, we use a corrective
polynomial function for the boundary condition, d = v + Po, where

Po(x, t) = −Π
f (1, t) + f (−1, t)

4
(x2 − 1) − Π

f (1, t) − f (−1, t)
12

(x3 − x). (A5)

The Green’s function for the open-chamber problem with homogenous boundary
conditions in the domain [−1,1] is given by (Polyanin 2002)

Go(x, ξ, t) =
∞∑

m=1

[cm cos(λo,mx) cos(λo,mξ) + sm sin(λo,mx) sin(λo,mξ)] exp(−λ4
o,mt),

(A6)

where cm =
{

1, m = 2k − 1
0, m = 2k , sm =

{
0, m = 2k − 1
1, m = 2k , k is a positive integer and the

eigenvalues of the system are λo,m = (π/2)m.
For the periodic system we obtain the Green’s function

Gp(x, ξ, t) =
∞∑

m=1

[sin(λp,mx) sin(λp,mξ) + cos(λp,mx) cos(λp,mξ)] exp(−λ4
p,mt), (A7)

where the eigenvalues of the system are λp,m = πm, and the subscripts o, p denote
the Green’s functions and deformation solutions for the open and periodic systems,
respectively.

Substituting (A6) and (A7) into (A2), we obtain the solutions

do(x, t) =
∞∑

m=1

1 − exp(−λ4
o,mt)

λ4
o,m

[ao,n sin(λo,mx) + bo,m cos(λo,mx)] + Po(x, t)

dp(x, t) =
∞∑

m=1

1 − exp(−λ4
p,mt)

λ4
p,m

[ap,n sin(λp,mx) + bp,m cos(λp,mx)]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

(A8)
where the series a and b for both systems are given by,

ap,m = ∫ 2
0 sin(λp,mξ)Φ(ξ, τ ) dξ, bp,m = ∫ 2

0 cos(λp,mξ)Φ(ξ, τ ) dξ

ao,m = ∫ 2
0 sn sin(λo,mξ)Φ(ξ, τ ) dξ, bo,m = ∫ 2

0 cm cos(λo,mξ)Φ(ξ, τ ) dξ

}
. (A9)
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