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Abstract.—Proterozoic eukaryotic macroalgae are difficult to interpret because morphological details required for proper
phylogenetic studies are rarely preserved. This is especially true of morphologically simple organisms consisting of
tubes, ribbons, or spheres that are commonly found in a wide array of bacteria, plants, and even animals. Previous reports
of exceptionally preserved Tonian (ca. 950−900 Ma) fossils from the Dolores Creek Formation of Northwestern Canada
feature enough morphological evidence to support a green macroalgal affinity. However, the affinities of two additional
forms identified on the basis of the size distribution of available specimens remain undetermined, while the presence of
three unique algal forms supports other reports of increasing algal diversity in the early Neoproterozoic. Archaeochaeta
guncho new genus new species is described as a green macroalga on the basis of its well-preserved morphology consist-
ing of an unbranching, uniseriate thallus with uniformwidth throughout and possessing an elliptical to globose anchoring
holdfast. A larger size class of ribbon-like forms is interpreted as Vendotaenia sp. A third size class is significantly smal-
ler than Archaeochaeta n. gen. and Vendotaenia, but in the absence of clear morphological characters, it remains difficult
to assign. As Archaeochaeta n. gen. and Vendotaenia represent photoautotrophic taxa, these findings support the hypoth-
esis of increasing morphological complexity and phyletic diversification of macroalgae during the Tonian, leading to
dramatic changes within benthic marine ecosystems before the evolution of animals.

Introduction

The early Neoproterozoic Mackenzie Mountains Supergroup in
northwest Canada hosts exceptionally preserved macrofossils
interpreted to represent multicellular eukaryotes, including
probable macroalgae (Hofmann and Aitken, 1979; Hofmann,
1985; Maloney et al., 2021, 2022). During the Neoproterozoic
Era (1000–539 Ma), eukaryotic algae evolved and proliferated
through marine ecosystems, becoming the dominant primary
producers by at least the Cryogenian (∼720–635 Ma; Brocks
et al., 2017; Sánchez-Baracaldo et al., 2017; Isson et al.,
2018). This algal diversification is interpreted to represent a
major step-wise change in the makeup of Neoproterozoic
paleoenvironments by restructuring benthic habitats and biogeo-
chemical cycles (Del Cortona et al., 2020), which are thought to
have played an important role in setting the stage for the emer-
gence of diverse animals (Brocks, 2018).

To understand the drivers of the critical change in Earth’s
biosphere, it is important to examine and document fossil
algal diversity (LoDuca et al., 2017). However, the current

record from the Proterozoic is limited due to taphonomic biases
associated with the fossilization of soft tissues (Muscente et al.,
2017; Maloney et al., 2022). Recently, calls for detailed investi-
gations of the fossil record during poorly documented time inter-
vals (Cohen and Macdonald, 2015; Bykova et al., 2020) have
highlighted the sparse records of the Tonian (e.g., Pang et al.,
2018; Xiao and Tang, 2018) and Cryogenian (e.g., Ye et al.,
2015) periods. These intervals are of particular interest because
Proterozoic macroalgae experienced a significant morphological
diversification during this time (Xiao and Tang, 2018; Bykova
et al., 2020; Tang et al., 2020).

The extensive Proterozoic stratigraphy in Arctic Canada
provides an ideal locality to target Tonian eukaryotic fossils.
Previous studies have yielded numerous exceptional fossil local-
ities (Hofmann and Aitken, 1979; Butterfield, 2000; Cohen and
Macdonald, 2015; Loron et al., 2019), which include poorly
constrained forms such as the Little Dal macrobiota (Hofmann
and Aitken, 1979; Hofmann, 1985) and the Rusty and Wynniatt
assemblages (Butterfield, 2005a, b); vase-shaped (Strauss et al.,
2014; Cohen et al., 2017a) and scale-like (Cohen and Knoll,
2012) microfossils from the Fifteenmile Group; Shaler Super-
group fungal microfossils (Loron et al., 2019); red algal micro-
fossils of the Bylot basins (Butterfield, 1990; Knoll et al., 2013;*Corresponding author.
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Gibson et al., 2018); and purported sponge fossils from the Little
Dal Group (Turner, 2021).

Recent studies of the Dolores Creek Formation, the basal
unit of the Tonian Mackenzie Mountains Supergroup, have
yielded 300+ fossils representing three distinct size classes
(Maloney et al., 2021) that have yet to be formally described.
Here we provide a detailed formal description of three new fos-
sils from the Dolores Creek Formation, including a new species,
Archaeochaeta guncho new genus new species, and likely
examples of the oldest known Vendotaenia sp. We also discuss
distinctive morphological characteristics that can be used to aid
in identifying Proterozoic macroalgae, compare the morphology
of the new fossils with other known Proterozoic life, and con-
sider the consequences of these morphological advancements
on Neoproterozoic ecosystems.

Geologic setting

The fossil-bearing beds of the Dolores Creek Formation outcrop
at the headwaters of Hematite Creek River, a tributary of the
Bonnet Plume River in the Wernecke Mountains near the
Yukon–Northwest Territories (NWT) border in northwestern
Canada (Fig. 1). The 950–900 Ma Dolores Creek Formation is
the oldest of three formations in the Hematite Creek Group,
which in turn is the oldest group in the TonianMackenzieMoun-
tains Supergroup (950–775 Ma). Broadly equivalent Tonian
strata across Arctic Canada include the Fifteenmile Group in
western Yukon (Halverson et al., 2012; Macdonald et al.,
2012) and the Shaler Supergroup in northern NWT (Rainbird
et al., 1996). In theWerneckeMountains, the Dolores Creek For-
mation unconformably overlies the Mesoproterozoic Pinguicula
Group, which is a mixed siliciclastic and carbonate succession
with a maximum age of 1380 Ma (Medig et al., 2010, 2012).
The Black Canyon Creek Formation conformably overlies the
Dolores Creek Formation and represents the shallowing-upward
transition into tidally influenced deposits characterized by
meter-scale carbonate–shale cycles (Turner, 2011).

The strata of the Dolores Creek Formation consist of fine-
grained siliciclastic rocks (shale to siltstone) interbedded with
microbial dolostone interpreted as marginal marine to offshore
deposits (Turner, 2011; Maloney et al., 2021). The type section
of the Dolores Creek Formation characteristically comprises
∼300 m of strata but reaches a thicknesses of ∼1,000 m in the
southernmost studied sections, where it is informally divided
into a lower and upper unit that together represent a single
regressive sequence (Gibson et al., 2019). The lower unit
comprises ∼600 m of predominantly shales and siltstones with
interbedded interclast breccias and wackestones interpreted as
gravity-flow deposits (“debrites”). Increasing carbonate content
within the debrites, and the occurrence of stromatolitic olisto-
liths up-section, hint at progradation of a shelf margin and pres-
age the overlying unit, which consists of biostromes of columnar
stromatolites interbedded with organic-rich shales. The strata
within the lower Dolores Creek Formation where the fossils
abruptly appear are interpreted as shelf-margin deposits con-
trolled by a fault escarpment that formed in response to an exten-
sional episode during the formation of the Hematite Creek Basin
(Turner, 2011; Gibson et al., 2019).

The first in situ carbonate unit from the Dolores Creek For-
mation is a minor microbially laminated bed ∼50 m below the
fossil beds, while the first semi-continuous stromatolitic bios-
tromes occur ∼20 m above the fossil interval (Fig. 1). The fos-
sils occur within gravity-flow deposits that record the downslope
movement and deposition of sediment from the photic zone at
the platform margin (Maloney et al., 2021). The fossils appear
along bedding planes throughout slabs interpreted to record
rapid burial events on the basis of the organization of the thin
beds of differing grain sizes interbedded with floatstone (carbon-
ate debrites). These depositional processes contributed to the
exceptional preservation of these organisms by emplacing
them within (presumably) anoxic, sulfate-reducing conditions
(Cai et al., 2012; Schiffbauer et al., 2014; Maloney et al., 2022).

Materials and methods

More than 340 individual fossil specimens from 17 in situ slabs
collected from six distinct horizons, and five slabs with excep-
tionally preserved fossils recovered from float, were investigated
(Figs. 1–5). Slabs contain 3–40 total specimens, with 1–22 per
bedding surface. Some slabs were susceptible to fracturing,
which exposed additional bedding surfaces that contained
fossils. Such surfaces were included during data collection. In
slabs with a high density of overlapping specimens, individual
fossils were at times difficult to discern and in turn were
excluded from both the total specimen count and the length
measurements. Specimens were observed under a stereoscope.
Whenever possible, morphometric data—including total organ-
ism length, cell height and width, cell-wall thickness, differen-
tiated cells, specimen features (true and false branching,
twisting/deformation, overlapping, tapering ends), and speci-
men shape (straight, slightly curved, U-shaped, V-shaped,
J-shaped, or S-shaped)—were collected using the open-source
program ImageJ (Schneider et al., 2012). Three distinct size
classes of fossils were defined on the basis of widths (Fig. 6).
The widest specimens (n = 19, width = 1.0–1.7 mm) are inter-
preted to represent Vendotaenia sp. The medium-sized speci-
mens (n = 304, width = 0.20–0.85 mm) show significant
morphological detail and are attributed to a newly defined
form, Archaeochaeta guncho n. gen. n. sp. Specimens of the
narrowest size class (n = 90, width = 0.03–0.06 mm) were abun-
dant throughout the section and found on every slab collected,
although their small size and lack of detail precludes any defini-
tive taxonomic identification and phylogenetic interpretation.

Selected specimens of the two smallest size classes (n = 12)
were targeted for additional analyses using scanning electron
microscopy (SEM) with energy dispersive X-ray spectroscopy
(EDS) and tomographic X-ray microscopy (μCT) at the Univer-
sity of Missouri X-ray Microanalysis Core Laboratory (see Mal-
oney et al., 2022). A Zeiss Sigma 500 variable-pressure system
equipped with dual, co-planar Bruker XFlash spectrometers was
used to conduct the SEM and EDS analyses at identical beam
and chamber conditions (20 keV beam accelerating voltage,
40 nA high current mode, 60 μm aperture, and 20 Pa chamber
pressure with a 99.999% nitrogen atmosphere). Z-contrast
imaging was conducted using a high-definition five-segment
backscatter detector, and a cascade current detector was used
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for secondaryelectron imaging in lowvacuum. EDSelementalmap-
ping was used to characterize the composition of the specimens,
with both spectrometers used in tandem (360 seconds live time,
120 μm aperture). A single specimen preserved in three dimensions
was further analyzed through μCT (Zeiss Xradia 510 Versa). The
operating conditions were as follows: 80 kV source voltage, 7 W
source power, LE3 (lowenergy) filter, 0.4× objective, 4.5 sec expos-
ure, 2001 projections at 360°, and voxel size 11.09 μm.

Repository and institutional abbreviation.—Types, figured, and
other specimens are reposited with the Royal Ontario Museum
(ROMIP) in Toronto, Canada (ROMIP66160–ROMIP66170;
ROMIP66282–ROMIP66292).

Systematic paleontology

The size distribution of the fossil assemblagewas investigated to
determine whether these fossils include distinct species. When
fossil widths are compared, three distinct size classes emerge
(Fig. 6) regardless of preservational quality (see Supplemental
Data 1). Although the affinities of many Proterozoic fossils
remain controversial, a subset of exceptional Dolores Creek For-
mation fossils have clear morphological characteristics that aid
in their interpretation as eukaryotic macroalgae with a possible
green algal affinity (Maloney et al., 2021); thus, the International
Code of Nomenclature for Algae, Fungi, and Plants (Turland
et al., 2018) is followed in this paper. The largest size class
ranges from 1.0 to 1.7 mm, and its specimens are attributed to
VendotaeniaGnilovskaya, 1971 on the basis of their ribbon-like
morphology and comparable size. The middle size class has the
most complex morphology preserved, with holdfasts, longitu-
dinal striations, and large cells with a thallus width ranging
from 0.20 to 0.85 mm. The smaller fossils range in width from
0.03 to 0.06 mm and show dichotomous branching. Given that
these smaller fossils lack any morphologically distinct charac-
ters, we have not assigned them to a specific taxonomic rank
and instead provide a description of the fossils as well as com-
parisons with other Proterozoic fossils.

Kingdom Archaeplastida Adl et al., 2005
Phylum Viridiplantae Cavalier-Smith, 1981
Division Chlorophyta Reichenbach, 1828

Genus Archaeochaeta new genus

Type species.—Archaeochaeta guncho n. gen. n. sp. by
monotypy.

Diagnosis.—As per species.

Occurrence.—Dolores Creek Formation, Mackenzie Mountains
Supergroup, near the headwaters of Hematite Creek (64°

41′17.6′′N; 133°14′30.3′′W), Wernecke Mountains, Yukon
Territory, Canada; Tonian (Maloney et al., 2021).

Etymology.—From Greek, archaeo, meaning “ancient,” with
reference to the geological age of this genus, and chaeto,
meaning “hair or bristle,” owing to its morphological comparison
to the extant green algal genus Chaetomorpha Kützing, 1845.

Remarks.—As per species.

Archaeochaeta guncho new species
Figures 2, 3, 4.3, 5.5, 5.7

Holotype.—Specimen 59.18 on ROMIP66169, illustrated in
Figure 2.2, 2.3.

Paratype.—Specimen 59.28 on ROMIP6616, illustrated in
Figure 2.1, 2.5.

Diagnosis.—Multicellular, uniseriate, unbranching thallus of
uniform width. Individual cells are rectangular (width greater
than length) with two (double) septa between adjacent cells
and rib-like cell-wall ornamentation parallel to the thallus
length. Ellipsoidal to globose holdfasts rarely present.

Occurrence.—Dolores Creek Formation, Mackenzie Mountains
Supergroup, near the headwaters of Hematite Creek, Wernecke
Mountains, Yukon Territory, Canada; Tonian (Maloney et al.,
2021).

Description.—Uniseriate filament of multiple individual cells.
Thallus length ranges from 1.0 to 32.7 mm (n = 304 specimens
on 20 fossil slabs) with sharp terminations at one or both ends
of the filaments. Thallus widths are consistent along the entire
length, with an average width of 0.67 mm (ranges from 0.27 to
0.80 mm, n = 304). Each well-preserved cell contains a
recalcitrant cell wall with rib-like cell-wall ornamentation (Figs.
2.3–2.7, 3) resembling longitudinal striations in modern green
algae (Gontcharov and Watanabe, 1999; Maloney et al., 2021).

Each filament is composed of cells with transverse cell walls
or septa (perpendicular to thallus length) preferentially preserved
compared with the lateral cell walls (parallel to thallus length;
Fig. 2.3–2.7). Lateral cell walls are on average 0.06 mm thick (n
= 40) while transverse cell walls are 0.10 mm thick (n = 410). Indi-
vidual cells are rectangular (presumably originally cylindrical),
ranging from 0.2 to 1.0 mm long and 0.3 to 0.7 mm wide. The
presence of double septa rather than a single thick transverse cell
wall is suggested by the occurrence of a clear gap between two
adjacent cells (Fig. 2.3–2.7). Holdfasts are rare, but when found
they are elliptical to globose and are located at the terminus of
the thallus (Fig. 2.1–2.3, 2.5, 2.7). Holdfasts range from 0.19 to

Figure 1. Fossil locality. (1) Stratigraphy log of the Mackenzie Mountains Supergroup with radiometric (purple and orange star) and stratigraphic age constraints.
(2) Measured section where fossils were recovered (Yukon, Canada, 64°41′17.6′ ′N; 133°14′30.3′ ′W), scale in meters. (3) Fossil interval enlarged with individual
fossil horizons labeled (OP1, SP1, SP2, RP1, SP3, RP2), scale in meters; x axis shows relative grain sizes from mud/shale to coarse sand. (4) Map of the Proterozoic
inliers, including the Wernecke, Mackenzie Mountains, andWindermere supergroups that span the Yukon and Northwest Territories border in northwestern Canada,
with a black rectangle indicating the study area. Gp.= Group; Fm. = Formation; Sta. = Statherian Period; Eta = Etagochile Formation; Sh. Ran. = Shatter Ridge For-
mation; Abr. Pl. = Abraham Plains Formation; Cryo = Cryogenian Period; E = Ediacaran Period; Winder. =Windermere supergroup; Mt. Land. =Mount Landreville
Formation; Pass Mtn. = Pass Mountain Formation; SG = supergroup.
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0.98 mm (mean = 0.53 mm, n = 6) in the longest dimension and
from 0.19 to 0.58 mm (mean = 0.40 mm, n = 6) in the shortest
dimension. However, these unequal dimensions could represent
a preservational bias of an originally spherical structure.

Etymology.—The fossils reported herein were recovered from
the traditional territory of the First Nation of Na-Cho Nyak
Dun. The species epithet guncho is derived from Northern
Tutchone, the language of the First Nation of Na-Cho Nyak

Figure 2. Archaeochaeta guncho n. gen. n. sp. (1, 2) ROMIP66169 fossil slab showing the distribution of macroalgal fossils on each side and the locations of
enlarged specimens in (3–6). (3) Holotype specimen 59.18 with an elongated holdfast (white arrowhead with black outline), longitudinal striations (black arrowhead,
inset), and double septa (white arrowhead with gray outline). (4) Specimen 59.22, longitudinal striations (black arrowhead, inset) and double septa (white arrowhead
with gray outline, inset). (5) Paratype specimen 59.28, elongated holdfast (white arrowhead with black outline) and longitudinal striations (black arrowhead). (6)
Specimen 59.9 with individual cells. (7) Idealized sketch showing morphological traits and morphometric measurements. Scale bars = 1 mm.
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Dun (Billy and Wheeler, 1998; Ritter, 2015), meaning “big
worm.” The name references the large size and visible
segment-like morphology of the organism.

Materials.—A total of 304 specimens from the Dolores Creek
Formation, Mackenzie Mountains Supergroup, near the
headwaters of Hematite Creek, Wernecke Mountains, Yukon
Territory, Canada; Tonian (Maloney et al., 2021).

Remarks.—Specimens are fragmented (likely transported
downslope via gravity flows; Maloney et al., 2021), and therefore
the measured lengths best represent minimum estimates. The
thallus is unbranching, with consistent width along its entire
length. However, the preservational quality differs between
transverse and lateral cell walls. The transverse cell walls
(between cells) are generally 1.7 times the thickness of lateral
cell walls (parallel to thallus length), which likely represents a
taphonomic artifact created by the higher preservation potential
of transverse double septa compared with cell walls.

Thallus architecture is important for higher-level classifica-
tion. When specimens are found in dense accumulations and
preserved as two-dimensional compressions (Maloney et al.,
2022), it can be difficult to differentiate confidently between a
single branching specimen and the overlap of two unbranching
specimens of similar size (e.g., Fig. 2.4). We note that the thallus
filaments have sharp terminations where they interact with
another filament and that double septa are poorly preserved or
even at times abruptly absent at the junction. We note that
there is no cellular differentiation at the thallus junction or
even any curvature change in the taphonomic “branching”
angle. These features all point to a structurally simple uniserial
unbranching thallus for Archaeochaeta.

Uniseriate filaments are common among green algae
(South and Whittick, 1987), whereas the majority of modern
brown algae possess parenchymatous cells, and red algae pos-
sess pseudoparenchymatous forms (Graham and Wilcox,
2000). Cells in parenchymatous thalli divide in all directions,
resulting in a three-dimensional algal construction rather than
a one-dimensional filamentous structure (Barsanti and Gualtieri,
2014). By contrast, pseudoparenchymatous forms are tessella-
tions of multiple filaments that are intertwined and/or branched,
preserving the filamentous construction (Barsanti and Gualtieri,
2014). Some modern rhodophytes, such as compsopogonophy-
ceans and bangiophyceans (Yoon et al., 2016), possess a uni-
seriate filamentous construction in their thalli, but their
filaments typically consist of uniquely arranged paired cells
with multiseriate or corticated thalli (Krishnamurthy, 1962; But-
terfield, 2000). Given that A. guncho n. gen. n. sp. consists of a
uniseriate, filamentous thalli with unidirectional growth, it is
unlikely that it represents a red or brown alga; the large size, uni-
seriate filamentous construction with elongated holdfasts, and
rib-like wall ornamentation all support a green macroalgal affin-
ity (Maloney et al., 2021).

The comparatively large size of Archaeochaeta invites
comparison to the Proterozoic macrofossil Grypania Walter
et al., 1976. However, Archaeochaeta has exceptionally pre-
served complex morphology with differentiated cell walls and
holdfasts, while Grypania typically lacks such structures,
although Sharma and Shukla (2009) have interpreted transverse
markings as cell walls in specimens from India. Furthermore,
Grypania is typically observed as coils whereas Archaeochaeta
specimens are typically straight and only rarely curved, twisted,
or folded over upon themselves, suggesting that the filaments
had some degree of structural integrity or rigidity.

EosolenaHermann in Hermann and Timofeev, 1985 from the
late Mesoproterozoic Lakhanda biota (German and Podkovyrov,
2009; Hermann and Podkovyrov, 2014) and the Mesoproterozoic
Kotuikan biota (Vorob’eva et al., 2015) can be compared toArchae-
ochaeta given their shared filamentous construction with a holdfast
(German and Podkovyrov, 2009). However, Eosolena is notably
smaller (<0.25 mm wide versus 0.27–0.80 mm; Vorob’eva et al.,
2015). Archaeochaeta is also superficially similar to Segmentothal-
lus asperusHermann in Yankauskas et al., 1989 from the ca. 1000
Ma Lakhanda biota, but the latter too is much narrower (∼30 μm;
German and Podkovyrov, 2009). The Mesoproterozoic–Tonian
Lakhanda Group also includes “eosolenides tubular fossils,” an
informal group of macroscopic organic-walled tubes that are
slightly larger (0.4–1.0 mm) than the Dolores Creek macroalgae.
Some eosolenides even have thin, straight, closely spaced fine
fibro-lamellar striations, which are broadly comparable to the lon-
gitudinal striations observed within the cells of Archaeochaeta.
Eosolenides segments are separated by membranes and vary
from box-like (0.15–0.20 mm) to barrel-shaped (0.40–
0.60 mm), the latter of which are similar in size toArchaeochaeta.
However, the Archaeochaeta cells are wider than they are long
whereas eosolenides segments are longer than they are wide.

The modern cyanobacterium Nostoc flagelliforme Harvey
ex Molinari-Novoa et al. in Calvo-Pérez et al., 2016 (fat choy)
is superficially similar to Archaeochaeta in that the colony of tri-
chomes can reach up to 1 mm in diameter. However, the major-
ity of the cells in N. flagelliforme are two orders of magnitude
smaller (0.004–0.005 mm) than the cells within Archaeochaeta
(Wang and Gu, 1984). In addition, N. flagelliforme hosts larger
cells (heterocysts) that typically occur throughout the thallus
(Gao, 1998), as opposed to the uniform cell size (except for
the holdfast) of Archaeochaeta.

Genus Vendotaenia Gnilovskaya, 1971

Type species.—Vendotaenia antiqua Gnilovskaya 1971, p. 375.

Vendotaenia sp.
Figure 4.1–4.3

Occurrence.—Dolores Creek Formation, Mackenzie Mountains
Supergroup, near the headwaters of Hematite Creek, Wernecke
Mountains, Yukon Territory, Canada; Tonian.

Figure 3. Three-dimensional (3D) preservation in Archaeochaeta guncho n. gen. n. sp. (1) ROMIP66170, 3D preservation of longitudinal striations (black arrow-
head) in SEM image. (2) ROMIP66169, 2D preservation of longitudinal striations (black arrowhead) in SEM image. (3) ROMIP66170, 3D preservation of several
fossils in SEM image. (4–6) Light microscope photos showing 3D preservation of ROMIP66170, showing fossil borders (dotted lines), longitudinal striations (black
arrowhead), and a thin filament of unnamed species (white arrowhead). Scale bars = 1 mm.
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Description.—Specimens consist of a slender, ribbon-shaped
thalli. Width: 1.01–1.69 mm; length: 4.96–40.8 mm (n = 19),
with no variation along the length of the organism. Specimen
length terminates sharply, and given the high density of
specimens, numerous examples of overlap between specimens
is noted (Fig. 4). Surficial features and cross-walls not evident.

Materials.—Nineteen specimens from the Dolores Creek
Formation, Mackenzie Mountains Supergroup, near the

headwaters of Hematite Creek, Wernecke Mountains, Yukon
Territory, Canada; Tonian.

Remarks.—One fossil slab with 28 specimens (nine specimens
of Archaeochaeta and 19 of Vendotaenia sp.; Fig. 4.1–4.3) was
recovered. Vendotaenia sp. differs from Archaeochaeta in its
much larger overall size and complete absence of
morphological characters on the fossil surface, such as
striations or cell walls. V. antiqua typically includes visible

Figure 4. Vendotaenia sp. (1) Fossil slab ROMIP66283 with larger fossils assigned to Vendotaenia sp. (example indicated with white arrowhead) while smaller
fossils are Archaeochaeta guncho n. gen. n. sp. (2) Vendotaenia sp. (labeled rectangle in (1)) showing overlapping specimens (white arrowheads). (3) Archaeochaeta
guncho n. gen. n. sp. (white arrowhead with black outline) and Vendotaenia sp. (black arrowhead) in area marked by labeled rectangle in (1), demonstrating size
difference between the two taxa. (4, 5) Vendotaenids from the Ediacaran Feldschuhhorn Member of the Nama Group, Namibia, for morphological comparison.
(1, 4, 5) White scale bars = 1 cm; (2, 3) black scale bars = 0.5 mm.
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longitudinal striations (Gnilovskaya, 1971, 1990), which are
missing from our specimens, although this absence could be
taphonomic. For example, Gaucher et al. (2003, 2008) and
Becker-Kerber et al. (2021) suggest that the longitudinal
striations in Vendotaenia could result from the compression of
an originally circular tube and caution with the use of this
character for diagnostic purposes.

Vendotaenia sp. closely resembles tubular compression
from the Vingerbreek and Felschuhhorn members of the Edia-
caran Nama Group of Namibia (Fig. 4.4, 4.5). Cohen et al.
(2009) assigned the Felschuhhorn specimens to Vendotaenia
antiqua due to their sinuous bending, fine longitudinal stria-
tions, and rare branching (Gnilovskaya, 1971; Germs et al.,
1986; Cohen et al., 2009). Vendotaenia sp. does superficially
resemble the unassigned Vingerbreek population, falling within
the size range of the Vingerbreek specimens (1.0–1.7 mm com-
pared with 0.6–2.1 mm).

The morphology of Vendotaenia sp. warrants comparison
with another filamentous fossil from the Mackenzie Mountains
Supergroup, Daltaenia mackenziensis Hofmann, 1985, which
shares a similar size range (width 0.3–1.5 mm) and a similar
preservation mode with Vendotaenia sp. (both preserved as car-
bonaceous or pyritized compressions). However, D. macken-
ziensis exhibits clear branching and lacks the bending and
twisting apparent in Vendotaenia sp., suggesting a greater struc-
tural rigidity (Hofmann, 1985). However, Vendotaenia sp.
appears to be more rigid than Grypania from the Belt Super-
group, Montana (Walter et al., 1976; Han and Runnegar,
1992) since Vendotaenia sp. lacks any coiling. Vendotaenia
sp. can also be compared to Proterotainia Walter et al., 1976,
which shares a ribbon-like shape ranging from 0.6 to 2.0 mm
wide and for which longitudinal striations are common (Walter
et al., 1976). Proterotainia is much longer (up to 125 mm) than
Vendotaenia sp., but the fragmentary nature of all specimens
from northwestern Canada makes it difficult to compare them
on the basis of length (Walter et al., 1976).

The phylogenetic affinity of Vendotaenia remains unre-
solved, and the taxon is poorly defined (Bykova et al., 2020).
This genus was first interpreted as macroalgae (Gnilovskaya,
1983) on the basis of its morphological characteristics, including
oogonia (the female sex organ of some algae and fungi) and cell
walls (Cohen et al., 2009). The characteristic longitudinal stria-
tions in Vendotaenia are present in modern bacteria such as
Thioploca Lauterborn, 1907 (Vidal, 1989), which tends to be
an order of magnitude smaller (Cohen et al., 2009), and could
instead represent the effects of compressing a three-dimensional
tube into a two-dimensional film (Gaucher et al., 2003, 2008;
Becker-Kerber et al., 2021). An algal interpretation for Vendo-
taenia remains probable given that the brown alga Chorda
Stackhouse, 1797, the green alga Enteromorpha Link, 1820,
and the red alga Nemalion Duby, 1830 all represent potential
modern analogs (Cohen et al., 2009).

Despite previous interpretations of Vendotaenia as a brown
alga (Phaeophyceae; Gnilovskaya, 1983), we follow Cohen
et al. (2009), who proposed a green or red algal affinity as
more likely, particularly considering that molecular clocks indi-
cate a significantly younger (i.e., Mesozoic) origin for brown
algae (Silberfeld et al., 2010; Bringloe et al., 2020). By contrast,
photosynthesizing eukaryotes, including red and green algal

lineages, are hypothesized to have originated in the mid-
Proterozoic, with the diversification of major clades of Archae-
plastida in the Neoproterozoic (Eme et al., 2014; Knoll, 2014;
Yang et al., 2016; Hou et al., 2022). Notwithstanding limitations
on interpretations imposed by taphonomy (Maloney et al.,
2022), a green algal affinity for Vendotaenia is consistent with
its overall large thallus size and longitudinal striations. Body
fossils of both red (Butterfield, 2000; Gibson et al., 2018) and
green (Tang et al., 2020) algae have been found in ca. 1 Ga
rocks, which is also consistent with the interpretation of Vendo-
taenia as a green or red alga.

Unnamed species
Figure 5

Materials.—Ninety specimens from the Dolores Creek
Formation, Mackenzie Mountains Supergroup, near the
headwaters of Hematite Creek, Wernecke Mountains, Yukon
Territory, Canada; Tonian.

Occurrence.—Dolores Creek Formation, Mackenzie Mountains
Supergroup, near the headwaters of Hematite Creek, Wernecke
Mountains, YukonTerritory, Canada; Tonian (Maloney et al., 2021).

Description.—Ninety specimens of thin filamentous forms with
widths ranging from 30 to 50 μm (Fig. 5) and preserved lengths
ranging from 230 to 4,900 μm. Some of these specimens show
asymmetrical branching (Fig. 5.1, 5.3, 5.7, 5.9), with a single
specimen showing presumed dichotomous branching (Fig. 5.6).
These specimens are found on the same bedding planes as
Archaeochaeta guncho n. gen. n. sp. and were first reported as
“smaller Dolores Creek macroalgae” by Maloney et al. (2021).

Remarks.—Simple ribbons can resemble trace fossils in the field.
However, there are sharp terminations at the ends of the
specimens that would not be expected in trace fossils and
instead are likely a result of fragmentation during transport.
Cross-cutting relationships are common in trace fossils and not
observed in these specimens. Most specimens show minimal
distortion of their overall shape, suggesting that the filaments
had a degree of structural integrity. A subset of specimens,
however, are deformed into J- and C-shaped curves, suggesting
these organisms were deformed plastically during transport and
burial. This evidence, along with their consistent size, provides
support for the biogenicity of the specimens.

The phylogenetic affinity of these specimens remains unre-
solved due to a lack of morphologically diagnostic characters.
The Dolores Creek specimens are poorly preserved and exten-
sively pyritized, which is known to limit the morphological
detail in organisms lacking hard parts (Briggs et al., 1996; Pet-
rovich, 2001; Schiffbauer et al., 2014). These fossils contain
very limited organic carbon and cannot be extracted by acid dis-
solution. Continued investigations may help resolve their affin-
ity, but until more diagnostic specimens are recovered, we
adopt a conservative approach in their taxonomic treatment.

The size and general morphology of these organisms are
similar to the green algal fossil Proterocladus Butterfield in But-
terfield et al., 1994 reported from Svalbard and North China
(Tang et al., 2020). These organisms also resemble extant and
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Figure 5. Unnamed Dolores Creek macrofossils. (1, 3, 6, 7, 9) Examples of true branching (black arrows). (2, 4, 5, 8) Examples of non-branching thalli. (5, 7)
Smaller macrofossil adjacent to Archaeochaeta guncho n. gen. n. sp. (white arrows) to demonstrate size difference between the two taxa. (10) Idealized sketch show-
ing morphological traits. (2, 5–7) White scale bars = 1 mm; (1, 3, 4, 8, 9) black scale bars = 0.5 mm. All specimens from slab ROMIP66167.
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fossil false-branching cyanobacteria, such as Ramivaginalis
Nyberg and Schopf, 1984, Pseudodendron Butterfield in Butter-
field et al., 1994, “unnamed form 2” in Vorob’eva et al. (2015),
and “dichotomously branching filamentous form” in Nagovitsin
et al. (2015). Ramivaginalis is morphologically similar to the
smaller Dolores Creek macrofossils with a branching nonseptate
structure (Nyberg and Schopf, 1984). However, the Dolores
Creek form taxon is an order of magnitude larger (widths of
30–50 μm versus 4–9 μm; Sergeev et al., 2012). Pseudodendron
is another filamentous, branching fossil that is similar in size to
the unnamed Dolores Creek specimens, but it is characterized
by longitudinal striations, and its branch junctions are reinforced
by sheaths (Butterfield et al., 1994; Nagovitsin et al., 2015).Pseu-
dodendron is an interesting comparison because it has been inter-
preted as multiseriate and false branching, similar to modern
Schizothrix-type cyanobacteria. Nevertheless, the poor preserva-
tion of the Dolores Creek forms precludes conclusive assignment
to this genus. Unnamed form 2 from the ca. 1500 Ma Kotuikan
Formation of Siberia (Vorob’eva et al., 2015) is a dichotomously
branching thallus that contains numerous vesicles. It is similar in
size to the Dolores Creek form taxon (∼20 μm in diameter) but
can be distinguished by the spherical vesicles within its branching
tubular thallus (Vorob’eva et al., 2015). In addition, unnamed
branching fossils from the Tonian Kulady and Khastakh forma-
tions in Siberia (Nagovitsin et al., 2015, figs. 9Q–R) resemble
theDolores Creek unnamed filaments. These fossils can be differ-
entiated on the basis of the typical dichotomous branching in the
unnamed branching fossils that is exceedingly rare (if even real)
in the unnamed species presented here.

Discussion

Detailed investigation of the macrofossil assemblage from the
basal Mackenzie Mountains Supergroup reveals at least three
distinct organisms. These fossils, along with green algal fossils

from North China (Tang et al., 2020) and probable green algae
from the Congo Basin (Sforna et al., 2022), suggest that green
algae had colonized marine environments by the early Tonian
and likely had profound impacts on their ancient environments
by reorganizing seafloor habitats and influencing biogeochem-
ical cycles. Macroalgae utilize bio-essential trace elements,
including nitrogen, phosphorus, and metals (e.g., iron and
zinc) that are understood to play an important role in the evolu-
tion of early life on Earth (Anbar and Knoll, 2002; Erwin et al.,
2011; Knoll and Nowak, 2017; Isson et al., 2018). These organ-
isms were also photosynthetic, producing oxygen in shallow
marine environments and possibly creating oxygen oases in an
ocean with anoxic deep waters (Lyons et al., 2021; H. Wang
et al., 2021; Wang et al., 2022).

Interpreting Proterozoic algae.—Early algal fossils remain
poorly documented and are fraught by uncertainty.
Fossilization of cellular-level tissues can occur only under
exceptional taphonomic circumstances. Microfossils and
simple macrofossils were understood to dominate the early
Neoproterozoic (Xiao and Dong, 2006; Xiao and Tang, 2018)
until more recent discoveries of relatively complex macroalgae
(Tang et al., 2020; Maloney et al., 2021). These fossils have
challenged our understanding of algal ecosystems (e.g.,
Brocks et al., 2017) and can help calibrate molecular clocks of
algal evolution (e.g., Hou et al., 2022).

Enigmatic, long-ranging macroscopic fossils—such as
Chuaria Walcott, 1899 and Grypania Walcott, 1899, both dat-
ing back to the Paleoproterozoic (2500–1600 Ma; Hofmann
and Jinbiao, 1981; Han and Runnegar, 1992; Schneider et al.,
2002), as well as Neoproterozoic vendotaenids (Gnilovskaya,
1971, 1990; Hofmann and Rainbird, 1994; Cohen et al., 2009;
Ye et al., 2015)—have also been interpreted as algae (Walter
et al., 1976; Vidal, 1989). However, given their simple morph-
ologies and taphonomic limitations, these interpretations have

Figure 6. Frequency distribution of fossil width measurements by taxon, showing three separate size classes: the smallest size class ranges from 0.03 to 0.06 mm
(unnamed taxon), the medium size class ranges from 0.20 to 0.85 mm (Archaeochaeta guncho n. gen. n. sp.), and the large size class ranges from 1.0 to 1.7 mm
(Vendotaenia sp.). Note the scale on the x axis is different for the unnamed taxon compared with the two other size classes.
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been questioned (Sun, 1987; Steiner, 1996; Sharma and Shukla,
2009). The ca. 1560 Ma Gaoyuzhuang biota of North China
includes large carbonaceous compressions that have also been
interpreted as algae (Zhu et al., 2016), but in the absence of cel-
lular preservation or other morphologically informative charac-
ters, their phylogenetic placement within broader algae remains
uncertain.

There are several other Proterozoic fossils whose algal
affinities remain unresolved that are superficially similar to
Archaeochaeta, including the submillimeter eosolenid tubular
fossils from late Mesoproterozoic strata in Siberia (German
and Podkovyrov, 2009) and early Neoproterozoic strata in
North China (Li et al., 2020). Proteroarenicola Wang, 1982,
Pararenicola Wang, 1982, Sinosabellidites Zheng, 1980, and
Parmia Gnilovskaya et al., 2000 are annulated tubular fossils
reported from early Neoproterozoic strata in India (Sharma
and Shukla, 2012), North China (Dong et al., 2008; Li et al.,
2020), and Russia (Gnilovskaya, 1998). These organisms were
first interpreted as worm-like metazoans (Sun et al., 1986) but
have been reinterpreted as cyanobacteria (Sharma and Shukla,
2012) or macroalgae (Dong et al., 2008) according to whether
the “proboscis-like” structure of Sun et al. (1986) is interpreted
as an akinete-like body (Sharma and Shukla, 2012) or a dis-
coidal holdfast structure (Dong et al., 2008).

Although our interpretations are restricted by taphonomy,
there is growing evidence that complex algal ecosystems were
present in marine environments by the early Neoproterozoic
(Fig. 7). The oldest macroscopic green alga is Proterocladus
from the ca. 1000 Ma Nanfen Formation in North China (Tang

et al., 2020) and the 790 Ma Svanbergfjellet Formation in Spits-
bergen, which was recovered along with Palaeastrum Butterfield
in Butterfield et al., 1994, a colonial-coenobial multicellular
green alga comparable to extant hydrodictyacean green algae
(Butterfield et al., 1994). Ligand conjugated acids that form
complexes by binding with metals, specifically nickel-bound
geoporphyrinmoieties, have been observed inArctacellularia tet-
ragonala Maithy, 1975 from ca. 1000 Ma strata in the Congo
Basin. These porphyrins have been interpreted as derivatives of
chlorophyll, which supports an algal affinity for these forms
(Sforna et al., 2022). Fossils from the Paleoproterozoic Ruyang
Group in North China have also been interpreted as green
algae, including the organic-walled microfossils Dictyosphaera
Xing and Liu, 1973, Shuiyousphaeridium Yan and Zhu, 1992,
and Gigantosphaeridium Agić et al., 2015. Bangiomorpha pub-
escensButterfield, 2000, recovered from strata in the Bylot basins
of northeastern Canada, is the oldest unequivocal red algal fossil
(Butterfield, 2000; Knoll et al., 2013; Gibson et al., 2018),
although still older microfossils from the ca. 1.6 Ga Tirohan
Dolomite in central India have also been interpreted as red
algae (Bengtson et al., 2017), while younger spores of possible
red algal affinity have been reported from Cryogenian rocks in
Mongolia (Cohen et al., 2020). The record of diverse eukaryotic
fossils from the Mesoproterozoic–Neoproterozoic transition is
rapidly expanding and requires detailed descriptions of fossil
morphology to understand their role within evolving ecosystems.

Morphological complexity.—Algal complexity increased
throughout the Neoproterozoic in two stepwise transitions: (1)

Figure 7. Summary of the evolution and diversification of eukaryotes in the Proterozoic Eon. Examples of documented fossils with age constraints include the
cyanobacteria Eoentophysalis (Hofmann, 1976; Hodgskiss et al., 2019), fungal microfossils Ourasparia (Loron et al., 2019), red algal microfossils Bangiomorpha
(Butterfield, 2000; Gibson et al., 2018), green macroalgae Proterocladus (Butterfield et al., 1994; Tang et al., 2020), Archaeochaeta from the Dolores Creek For-
mation (this paper), vase-shaped microfossils (Porter and Knoll, 2000; Strauss et al., 2014; Porter and Riedman, 2016; Cohen et al., 2017a), phosphatic microfossils
(Cohen and Knoll, 2012; Cohen et al., 2017b), and Ediacaran-type biota (Narbonne and Aitken, 1995; Carbone et al., 2015). Carbon isotopes shown in gray curve
from various sources (e.g., Karhu and Holland, 1996; Cox et al., 2016; Hodgskiss et al., 2019): oxygen constraints (Lyons et al., 2014; Sperling et al., 2015), low
middle Proterozoic primary productivity (Crockford et al., 2018; Hodgskiss et al., 2020), supercontinent assembly and breakup (Li et al., 2008), and biomarkers
(Brocks et al., 2017). Dotted lines are unconstrained. Cryo = Cryogenian Period; Edia = Ediacaran Period; C = Cambrian Period; Pl = Paleozoic Era; PH = Phanero-
zoic Eon.
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the emergence of branching macroalgal forms in the early Tonian
and (2) a significant increase in maximum size in the Ediacaran
(Bykova et al., 2020). The new fossils described here represent
important advancements. For example, Archaeochaeta guncho
and Vendotaenia sp. are unusually large for an early
Neoproterozoic biosphere typically dominated by organisms
represented by microfossils (Cohen and Kodner, 2021).
Vendotaenia sp. resembles specimens of Vendotaenia antiqua
from the Nama Group in strata that is almost 400 million years
younger. Continued research will provide critical insight into
the role of Vendotaenia in ancient oceans.

Thallus morphology diversified during the Tonian, as
demonstrated by the first examples of dichotomous branching,
delicate branching, and putative pseudomonopodial branching
(Bykova et al., 2020). Examples include Longfengshania Du,
1982 from northwestern Canada (Hofmann, 1985) and the Sino-
sabellidites–Protoarenicola–Pararenicola assemblage from
North China (Dong et al., 2008). The unnamed taxon described
in the present study has a simple branching pattern (Fig. 5.1, 5.3,
5.7, 5.9), except for one specimen (Fig. 5.6) that suggests rela-
tively more complex branching. However, taphonomic over-
printing biases the retention of additional morphological
characters necessary for proper phylogenetic assignment. Trans-
port of the fossils by gravity flows aided in their preservation
(Maloney et al., 2021) but also contributed to fragmentation of
the fossilized specimens, possibly masking more-complex struc-
tures and branching. These morphological advancements could
indicate ecosystem-level change driven by growing competition
for resources and/or space between species (Wang et al., 2015).

The morphological complexity of macroalgal holdfasts also
increased throughout the Neoproterozoic, ranging from simple
discoidal-globose holdfasts to differentiated rhizomes (Wang
et al., 2020; X. Wang et al., 2021). Tonian macroalgae have
some of the earliest documented examples of holdfasts, includ-
ing Tawuia Hofmann in Hofmann and Aitken, 1979 (see Xiao
and Dong, 2006), Lonfengshania Du, 1982 (see Hofmann,
1985), and Protoarenicola Wang, 1982 (see Du et al., 1986;
Dong et al., 2008). Simple discoidal holdfasts are also common
in specimens from the Miaohe biota (X. Wang et al., 2021). The
holdfasts observed in Lonfengshania and Protoarenicola (Du
et al., 1986; Dong et al., 2008) have been described as
“deformed globular” because they can be flattened during fossil-
ization (Wang et al., 2020). Archaeochaeta guncho have elon-
gated, globose holdfasts best classified as Gemmaphyton-type
holdfasts (Wang et al., 2020), which are also found in branching
algae Anhuiphyton Chen et al., 1994 and Marpolia Walcott,
1919 from the Ediacaran Lantian biota (X. Wang et al., 2021).
To date, holdfasts have not been found in Vendotaenia sp.,
most likely due to their transport as part of density flows, but
rounded holdfasts have been reported in Vendotaenia-like
macroalgae from the Cryogenian Nantuo Formation in South
China (Ye et al., 2015). The evolution of holdfasts has been sug-
gested to be driven by transition from stable firm substrates in the
Proterozoic to soupy substrates in the Phanerozoic (X. Wang
et al., 2021). Simple discs would have been suitable to provide
support on a substrate held firm by microbial mats, but a differ-
entiated rhizome holdfast would have been necessary to remain
anchored in a soupy substrate. In addition, destabilization of the

substrate may have driven benthic macroalgae to firm, rocky
substrates where more complex holdfasts were required (Xiao
and Dong, 2006).

Implications for eukaryotic diversity and ecosystems.—The
occurrence of centimeter-scale green algae such as A. guncho
n. gen. n. sp. and Vendotaenia sp. in early Tonian strata has
implications for the ecological expansion of algae and
feedbacks between environmental change and algal
diversification. The increase in macroalgal morphological
disparity (Bykova et al., 2020), coupled with an increasing
diversity of earliest Neoproterozoic macroalgal fossils (Tang
et al., 2020), points to an important ecological restructuring of
ecosystems by the Tonian Period. Biomarkers from
Cryogenian strata suggest that algae overtook cyanobacteria as
the dominant primary producers in marine environments after
the Sturtian snowball glaciation (Brocks et al., 2017; Brocks,
2018), while other studies report a fundamental shift to
eukaryotic-rich ecosystems in the late Tonian (Isson et al.,
2018; Zumberge et al., 2020). Although the timings of these
studies differ, they concur that ecological restriction of
eukaryotes by nutrient limitation is a likely cause for the
delayed rise of eukaryotic ecosystems (Brocks et al., 2017;
Isson et al., 2018; Zumberge et al., 2020). The hypotheses
proposed in these biomarker studies will need to be reconciled
with the recent reports of both green macroalgae (Tang et al.,
2020; Maloney et al., 2021) and red algal microfossils
(Butterfield, 2000; Cohen et al., 2020) during the
Mesoproterozoic–Neoproterozoic transition (Cohen and
Kodner, 2021). Resolving the taxonomy of Proterozoic
macroalgal fossils will aid in understanding and assessing the
potential causes of this 300 Myr age gap between the earliest
reports of fossil eukaryotic algae (red and green lineages) and
their delayed ecological dominance.

Global environmental events have been documented during
this transition, including increased oxygenation of the ocean
(Planavsky et al., 2015) and biogeochemical cycles (Bykova
et al., 2020; Del Cortona et al., 2020), perhaps partially initiated
by the emergence of large, photoautotrophic eukaryotes. Their
timing suggests a link to the expansion of marine algae and
eukaryotic-driven processes, including carbon fixation, filter
feeding, and carnivory (Planavsky et al., 2015). These processes
influence the habitability of an environment (Sánchez-
Baracaldo et al., 2017; Del Cortona et al., 2020) and contribute
to establishing oxygenated, nutrient-rich, shallow-marine eco-
systems suitable for the emergence of complex animal life and
behaviors.

Conclusion

Algae are eukaryotic primary producers that reorganized sea-
floor habits and biogeochemical cycles during the Neoprotero-
zoic. Unfortunately, algal fossils are rarely recovered with
enough morphological characteristics to establish formal sys-
tematic paleontology. Three unique size classes of Tonian fos-
sils are reported from the 950–900 Ma Dolores Creek
Formation in theWernecke Mountains of Northwestern Canada.
These are described as Vendotaenia sp., Archaeochaeta guncho,
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and an unnamed taxon. A. guncho is interpreted as a benthic
green alga, adding to the fossil record of early Tonian chloro-
phytes. In addition, we consider the current interpretations of
vendotaenids as probable green algae on the basis of their
large size, limited preservation of holdfasts, and alignment
with molecular clocks. The occurrence of benthic macroalgae
in the same horizons as two likely photoautotrophs supports
the proposal that algae were already playing an important eco-
logical role in ecosystems by the early Tonian. The exception-
ally preserved macroalgal fossil assemblage in the Mackenzie
Mountains Supergroup provides key insights into increasing
ecosystem complexity and influence of algae during the Tonian
Period.
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