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SUMMARY

We have extended previous algebraic analyses of aberrant segregation
at the gray locus of Sordaria fimicola (Whitehouse, 1965; Emerson, 1966;
Fincham, Hill & Reeve, 1980) to the more complex situation where
aberrant segregations are detected in three factor crosses involving two
flanking markers. This algebra has been applied to seven gray alleles
which have been extensively characterized for their pattern of gene
conversion and postmeiotic segregation by Kitani & Olive (1967). It is
based on seven major types of aberrant segregation which can be
distinguished in the presence of flanking markers spanning the converting
site, and allows us to use up to six parameters to describe hDNA
formation and mismatch repair. We present solutions which predict a
spectrum of aberrant segregation fitting the experimental data at the
P > 005 level for six of the seven alleles tested. They are consistent with
the following properties of hDNA at the gray locus: (1) the single stranded
DNA transferred during hDNA formation has always the same chemical
polarity. (2) hDNA is mostly, if not entirely, symmetric, and its prob-
ability of formation is constant over the whole gene. (3) Disparity in
aberrant segregation is mostly, if not entirely due to disparity in
mismatch repair.

1. INTRODUCTION

The hybrid DNA (hDNA) model proposed by Holliday and by Whitehouse
provides a general explanation of the properties of genetic recombination. In
particular, it explains the various classes of aberrant segregation associated with
recombination in Ascomycetes (see Catcheside, 1977). The model is amenable to
an algebraic formulation where the probability of each class of aberrant segregation
is a function of a few parameters defining the properties of hDNA formation and
of heteroduplex repair (Whitehouse, 1965; Emerson, 1966). Given n classes of
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A. KALOGEROPOULOS AND P. THURIAUX

aberrant segregation, the n corresponding independent equations may contain up
ton — I parameters if all these parameters have to be solved whilst keeping at least
one degree of freedom (D.F.) for testing the goodness of fit of the model considered.
In addition, the solutions must fall between 0 and 1 since they correspond to
probabilities of certain molecular events.
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Fig. 1. Origin and segregation pattern of aberrant asci. The cross performed was
(M%N) x (mQtri). (A) Hybrid DNA formation: (I) hDNA formed on two chromatids
(symmetric); (II) hDNA formed on the mQ>n chromatid (asymmetric); (III) hDNA
formed on the M%N chromatid (asymmetric). (B) Segregation pattern after correction
or not of the mismatches formed in A. In brackets hDNA distribution which can lead
to the segregation considered.

So far, the algebra of the hDNA model was restricted to the relatively simple
situation of a monofactorial cross where only five types of aberrant segregation
can be detected. One algebraic treatment assumes a fully symmetric hDNA and
its relevance to data on gene conversion at the gray locus oi Sordaria fimicola has
been explored by Fincham et al. (1980). Another approach allows for asymmetric
hDNA and accounts for about two thirds of the segregation spectra observed at
the bl and b2 loci of Ascobolus immersus (Paquette & Rossignol, 1978; Arnaise,
1980). As shown here, it also roughly explains the data in S. fimicola.

We have considered a three factor cross situation, where the allele analysed is
combined with flanking markers. In this case, seven major classes of aberrant
segregation can be recognized (Fig. 1), allowing the use of up to six parameters
to describe hDNA formation and heteroduplex repair whilst retaining one degree
of freedom. At present, the only experimental system which can be analysed in
this way is the gray locus of S. fimicola thanks to the very extensive data of Kitani
and co-workers. Their work, which paved the way to the hDNA model (see the
paper of Kitani, Olive & El-Ani, 1962) has been summarized by Kitani &
Whitehouse (1974). Our analysis gives solutions which fit at P > 005 for six of the
seven alleles studied by Kitani et al.
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Parameters in gene conversion 3

2. SYSTEMS OF EQUATIONS

(A) Parameters in hDNA formation and base pair mismatch repair

Four parameters define hDNA formation (y, a, /? and S), and four define the
repair of base pair mismatches (p, q, r and s). y is the probability of forming hDNA
at the site considered (Emerson, 1966). a is the probability that the hDNA will

Symmetric hDNA,
1 -a

Invading strand 3'5' Invading strand 5'3'

hDNA on mutant
chromatid, a/3

hDNA on wild-type
chromatid, a [ l - 0]

n m_

Fig. 2. hDNA distribution as a function of the parameters a, fi and 8. Dark lines
represent DNA strands of the wild-type chromatid (base pair ab); light lines represent
DNA strands of the mutant chromatid (base pair xy).

be asymmetric, i.e. will be restricted to one of the two recombining chromatids
(Paquette & Rossignol, 1978). /? is the probability that the recipient chromatid will
carry the mutant allele (Paquette, 1979). Finally, 8 is the probability that the
invading DNA strand which generates the hDNA has a given 3'5' polarity. Fig. 2
illustrates the frequencies of the configuration taken by the hDNA in terms of
these parameters. On this figure, ab and xy are the two base pairs corresponding
respectively to the wild type and to the mutant allele, with a and x being carried
by the 5'3' strand. Parameter p is the probability of repairing the ay base pair
mismatch, and r is the probability of this repair being toward ab. q and s are the
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4 A. KALOGEROPOULOS AND P . T H U R I A U X

corresponding parameters for the xb mismatch (see Emerson, 1966). Note that
Fincham et al. (1980) used the same symbols to designate repair parameters which
are defined in a different way. The correspondence between the 2 sets of symbols
is given in Table 1.

Table 1. Correspondence between Fincham et al. (1980) and Emerson (1966)
terminology

Fincham et al. Emerson

V
q
r
s

pr
p(l-r)
qs
q(l-s)

(B) Assumptions about hDNA formation and base pair mismatch repair

Equations (l)-(7) which describe the hDNA model, are based on the following
assumptions about hDNA formation and mismatch repair.

(i) Formation of symmetrical hDNA requires the exchange of copolar DNA strands
(Holliday, 1964)

An alternative model (Whitehouse, 1963) proposes the exchange of antipolar
strands (see Gutz, 1971 for its algebra). Both models are equally acceptable as an
explanation of aberrant segregation patterns associated with recombination.
However, Holliday's model allows the hDNA to move along the chromatids by
a process called branch migration for which there is fairly convincing evidence
based on in vitro studies (Potter & Dressier, 1976; Thompson, Camien & Warner,
1976).

(ii) Aberrant segregations are entirely due to hDNA formation

This implies that spurious aberrant segregations due for example to non-
disjunction, spindle overlap or genetic suppression have either been recognized as
such or can be neglected. More fundamentally, it discounts models of gene
conversion such as the one proposed by Stahl (1969) which do not rely on hDNA
formation.

(iii) The formation of a base pair mismatch is entirely determined by the four
parameters y, a, /? and S. Its repair is entirely determined by p, q, r and s.

This neglects for example the possibility raised by Holliday (1974) that
back-migration of the hDNA along the chromatids may restore a homoduplex base
pair (when the mismatch has not yet been repaired) or instead may generate a
mismatch if repair has previously occurred on the opposite chromatid. I t also
assumes that there is no influence of strand isomerization on the efficiency and/or
direction of mismatch repair.
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(iv) The parameters are independent of each other

We shall for example assume that the choice of the recipient chromatid is
independent of the chemical polarity of the invading strand, and that mismatch
repair is independent of the symmetry of the hDNA. There is already evidence that
mismatch repair is independent of the chromatid harbouring the mismatch
(Hastings, Kalogeropoulos & Rossignol, 1980).

(v) On symmetric hDNA, the repair of one mismatch does not affect the repair of the
other

There is so far no evidence against this assumption. Its plausibility is discussed
by Fincham et al. (1980).

(vi) The relation between hDNA formation and crossing over of the flanking
markers is independent of the symmetry of hDNA formation, and of mismatch repair

The cs and ds segregation (Fig. 1) can only be scored in the absence of crossovers
between the flanking markers. The present assumption allows us to claim that the
cs/cr (and ds/dr) ratio is the same in crossover and non-crossover asci and therefore
to estimate cs, cr, ds and dr even in crossover asci. According to Kitani et al. (1962)
and Whitehouse (1974), this assumption does not strictly hold since segregation
class e has slightly but significantly more crossovers between the flanking markers
than the other classes. This suggests that crossover may somehow interact with
mismatch repair or with the asymmetric versus symmetric configuration of hDNA
(see also Sang & Whitehouse, 1979).

(vii) There is no clustering of crossovers around the hDNA region

In asci with a parental segregation of flanking markers, we have distinguished
between the cs (or ds) segregation, which can only be generated by symmetric
hDNA, and the cr (or dr) segregation which can be generated by both symmetric
and asymmetric hDNA. It is crucial here that asci with this parental segregation
of flanking markers really result from the absence of a crossover rather than from
a two chromatid double crossover which would have the same final result. This
amounts to saying that there is no clustering of crossovers around the converting
allele.

Two lines of evidence suggest that two chromatid double crossovers are rare.
The first is that cr and dr segregations combined with a two chromatid double
crossover should mimic cs and ds segregations, whereas the latter are conspicuously
rare at several loci (Stadler & Towe, 1971; Di Caprio & Hastings, 1976; Fogel et
al. 1979; Sang & Whitehouse, 1979), a feature which is explained by the
predominance of asymmetric hDNA at the locus considered. A second argument
is based on the observation that reciprocal intragenic recombinants at the hisl locus
of yeast (Fogel & Hurst, 1967) and the hyaline locus of S. brevicollis (Fields & Olive,
1967) are almost invariably associated with a reciprocal recombination of flanking
markers, whereas parental segregations should be observed if multiple crossovers
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6 A. KALOGEROPOULOS AND P. THUBIAUX

were frequent. Therefore, we have considered that two chromatid double crossovers
leading to spurious cg or ds asci would only result from rare coincidental exchanges
unrelated to the presence of hDNA at the gray locus in the ascus considered. The
flanking markers used by Kitani et al. are close enough (04 and 3-4 centimorgans)
to permit us to ignore this contribution. A correction factor can be introduced (see
Sang & Whitehouse, 1979) but would hardly alter the data.

^-vMismatch

Mismatcn\

Correction W

(p)
0-r)

No correction (1 — p)

Corre

(s)

a

/ .

ction

/,

b

dr

No correction

c,

d,

e

Symmetric hDNA
exchanged strand 3'5'

7(1 -a )6

Fig. 3. Segregation classes obtained after mismatch formation depending on the pattern
of base pair mismatch repair. In this example two mismatches are formed (ay and bx)
on symmetric hDNA with exchange of the 3'5' strand (probability of the event:
7(1 — a)S). p, q, r, s are the repair parameters defined by Emerson (1966).

(C) General equations

Equations (l)-(7) were constructed by the method used by Emerson (1966) and
Paquette & Rossignol (1978) in the simple case where only five classes of aberrant
segregations were considered. We shall illustrate this (Fig. 3) by the example of
equation (1), which gives the frequency of the a class (6+ :2m gene conversion).
The first term of the equation corresponds to the symmetric formation of hDNA
(with exchanged strands 3'5' or 5'3'), which is given by the probability y(l—a).
Since both mismatches must be repaired to wild type to generate a 6 + : 2m the
probability of the symmetric term of the a class is given by y(l — a) pqrs. The second
term corresponds to the asymmetric formation of hDNA whose probability is ya.
A 6+ :2m segregation requires the hDNA to be on the mutant chromatid
(probability ft) and mismatch repair to be toward wild type. Depending on the
polarity of the invading strand, either one or the other mismatch is formed. As
a result, the probability of a 6+ :2m gene conversion arising from asymmetric
hDNA is given by the sum 8qs + (l-8) pr, and yafi{8qs + (1 -8) pr} is the second
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term of the equation (1). Equations (2)-(7) are constructed on the same principle,
giving the following set of equations:

a/N = y(l-a)pqrs + yafi{8qs+(l-8)pr}, (1)

b/N = y(l-oc)pq(l-r) (l-s) + ya(l-/1){8p(l-r) + (l-8) q(l-s)}, (2)

cs/N = y(l-a){8(l-p) qs + (l-8) p(l-q) r}, (3)

q)
+ (1-8) (1-p)}, (4)

(5)

+ ya(l-p){S(l-p) + (l-8)(l-q)}, (6)

e/N = y(l~a)(l-p)(l-q). (7)

Equations (1)—(7) describe the aberrant segregations which are detected in a three
factor cross (see Fig. 1). In a monofactorial cross, there is no distinction between
the cs and cr (or ds and dr) asci. The corresponding pooled classes c and d are given

by

c/N = y(l-a){p(l-q) r+(l-p) qs} + ya/1{8(l -q) + (1 -8) (1 -p)}, (8)

p)
8)(l-q)}. (9)

(D) Restricted models

The two general systems of equations (l)-(7) (three factor crosses) or (1), (2),
(8), (9) and (7) (monofactorial crosses) have been further simplified so as to
eliminate some parameters in order to gain 1 or 2 D.F.

(a) Monofactorial crosses

By introducing the additional assumption that both base pair mismatches have
the same repair properties (p = q, r = s) equations (1), (2), (8), (9) and (7) simplify
to a new set of five equations:

(10)

b/N = y(l-a) p*(l-r¥ + ya(l-/1) p(l -r), (11)

c/N = 2y(l-a) pr(l-p) + yoc/3(l-p), (12)

d/N = 2y(l-ct) p(l-r) (l-p) + ya(l-/1) (1-p), (13)

e/N = y(l-ct)(l-p)2, (14)

which can be further simplified by considering the following restricted models.
Model A. /? = 0-5 (equal probability of hDNA formation on either chromatid). This
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8 A. KALOGEROPOULOS AND P. T H U R I A U X

is the model considered by Paquette & Rossignol (1978) in their analysis of the
b2 locus of A. immersus.

Model B. a. = 0 (fully symmetric hDNA). This is equivalent to model 1 of
Fincham et al. (1980), except that the repair parameters were defined in a different
way.

Model C.r = 0-5 [equal probability of repair toward the wild type or mutant allele).
This is the model considered by Arnaise (1980) in her analysis of the bl and 62 loci
of A. immersus.

(b) Three factor crosses

Model I. p = q, r = s (the two mismatches have the same repair properties). The
seven corresponding equations are easily derived from equations (1)—(7). S dis-
appears from the equations, which means that the segregation pattern does not
depend on the chemical polarity of the invading strand.

Model II. r = s = 05 (correction occurs with the same probability toward the wild
type and mutant allele). This corresponds to model C in monofactorial crosses. On
this model, disparity in gene conversion is entirely due to the pattern of hDNA
formation i.e. to the values taken by /? and S.

Model III. /? = 0-5 (The two chromatids have the same probability of harbouring
asymmetrical hDNA). This corresponds to model A in monofactorial crosses. On
this model, disparity is entirely determined by the properties of mismatch repair,
i.e. the values taken by p, q, r and s. We have considered two submodels where
S takes the constant value 05 (Ilia) or 0 (Illb). Note that to any solution found
for S = 0 corresponds a solution for S = 1 obtained by interchanging the values
of p and q, and of r and s. S = 0 would correspond to a situation where strand
displacement is generated by a 5'3' polymerase (see Meselson & Radding, 1975).

Model IV. a = 0 (the hDNA is fully symmetric). This corresponds to our model
B and to model 1 of Fincham et al. (1980) in monofactorial crosses. We have
considered three submodels. Model IVa makes no prediction on the value taken
by S. Model IVb states that S = 0 (or 1), and model IVc states that S = 05.

3. RESULTS

(A) Organization of the experimental data available at the gray locus

Table 2 gives the segregation patterns of the 7 gray mutants analysed by Kitani
and co-workers (see Kitani & Whitehouse, 1974, table 5 for a compilation of these
data). Up to fourteen classes of aberrant segregation can be identified in three
factor crosses, but they can be pooled into the seven classes depicted in Fig. 1.
Classes a, b and e correspond respectively to aberrant segregations of the 6+ :2m,
2 + : 6m and aberrant 4 + : 4m types, no matter whether recombination between
the flanking markers mat and cor was present (Rp asci of Kitani & Whitehouse,
1974) or absent (Ra asci). When 5 + :3m and 3+ :5m segregations are considered,
there are four subclasses (Ral, Ra2, Rpl, Rp2) that can be scored. Our basic
assumptions imply that Ra2 asci can only be generated by symmetric hDNA. They
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10 A. KALOGEBOPOULOS AND P. THURIAUX

correspond to the cs and ds classes of Table 2, and are called tetratypes by
Whitehouse (1974). The Ral asci, which can be generated by symmetric or
asymmetric hDNA, correspond to the cr and dr classes of Table 2 and to the tritypes

Table 3. Solutions obtained using one factor crosses (no flanking markers)
Mode l A (p = q ; r = s; fi = 0-5)

Allele

gl
g6
g?
h2
h3f
h4
h5

Allele

gl
g6
g7
h2
h3
h4
h5

Allele

gl
g6
g7
h2
h3f
h4
h5

y ( x 10~3)
2-6
2-8
2-6
2-3
2-5
2-3
2-4

y ( x 10-3)

2-6
2-8
2-6
2-3
2-5
2-4
2-4

y ( x 10~3)

31
30
2-8
2-3
2-5
2-3
2-5

Ny
1034
247
321
728
149
215
238

a

o-oo
051
004
000
033
032
000

Model B (p
Ny

1034
245
322
728
150
216
238

Model C (p
Ny

1248
271
347
730
151
212
245

a.

0-80
0-59
0-52
010
0-38
0-54
0-35

V
0-79
0'58
0-63
0-38
0-29
0-39
0-52

= q, r = s,

V
0-79
0-68
0-64
0-38
0-41
0-49
0-52

= q, r = s

fi
100
100
100
100
002
016
100

r
0-81
0-89
0-75
0-57
011
0-22
0-69

a = 0)
r

0-81
0-75
0-74
0-57
0-27
0-31
0-69

= 05)

P
0-72
0-60
0-54
0-35
0-28
0-29
0-43

X2

23-98
244
004
1-79
1-41
5-90
2-92

X2

23-98
4-95
007
1-79
2-39
6-43
2-92

X2

1-55
3-38
615
2-62
100
002
5-23

D.F

1
1
1
1
1
1
1

D.F.

2
2
2
2
1*
2
2

D.F.

1
1
1
1
1
1
1

Model A. Equation system as described by Paquette & Rossignol (1978).
Model B. Equation system derived from the former by assuming that a = 0.
Model C. Equation system as described by Arnaise (1980). This system is derived from

the one of Paquette and Rossignol but in this case r = 0-5 and /? is free to vary.
* Classes a and b pooled for the x2 test.
I x2 calculated with Yates correction. Italic figures indicate values of x2 correspond to

P values > 005.

of Whitehouse. The Rpl and Rp2 asci give no information on the symmetry of
hDNA, but allow allocation of the crossovers to the mat-gray or gray-cor interval,
respectively. We have assumed that the cs/cr ratio of the Rp asci was the same as
in the Ra asci, i.e. was given by the Ra2/Ral ratio. A similar treatment was applied
to the 3+ :5m asci to calculate the ds and dr classes of Table 2.
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(B) Estimates of the best fitting solutions by the minimum x2 method

We have used an iterative computing procedure where all the parameters were
allowed to vary between 0 and 1 (see below for the special case of y). The predicted
pattern of segregation was computed for each set of values taken by the parameters
and compared with the experimental data of Table 2 by a x2 test.

Table 4. Solutions obtained using three factor crosses (with flanking markers);
restricted model I (p = q, r = s)

Allele

gl
g6
g?
h2
h3
h4
h5

y( x l<r3)
2-6

2-8
2-6
2-2

2-5

2-3
2-4

Ny
1052

245

326

726

151
211

238

a

0-32
0-37
0-36

0-27

0-47

0-44

0-27

052

0-69

100
0-52

009

0-30

0-68

V
0-76

0-61

0-56

0-28

0-24

033
0-44

r

0-88

0-77

063

0-60

0-58

0-31

0-69

X2

30-30
3-65
0-83
500
0-50
304
404

D.F.

2

2
2

2

1*

2

2

* Classes a and b pooled for the %2 test. Italic figures indicate values of #2 correspond to P
values > 0-05.

Table 5. Solutions obtained using three factor crosses (with flanking markers);
restricted model II (r = s = 0-5)

Allele

gl
g6
g7
h2

h3*
h4

h5

y( x 10"3)

3-2

30
2-8

2-3

2-5
2-4

2-5

Ny

1284

266

350

730

150

216

246

a.

0-72

0-58

0-50
0-28

0-47

0-47

035

P
100

1-00

100

0-70

010
012

1-00

S

009
0-21

000

000

0-38

019

000

P
0-88

0-81

0-59

0-32
0-25

018

0-51

q

0-32

0-24

0-47

0-23

0-22

0-45

0-32

X
(D.F. = 1)
53-96

2-48
586

505
1-93
2-82
4-55

* x1 calculated with Yates correction. Italic figures indicate values of x* correspond to P
values > 0-05. There is formally a second solution obtained by interchanging the values of p
and q and of r and s, and by replacing 8 by 1 —S.

In a first approach, we used a grid where each parameter was allowed to vary
between 0 and 1 by steps of 0-1. Ny, which is the number of asci where hDNA
formation did occur in the sample of N asci considered, was allowed to vary
between the total number of aberrant asci in that sample and twice that number.
The steps were of four asci, except for allele gl where steps of ten asci were used.
All the domains with solutions giving x2 values lower than 20 were further explored
using, this time, steps of one ascus for Ny and of 0-01 for the other parameters.
The solutions with the smallest x2 are given in Table 3 for the restricted models
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Table 6. Solutions obtained using three factor crosses (with flanking markers);
restricted model I l i a (/? = S = 05)

lele

gl
g 6

g?
h2
h3*
h4
h5

y( x 10~3)
3 0

2-7
2-7
2-2
2-7
2-4
2-4

Ny
1200

240
336
726
161
218
239

a
0-30

0-32
0-23
0-27
0-40
0-40
0-25

P
0-66

0-42
0-56
0-28
010
019
0-45

q
0-93

0-82
0-62
0-28
0-41
0-54
0-45

r

0-55

0-92
0-87
0-61
0-61
0-67
0-73

s

100

0-78
0-68
0-61
0-29
008
0-74

X2

(D.F. = 1)

1-42

1-42
17-75
505

23-84
5-20
517

* x2 calculated with Yates correction. Italic figures indicate values of x2 correspond to P
values > 0-05. There is formally a second solution obtained by interchanging the values of p
and q, and of r and s.

Table 7. Solution obtained using three factor crosses (with flanking markers);

Allele

gl
g 6
g 7
h2
h3*
h4*
h5

y(xlO"3)

2-6
2-8
2-6
2-2
2-5
2-4
2-4

restricted model III b (/

Ny

1054
247
325
702
153
220
241

a

0-25
0-34
012
0-38
0-20
0-29
017

P
0-76
0-59
0-53
0-20
0-52
0-48
0-45

# = 0-5;

q
0-77
0-65
0-70
0-21
0-20
0-35
0-51

8 = 0)

r

0-84
0-85
0-71
0-93
014
017
0-67

s

0-88
0-81
0-80
0-42
0-41
0-36
0-76

X2

(D.F. = 1)

29-28
3-66
0-83
501
1-93
2-92
404

* x2 calculated with Yates correction. Italic figures indicate values of x2 correspond to P
values > 0-05. There is formally a second solution with (5=1 , obtained by interchanging the
values of p and q, and of r and s.

Table 8. Solutions obtained using three factor crosses (with flanking markers);
restricted model IVa (a = 0, 8 free to vary)

0-37
0-29
0-00
0-00
001
015
000

* x2 calculated with Yates correction. Italic figures indicate values of x2 correspond to P
values > 005. There is formally a second solution obtained by interchanging the values of p
and q, and r and s, and by replacing S by \—S.

Allele

gl
g6
g?
h2
h3*
h4
h5

y(xl0~3)
3-3
3-6
2-6
2-3
2-6
2-6
2-5

Ny
1340
320
326
745
156
240
242

P
0-76
0-71
0-56
0-39
0-58
0-63
0-50

q
0-92
0-81
0-72
0-40
0-29
0-45
0-55

r

0-45
0-34
0-63
0-36
011
008
0-55

s

0-95
0-96
0-82
0-77
0-64
0-73
0-80

X2

(D.F. = 1)

17-78
006
0-84
505
2-17
1-33
405
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A, B and C (monofactorial crosses) and in Tables 4-10 for the restricted models
I-IV (three factor crosses), respectively. In some cases, doublets of best fitting
solutions were found for some parameters (S, p, q, r and s). There is no way to
calculate the variance of these best fitting estimates.

Table 9. Solutions obtained using three factor crosses (with flanking markers);
restricted model IV b (a = 0; S = 0)

Allele

gl
g6
g7
h2
h3
h4
h5

y( x 10~3)
2-6
2-9
2-6
2-3
2-6
2-5
2-5

Ny

1068
255
326
745
155
226
242

P
0-79
0-67
056
0-39
0-57
0-57
0-50

q

0-80
0-72
0-72
0-40
029
0-46
0-55

r

0-69
0-60
0-63
0-36
012
012
055

s

0-90
0-86
0-82
0-77
0-63
0-60
0-80

X2

29-31
366
0-84
505
0-82
2-48
4-05

D.F.

2
2
2
2
1*
1*
2

* Classes a and b pooled for the x2 test. This explains the difference in the x2 value for h3
between Table 8 and 9. Italic figures indicate values of x2 correspond to P values > 005. There
is formally a second solution with S = 1, obtained by interchanging the values of p and q, and
of r and s.

Table 10. Solutions obtained using three factor crosses (with flanking markers);
restricted model IV c (a = 0, S = 0-5)

Allele

gl
g6
g7
h2
h3
h4
h5

y(xlO"3)

2-7
2-8
2-7
2-4
30
2-5
2-5

Ny

1074
247
341
763
181
227
244

* Classes

P
0-66
0-86
0-57
0-43
0-34
0-26
0-53

a and

q
0-94
0-50
0-71
0-35
0-60
0-71
0-51

b pooled

r

0-70
0-75
0-61
0-48
0-72
0-49
0-70

for the x

4. DISCUSSION

s

0-86
0-74
0-84
0-67
004
0-25
0-67

2 test.

X2

30-41

10-89
23-38
59-89
36-62
30-94
13-68

D.F.

2
2
2
2
1*
2
2

Algebraic formulations of the hDNA model allow the analysis of the model at
a quantitative level by testing whether it can explain not only the existence of
the various classes of aberrant segregation but also their actual frequencies at a
given locus. If the model fits the data, quantitative conclusions on the properties
of hDNA formation and mismatch repair can be drawn from the known frequencies
of aberrant segregations at the locus considered.

The number of parameters considered is not a priori limited. For example, we
could have considered a parameter describing the possibility for the half-chromatid
chiasma to migrate back and forth on the chromatid (Holliday, 1974), or a
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parameter related to strand isomerization. A crucial point here is whether the
number of parameters leaves a D.F. (degree of freedom) or not. If no D.F. is available
(see for example Emerson, 1966), one may consider a certain model which appears
to be chemically plausible and explore its quantitative implications by asking
whether algebraic solutions falling between 0 and 1 can be found. If so, one can
say that the model is biologically realistic, even though there is no statistical way
of testing it. On the other hand, if the number of parameters is limited so as to
keep at least 1 D.F., the models considered can be tested for their goodness of fit.
If they do not fit the data, they will have to be rejected as a general explanation
of the segregation pattern at the gray locus of Sordaria fimicola, even if they are
a priori plausible in the sense that algebraic solutions comprised between 0 and
1 can be found.

(A) Analysis of monofactorial crosses (Table 3)

The algebraic analysis of monofactorial crosses at the gray locus was initiated
by Whitehouse (1965) and Emerson (1966), and carried out more systematically
by Fincham et al. (1980). The latter authors analysed a model based on fully
symmetric hDNA. In one of the models considered, they assumed the frequencies
of base pair mismatch correction to be the same on both chromatids. This model
describes hDNA formation and mismatch repair with three parameters only, thus
leaving 2 D.F. Fitting solutions were found for four alleles out of five, and were
extended to five alleles out of seven in the present work (Table 3).

These results suggest that fully symmetric hDNA may well be compatible with
the data available at the gray locus. The lack of fitting solutions for the alleles gl
and h4 may be due to the fact that the simplification p = q, r = s does not hold
for these alleles, rather than to a = 0 being wrong. One way of testing this would
be to consider models allowing a to vary, thus introducing a as a fourth parameter,
leaving 1 D.F. Such models have been investigated for two loci of A. immersus and
strongly support the conclusion that hDNA formation is partly asymmetric
(Paquette & Rossignol, 1978; Arnaise, 1980). When applied to the gray locus of
8. fimicola, this analysis (models A and C of Table 3) accounts for five alleles out
of seven, with best fitting solutions which are close to 0 for parameter a in the case
of three alleles. The hypothesis of a fully symmetric hDNA can therefore not be
rejected on this basis.

(B) Analysis of three factor crosses

(1) Fitness of the models tested

There are two models which basically fit the experimental data although neither
fit allele gl . One of them (model IV b) is based on fully symmetric hDNA and allows
the two mismatches to have different repair properties (p #= q, r 4= s). As can be
seen from Table 9 this model fits six alleles out of seven, under the assumption
that the DNA strand transferred during hDNA formation has always the same
chemical polarity (8 = 0 or 1) (compare with Tables 8 and 10).
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An alternative hypothesis allowing for asymmetric hDNA but requiring the two
mismatches to have the same repair properties (model I) fits the same six alleles.
The best fitting solutions give low values for a, so that both models support the
idea that hDNA formation at gray is mainly symmetric. A curious feature of model
I is shown by two alleles for which the best fitting solutions found for /? imply a
strong bias toward the mutant (g7) or the wild type chromatid (h3) in the
formation of asymmetric hDNA. Such a bias is not easy to explain on current
models of hDNA formation, and we are inclined to believe that it is due to the
constraint p = q, r = s being unrealistic in the case of these two alleles. To test
this possibility, we have examined submodels (Il ia and I l lb) which impose
/? = 05. On model I, 8 can take any value since it does not appear in the
corresponding equations, and we may therefore arbitrarily define the value taken
by 8. Table 6 shows that model I l i a (where 8 — 05) fits only two alleles out of
seven and is not consistent with alleles g7 and h3, even though the two mismatches
are allowed to have different repair properties. Fitting solutions are however found
for both alleles under the hypothesis that 8 = 0 or 1 (model I l lb) . On the whole,
model I l l b accounts for four of the six alleles fitted by model I. The experimental
data may therefore well be consistent with the asymmetric hDNA having about
the same probability to reside on either chromatid, provided that 8 is close to 0 or
to 1.

Allele gl cannot be fitted by the models considered with the exception of model
I l i a (/? = 0-5, 8 = 0-5) which must be rejected since it accounts for only two alleles
out of seven. This underlines the limits of our algebraic approach. If we ignore this
allele, however, the solutions obtained on the two types of models considered (fully
symmetric versus partly asymmetric hDNA) suggest some properties of hDNA
formation and mismatch repair which will be discussed below.

(2) Properties of hDNA formation and mismatch repair at the gray locus

(a) Lack of polarity in hDNA formation. The value taken by y (probability of
hDNA formation) are practically the same for all the alleles, as expected from the
constancy of the basic frequencies of conversion (Kitani & Olive, 1967). A similar
lack of polarity in hDNA formation is suggested by the basic frequencies of
conversion measured at the buff locus of Sordaria brevicollis (Sang & Whitehouse,
1979) and in the sup3 gene of Schizosaccharomyces pombe (Thuriaux et al. 1980).
Yet, the frequency of aberrant segregation is polarized at the b2 locus of A.
immersus (Paquette & Rossignol, 1978) and in the arg4 gene of S. cerevisiae (Fogel
et al. 1979). At b2, polarity in the frequency of aberrant segregation is correlated
with an increase in the probability of symmetric hDNA toward the region showing
a low frequency of hDNA formation. This supports the Aviemore model of hDNA
formation which predicts an asymmetric initiation of hDNA followed by a
symmetrization away from the initiation region (Meselson & Radding, 1975). Such
a gradient maybe smooth enough to escape detection over certain regions of the
genome, or in some organisms. In that case, the gray locus may be similar to the
right part of 62, and would then be expected to lie relatively far from the initiation
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region. Alternatively, initiation may occur at a number of possible sites at or near
the gray locus.

(b) Symmetry in hDNA formation. The experimental data are consistent with
hDNA formation being mostly or even fully symmetric, on the assumption that 8=0
or 1. This strengthens the conclusion suggested by the analysis of monofactorial
crosses (Fincham et al. 1980 and Table 3 of the present work) where five alleles
out of seven tested are fitted by a symmetric model, albeit under the probably
unrealistic assumption that both mismatches have the same repair properties. It
is generally assumed that the lack of ' tetratypes' among 5:3 asci corresponds to
a lack of symmetric hDNA (Stadler & Towe, 1971; Whitehouse, 1974). Our data
(Table 9) suggest that this argument should be taken with some caution and that
the frequency of tetratypes among 5:3 asci is a rather crude estimate of the
contribution of symmetric hDNA.

(c) Chemical polarity of the invading strand. As already discussed, both the
symmetric and asymmetric hDNA model suggest that 8 is close to 0 (or to 1), i.e.
that the strand transferred during hDNA formation is always of the same chemical
polarity. Models I l laand IV c which are based on the hypothesis that 8 = O5, fail
to fit the data. This would be consistent with a mechanism of hDNA initiation
where strand invasion leading to hDNA formation is driven or facilitated by a 5'3'
polymerase activity, in which case 8 would be equal to 0 (see Meselson & Radding,
1975).

(d) Disparity in aberrant segregations. Aberrant segregations are often character-
ized by a marked disparity such that a =t= b and c =t= d (see Table 2). Frameshift
mutants of A. immersus show a strong disparity which has been explained by a
preferential repair toward the wild type or mutant chromatid, depending on the
nature of the frameshift considered (Leblon, 1972; 1979). The gray mutants
analysed here are probably base pair substitution mutants (Yu Sun, Wickramaratne
& Whitehouse, 1977). On a model allowing for asymmetric hDNA, disparity can
result from a disparity in mismatch repair, and from a preferential formation of
the hDNA on one of the two chromatids. Disparity in repair certainly contributes
to disparity in aberrant segregations, otherwise it would be hard to see why model
I I (Table 5), which imposes parity in repair (r = s = 0-5) but leaves all the other
parameters free to vary, fits only two alleles out of seven. We cannot decide whether
asymmetric hDNA - if it occurs at all - is preferentially formed on one chromatid
(see above discussion of the fitness of model I), but the results obtained with model
I l l b (Table 7) suggest that this need not be the case.
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