ON OSCULATING SYSTEMS OF DIFFERENTIAL
EQUATIONS OF TYPE (N, 1, 2)

HISASI MORIKAWA

The main subject in the present article has the origin in the following
quite primitive question: Linear systems of ordinary differential equations form a
nice family. Then, from the projective point of view, what does correspond to linear
systems?

An osculating system of ordinary differential equations of type (N,1,2)
means a system of differential equations

ydoz Yoy

dYs,  AYss

(%) det (
du ° du

)=F<¢o»«1(“>yo>~~->yw) 0<ay<a;<N)

such that Fe, 4 (0 < ay< a; < N) are quadratic forms in y,, ..., yy. If
a vector (¢,, ..., ¢y) is a solution of (*), then for any holomorphic function
¢ the vector (¢¢,, . .., ¢py) is also a solution (x¥). Hence the map: » —
(po(u), . . ., on(u)) into the projective N-space Py has a nice meaning. We
shall call such a map a projective solution of (¥). From the projective point
of view, roughly speaking, the system () is equivalent to the following systems

d-Ye_

(**) —d:'if—zF“-ﬁ:(u’yO)~--,yN) (Oga’13<N)

where Fop+ Fpe =0 (0<a B<N). The initial variety Wi at a regular
point #, for (*) means the set of all the point x in the projective N —space Py
such that there exists a holomorphic projective solution of () with the initial
point x at u = u,.

Then the following comparative table shows that osculating systems of
type (N,1,2) together with their projective solutions give an answer to our
primitive question.
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THE COMPARATIVE TABLE

Linear system

e _ Sy gy, (1<a<N)
du _/1=1 @, A yl1 SRS .

A linear transformation
N
Ya _)12120“(”)% (I1<a<N)

maps a linear system to a linear
system.,

The singularities of a solution are
the singularities of the coefficients
as,8(u) 1<a B<N).

For each regular point u, there
exists a holomorphic map ¢ into
GL(N)» such that o(u) = ¢u)xr is
the unique holomorphic solution
with the initial point » at u = u, .

If the coefficient matrix A = (a., (%))
is a constant matrix, then the map
¢ is the exponential homomorphism:
u—>et",
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Osculating system of type (N, 1,2)

Yoo Yoy
det dya.,' lﬁ‘/a: = Fuo,¢1
du ° du (u) ?/m---»?/N)

(0< ao< ay < N).
A projective automorphism

N
Yo 2 paa()y, (0<a<N)

maps an osculating system of type
(N,1,2) to an osculating system of
type (N, 1,2).

The singularities of a projective
solution are the singularities of the
coefficients in Fap (0< @, B<N).
For each regular point u, there
exist a neighbourhood U of #, and
a holomorphic map ¢: U x W —
P, such that (i) for a fixed =z, in
W the map: u—>0u,z,) is a
unique holomorphic projective solu-
tion with the initial point x, at
u =u, and (ii) for a fixed regular
point %, in U the map: x = ®(u,, x)
is a biregular birational map of the
initial variety W’ onto the initial
variety Wi,

If the coefficients in Fq,p (0<a, B<N)
are constants, there exists an analy-
tic homomorphism p of the additive
group C into a commutative alge-
braic transformation group acting
on W(,f?z) such that

O(u, ) = p(u)x .

1) GL(N) means the general linear group of degree N.
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§1. Osculating systems of differential equations

1.1 An osculating systems of type (N,7,s) means a system of ordinary
differential equations

yao’ LI ] ?/af
dYa, _AdYs,
du P dM
(1) det . * = Fﬂo ,,,,, (23 (u7 yo, e ey yN)
d yﬂo d ya,

such that Fa, ..,0, 0<@y<<...<ea,<N) are homogeneous forms of

degree s in ¥y, . . ., ¥x. For each permutation = on {0, 1, ..., #} we put
Fun(o)....,an(,,=Sign(ﬂ')F¢o ..... %, (0<a0<...<a,<N)

and, if 8,, ..., B, are not all different, then Fg,,..., g, =0

ProposITION 1. Solutions of an osculating system (1) satisfy the following sys-
tem of algebraic and differential equations

r+1 A
(2)0 lgo(- 1) yalFao ..... [T UL W RN *yi1 = R

@ 3 D e e 6pp1 =0,
o= du 0 -1 %241 741
, ,
@ I R, o = 0,
< a< < a,q <N)
y4+1
B D (=D o8, F8,. ..., BrorBigrr-- - 8,01 =0,

<0<oz1<...<a,<N>
0< fo<...<Br <N/

2) W{ means the initial variety at #=0. The initial varieties for the system with
constant coefficients are coincide with W{.
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Progf. The relation (1) implies

yao ] '!/aru
yuo L yuml
_dYs dYe,n

s e e e 41
0 = det dft d.u =2 (—DiFy, ... PRI ey
. . 0L a<...<ea, . <N).
drydo dryan-l
duT > = = = duT
Similarly we can prove (2),, ..., (2),. The relations (3) are the Grassmann
relations between (» + 1) X (» + 1)-minor determinants of the (» + 1) X (N + 1)
matrix
Yos - - - » Yn
dy, dyx

du " du

d’y, d"yy
du”™ ° "7 du”

Lemma 1. If the system (1) is type (N, 7, r+1) and (¢, . . . , ¢x) is a solution
of (1), then for any holomorphic function ¢ the vector (oo, . .., ¢pon) is also a
solution of the system (1).

Proof. From the definitions it follows

‘/’900‘0 P ] ¢¢0'r (ﬂdo 3 v e ey (oa,
d(¢¢s0) d(¢es,) d¢as dgs,
du 77 du du "7 du
det . . = ¢"* det .
d’ (¢¢s,) d’(¢¢s.) d" ¢ag d" Yo,
du” e du” du” 77 du”
= ¢T+1F°0 »»»»» “r(u’ Pos - - - (pr) = Fao ,,,,, Gr(u’ ¢'¢0, LR ¢¢N)

< a<...<a,<N).

DeriniTiON 1. 4 projective solution of an osculating system (1) of type
(N,7,7 +1) is a map ¢: u—>(po(u), . .., ¢x(u)) into the projective N-space
Py(C) such that (¢4(x), ..., ¢x(u)) is a solution of the osculating system (1).
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Let ¢ be an element in PGL(N+1,C)®» and (p«s(s)) and (pes(c™)) be
the representatives of ¢ and ¢7' in GL(N + 1,C) such that

4) (Ps,8(671) = (Do, 8(0)" .

Putting

we have an osculating system of the same type

yﬂo, EEE yﬂr
AYeq_ AdYs,
du ’ """ du
(6) det .

d Y, d Y,
du”™ 7 du”

If the osculating system (1) is type (N, r, r + 1), the transformed osculating
system (6) does not depend on the choice of the representative (ps,g(s)) of o
in GLIN+1,C).

Lemma 2. Let (po.p(s)) be an element in GL(N+1,C). Then a vector
(o5« - . @n) 15 a solution of (1) if and only if (Agopo,a(a)q)l, e, é}:opml(d)%)
is a solution of the transformed osculating system (6) .

Proof. From the definitions it follows

3) PGL(N+1) means the projective transformation group acting on the projective N-
space Py .
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N N
Ago p“o,l(d)y,]’ LRI Z} pa,,’l(d)?/i

A=0

d & d &
W(/Ig() pao,l(‘f)yx), e Ei(xgopuf- ,1(0')?/1)

det
dr N dr N
du” (Ago 4 0 A(O‘)yd)’ H dur“(lgo par' X(O’)yl)
ylo > > yﬂr
ay,, dy,
du ’ "7 du

drylll 9 e o e 3 d,ryxr__
du” du”
Pag, ..., o gy, 1,(6)Fa,, ..., A, Y, ..., Yn)

V< a<...<a,<N).

1.2.  Osculating systems of partial differential equations are defined

similarly. Let &, . .., &, be indeterminates and D¢ be the sum ﬁ,lei ——a‘;_ .
Put
yao E I ) yar
Df(y“ ) P ] De(’ya,)
(7) det o ;

Di(Ww), - . ., DE(Ye,)

=§+..,+1n=r€1'--5npl1 ..... 1,
Shy
(yd Yar —Qyﬁﬂ__ ] yu‘ ‘a-,—yd—"—)
05 ¢ « « 3 ] 3 e e ey 7 hn,..', L
aul ou l: . ,6un aun
1

O <.. . <a,<N).

An osculating system of partial differential equations of type (N, 7, s) is a
system of partial differential equations
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aﬂ”y
Bya ¢ ar']/a
(8) Pll ..... 1, yaa;--~7y¢n’”——vu-""’ h ! hy 7002 r’>
( ouy ou ', ..., ou" I
n
—Fuo ..... e ly, e, il <u1>'--’un> yo;---,yN)
(ll+---+ln=-r—(72i1)—; 0<a0<*'-<ar<N>
such that F.,,..., R P 1, are homogeneous forms of degree s in

Yo, - - . » Yn.
For the sake of simplicity instead of (8) we shall denote

yU'O?""yﬂ'r

D ag) 9 o o o 3 D 73
(9) det eg?/ ) é(?{ )

Dz(yao); L] Dg(?/ur)

=Fao.----ﬂr(517 ce e Gnlul’ s U Yo o s YN
with homogeneous forms

Fﬂo ----- dr(El R &nlul yoo e ey Uny Yo o v s yN)
1y l,
= 2 El “ .o EnFao ..... o D1, ey l,(ul, ey Uy, yo, « 0oy yN)

Iydoeedi,=2TtD
2
<<y <. .. <a,<N).

Then a solution (¢,, ..., ¢n) of (9) is also a solution of (8) if and only if
it is a solution of the specialized system of (9) with respect to any specializa-
tiOl’l Of (80, LRI ) E‘n.)~

1.3 At the end of this paragraph we shall show some typical examples
of osculating systems for N =2,

An osculating system of type (2, 1, 2).

yO) yl
det dy, dy, | = Yoy — Y3
du ’ du
y09 y2
(i) det | gy, dy, |=— Wyl @ =1)
du’ du
yl ] yZ
det| gy, ay, | = W2 — i
“du ’ du
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If we put

o 7 (m2
190(2"14) - 2 esn{_l(m t 4+ 2mu)

m =— 0

Iylclu) = % S (m+1) e +2(m+1)u)

ulelu) = 3 eSnvi((m+§)zr+z(m+§)u)

0(1']0)319 (z10) 38 (z]0)*
30,1019, (< [0]9,(e0)

then the projective solutions of (i) are given the theta maps ¢,: u = (9y(c|u),
sé(rlu), 8§(rlu)). The projective solution ¢, is an analytic homomorphism of
the additive group C onto the abelian variety Y34 Y34 Y3 —32Y,Y,Y, =
with the origin ¢,(0) = (9y(z]a), 19§(1']a), 8§(r]a)). )

An osculating system of type (2,2,3).

If we put
94(]0,), 1(':[0), 92(1[0)
det d‘ip"( 10), (10), Asz( [0)
_ & 9,z10), ;;’Zs €10), ~& 54(c10)
g (e 079, [0 0T ’

then (9y(¢]u), «9%(—:]”) g( =|u)) satisfies the osculating system

yo’ Yi> y2

. dy, dy, dy,
() det du > du ' du = p(y + yi+yi),

d¥y, d*y, d*ys
du®’ du®’ du?

because the inflex points on Y§+ Y3+ Y] —32yy,9. =0 are the following
nine points

0,1, ~-1) (—1,0,1) (1, =1, 0)
0,1, (¢, 0, 1) 1, e, 0) (¥ =1)
0,1, a (@, 0, 1) 1, a, 0)

See [2] p. 440-448, [6] p. 191-198.
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and the theta function 9y(z|u)® + Sé(rluﬁ + Sg(rluﬁ has the exact nine zero
points a,, . . ., @, such that (9(cla), 9ylcla), Iglcla)) (L<i<9) are the
above nine infex points.
An osculating system of type (2,1, 3).
Let V be a non-singular plane curve of order four. Then the genus of V
is three and there exist a Fuchsian group I" on the upper plane
H={r|Imr >0} and a base of automorphic forms (¢,, ¢;, ¢s) of
weight 2 with respect I" such that the map: « —(¢,z), ¢4(r), ¢,(r)) a covering
map of H onto V. Since it is easily observe that

Peg> Poy
S dgs,  d@s, (0< ap< @; <3)
dr ’  dr

are automorphic forms of weight six, there exist cubic forms F,,, Fy,,
F,, in ¥,, ¥,, ¥y, with constant coefficients such that (¢, ¢;, ¢;) is a
solution of the osculating system of type (2,1, 3)

Yao y¢1
(iii) det dYa, dye, |~ Fay ar(Yos Y15 ¥2) 0<ap<a;<N).
de ’  dr

§2. Projective solutions of osculating systems of ordinary diffe-
rential equations of type (V, 1, 2).

2.1 In the following three paragraphs we shall be concerned with an
osculating system of type (N,1,2)

Yoo, You
(10) det dyan dyal = Fao, ao(u > Yosr o - o s yN) (0 < a0< 241 < N) .
du ’  du

DermniTiOoN 2. Let #, be a regular point of all the coefficients in the
quadratic forms Fo,p(#, ¥,, . . . , ¥y) in (10). Wﬁf? denotes the set of all the
point z in the projective N-space Py(C) such that there exists a holomorphic
projective solution of (10) with the initial point = at u=u, We call W
the initial variety at «, for the osculating system (10) of type (N,1,2).

It will be shown later that the initial varieties for an osculating system of
type (N,1,2) are projective algebraic varieties in the projective N-space Py
which are biregular birationally equivalent each other.
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Before going to the existence theorem of projective solutions, to make
clear the base of the argument, we shall recollect Cauchy’s existence theorem:

TueoreM (Caucuy).®  Let f(u, y,, ..., yn) (A1 <a<N) be holomorphic
Sunctions in a neighbourhood of (uy, ay, ..., ay). Then there exist holomorphic
Sunctions @ (u, ®y, ..., ®N), ..., ox, %y, . .., xy) in a neighbourhood of
(0o, @z, . .., ay) such that (o, (w, 1, . . ., xn), ..., oxlte, X, ..., xx) is the

unique holomorphic solution of the system

A = fuwys Yy U<a<N)

with the initial value (xy, . .., xy) al u = u,.

TuEOREM 1. Let u, be a regular point of all the coefficients in quadratic forms
Foo oi(tt, Yo, . . .» Yn) O<eay<a,<N) and a=(ay, ..., ay) be a point on the
initial variety W at u, for the osculating system of type (N, 1,2)

ydo > y"l
det iyf_ﬂ__ __d__yi :Fao,a‘(u, yo,...,y]v) (0<a0<a1<N).
du ° du
Then there exists a unique holomorphic projective solution ¢(u, a)= (p4u, a), . . .,

ox(u, @) of the system with the initial point a at w = u,. Moreover ¢(u, a) depends
analytically on the initial point, t.e. when ag=x0, there exist holomorphic functions
Galtt, Tys . . o5 Bpoys Xgeys - - . > Ty) in a neighbourhood of  (uy, ajjag, . . .,
ag_ilag, agwulag, . . ., aylag) such that, if (%q, ..., Tpgys 1, @peys . . .5 Ty) 1§
also a point on W, then (po(u , @, . . . 5 Bpoys Bgars « o o s BN)s - v oy Ppoy(tt, @,

s Xae1s Xpers - - XNy Lidpaa(U, Xoy oL, X, Xpars o o BN, ..., On(n,
Lo, . - o> Bam1, Taers - - - » Ty)) 1S a unique holomorphic projective solution of the

osculating system with the initial point (%o, . . ., ®p~y, 1, Tpyy, . . ., Tx) at u=u,.

Proof. Since a is a point on W), there exists a holomorphic projective
solution (¢, ..., ¢y) with the initial point a at u =u,. By virtue of
Lemma 2 we may assume without loss of generality that ¢,(#) =a,=0. Put
be = ¢0ul9s 0< a<N). Then from Lemma 2 it follows

¢“0 > ¢“1
det d¢ao d¢“1 =Fao,a1(u, ¢0, o e ey ¢N) (O<ao<a1<N)
du ’° du

5) See [4] p. 29-46.
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Hence
d ¢0’ ¢°‘
(#) #Zizdet dgy  dpe |=Foulu,1, ¢, ..., ¢x) A<a<N).
du ° du

Therefore, by virtue of Cauchy’s Theorem there exist holomorphic functions
Gty %y, ..., 2y) (1<a<N) in a neighbourhood of (#,, ai/ay, . . ., anla)
such that (¢, @, ..., 2x), ..., ¢x(®, %y, ..., xx) is the unique holo-
morphic solution of the system (%) with the initial value (@, ..., %x) at
u=uwu,. Since (pou), ..., exw) and @, ¢,(u, aay, ..., axlay), ...,
on(w, ayfay, . . ., ayla)) are the same projective solutions for the osculating
system in a neighbourhood of #,, it follows the uniqueness of holomorphic
projective solutions. If (1, z,, ..., 2y is also a point on WLF), then by
the same reason as the above (1, ¢,(#, 2, . .., Zx),. .., ¢x(tt, :x;l, C s 2N)
is the unique holomorphic projective solution of the osculating system with
the initial point (1, «,, ..., zy) at u =u,. This completes the proof of
Theorem.

2.2 It will be shown that singularities of osculating system of type
(N, 1, 2) are the singularities of the coefficients of the system. Therefore, if
all the coefficients are holomorphic, the projective solutions are analytic maps
into the projective spaces. We shall first estimate the radii of convergence
for power series solutions of the following differential equations

dyot N N
(11) 714— = A,#E=1ha; 2, ﬂ(u)yly# +jgl(ha; A, O(M) + ho; 0, x(u))yl + g0, o(u)

1<a<N).

ProrosiTioN 2. Let K be a positive number not less than 1 and
(#y, 3,05 - - . » Gx,0) be a system of complex numbers such that the functions
ho; 2, u(n) 1< a<N; 0<2, p<N) are holomorphic « = u, and

]am,Ol< K,
| Bas 2, w(ueg) | < K,

n
L Mﬁ&(ﬂl<1{” (1<a<N;0<2, p<N;u=1,2,3,...).

Let 7 be the radius of convergence for the power series solution

(néoal,n(u —u))”, ..., néoal"'“(“ — uy)")
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of (11) with constant term (a;,, . . ., ay,,). Then it follows
1 \
YN+ 1K
_ d"¢s
du™

Proof. Putting ¢.(u) = %Oaa, nlu —u,)® and
l<a<N;n=0,1,2,...)

we have

aa,n""i' (0 (uﬁ)

=+D_ g*
v ( Z ha 1, 1QAQp)

o

w n— ®, =P
= 8,5,5,00) T el
(o(""'l)(u)

1 N , (;’)(“o) ¢S_p)(”o)
PRSP Y du pl (=Dl

l
2 Kr-itt anxlal,leaxlaﬂ,up]
=0 u

’

A<a<N,n=0,1,2,...).

We shall prove the following inequalities by the induction on =

*®)  |@en|<3*(N+ 1K1 (1<a<N;n=0,1,2,...).
This is true for  =0. Assume the inequalities for 0, 1, ..., n. Then it

follows

|@o, n+1]<< %Z_ﬂo ZOK" b+t Maxlm leaxlaﬂ I—p

< (N -+ 1)21§0 \é Kn-1r1K2UR3L (N 4 1)
= p=0

(N+1) n+l+3[ 2
< NI 3 (1 + nEs+ 53 (V + 1

< (N+ 1>2K2(n+1)+11§"‘ 3N+ 1)
=0
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< 3*(N + 1)2n*hHK2(n+)+ 120?(‘1\/1_‘__1)21”
<30 2(n+1) re(n+ny+1( 1 __ 1 A\
8M(N + 1R ST 1)2)

< 3n+1(N+ 1)2(n+!)K2(n+1)+1 3

This proves the inequalities (). Hence it follows

lim|a,|” < 3(N + 12K>.

n — o

Therefore by virtue of Cauchy-Hadamard Formula® we have the estimation of
the radius of convergence

1 1

TZ BNF UK T 4N+ DK

Let M be a complex analytic manifold and M= &JUW be a covering

of M by coordinate neighbourhoods U with analytic parameter #(» . An
osculating system on M of type (N, 1,2) means a collection of osculating systems

yao ’ ydt
det | gyo,  dye | = Fib @@, 9o, ..., yx) 0<ay<a;<N)
du’ duh

on UM such that

du(®d
F‘(xlol,)“‘(u(u), Yo, - - ’.l/zv) = du(y) F.(;i,)al(uon» Yo, - - - yN)

O< ay<a; <N)
on UONU®

TueoreM 2. Let M be a complex analytic manifold of dimension one.
Let ¢: u— (@), . .., ¢x(u)) be a projective holomorphic solution at u, of
an osculating system of ordinary differential equations of type (N, 1, 2) and
o: [0, 1]>M be a path on M such that »(0) = %, and o(¢) (0 << o) are
regular points for all the coefficients of the osculating system. Then there
exists the analytic continuation of ¢ along the path .

Proof. Let ¢ be a holomorphic projective solution at #, and w: ¢ — w(¢)
be a path on M such that w(0) = %, and o(f) (0 < ¢< o) are regular points

6) See text books on Advanced calculus.

https://doi.org/10.1017/5S0027763000012757 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000012757

264 HISASI MORIKAWA

of the all the coefficients. Let ¢, be the supremum of ¢ such that the pro-
jective solution ¢ has the analytic continuation to w(¢) along . Then it is
sufficient to show ¢, <<oco. Assume for a moment that ¢, =o. We shall
show a contradiction. Let # be a holomorphic local parameter in an open
neighbourhood U of o(t,). We denote by

Yoo, Yeou N
det dYs,  dYs, | T L#ZL Ohco,a,; pe()y,y, 0<ay<a;<N)
du °  du

the osculating system with respect to the local coordinates #. The open
neighbourhood U may be regarded as metric space with the metric |p,q|=
|u(p) — u(q)|, where u(p) means the value of # at p. Since the projective
solution ¢ is not holomorphic at (¢,), there exist g and £, such that ¢,/ ¢g
(0 < @ < N) are holomorphic at # = w(¢) for ¢, >¢>1%, and at least one of
¢s| 930 < @ < N) are not holomorphic at w(f,). Let V be a compact
neighbourhood of «(#;) contained in U such that the coefficients %, 5, ;, (@)

are holomorphic at each point in V. Then from the Cauchy-Hadamard
Formula we have a positive number p such that

im 1 dnha,ﬂ; /L/l(v) ',17 1

m|— 1 .

nl—roo n! du" < P (0<a’ﬁ’z’ﬂ<N)

for each point v in the compact set V. Hence there exists a positive

number K such that

K>1, |hyp .0 <K,

_L dnha,ﬂ;x./x(v)

P Y P <K' 0<a,B4,2<N;n=012...)

for each point v in V. Let p =o(t;) be a point on the path such that
ot)eV ior t, >t >t;, (¢ it3>t2)

and
|u(p) — u(w(t,))| <[4(N + 1)2K?].

Then there exists 8 such that ¢,/ ¢g (0 < a, 8 < N) are holomorphic at u = w(t,)
and |¢./¢g(0(ty))|<1< K. Hence, applying Proposition 2 to the system
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- du Fu,B(u,?/o,--”Z/zv) (0<a<N;a7&‘B),

{yﬁ N

yd b y
det ( ? ) = — .g?_l.l, =
we observe that ¢, /¢g (0 < @ < N) are holomorphic in the open ball of radius
[4(N + 1)2K?]™* with the center o(t;). Therefore ¢,/¢g (0< a < N) are also
holomorphic at w(¢,), namely the map ¢ into Py is holomorphic at w(Z,).
This is a contradiction to the assumption of #,.

§3. Initial varieties

3.1 We shall show that the initial varieties for osculating system are
projective varieties which are biregular birationally equivalent each other.
Let L be the field over C generated by the coefficients in Fa,p(0 < &, < N)
and all their derivatives and D be the derivation of the field L(Y,/Y,, . . .,
Yy /Y, such that the restriction of D on L coincides with the derivation

d
v and
Y.\ _ Y Y
D(“y‘Q‘) = Fa,()(u, 1, ’>Y:;'- ’ 5 —Y-o—) (1 <a< N)
Put
n N+ n Ya
Sa,B;nz Sa,B;n(“,Yo, - e ,YN)= YOYQ 1D <*YB*>,
e n n+ 7% )’ Y
Tepyn=Tupsvlu, Vo, . .., Vy) = ViV D'(Fos(u, P “YZ))
0<a,B<N;n=012,...).
LeMMA 1. Sap;n, Tep;n(0<a,B<N;n=0,1,2,...) are homogeneous
elements in the polynomial algebra LIY,, . .. ,Yy] such that

deg Sep;n=2n+1,
deg Ta,ﬁ;n= 2n+ 2,

N aS«. sn
(12) Segintr=Yg 3 5y Faot Yy

aSa,B;n_ _ .n
a;;__ :| (n + l)Fﬁ,OSa,ﬁ, >

N . 0 .
(13) Tu,ﬂ;n—i—l = Yﬁ Z 87}?@’” FA,O -+ Yo 'ﬁh—""’_‘] - (n + Z)FB,OTG,B;n
i=o0 042

0<ea,B<N;n=0,12,...).
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Proof. Since Fo,3(0< @, < N) are quadratic forms, Ssp;0=Y. and

Top;0=Fop(0< a,B<N) are forms in L[Y,,...,Yy] of degree one and
two, respectively.  Therefore it is sufficient to prove (12) and (13): We
assume that Ssg;» and Ta,g;» are homogeneous polynomials in Y,, ... ,Yy
of degree 2n +1 and 2n + 2, respectively. Then from the definitions it
follows
— N aSa.B-n Se, B;n
(2n +2) _09¢,8;
Yo <1§u Y2 o+ Y, on >
_ N aSa,ﬂ;n aSa,B;n
- [xgo—éy Fio+ Y, ou jl(u Yo,.... Yo =(w1,Y1/Yo ..., Y /Y 0)
_ "“ Yo
(1))
— Y3 e Yo \"" nusyf Ye
= o+ 0(32) p(F)0(32) "+ (55) (5,
Ya Yﬁ —(n+1) N aSa B;n aSa,/3~n
7+ 2 el S
D ( ) [,1__0 Y, Faro+ ou :l(u Yo.,...Y%
=(@1,Y1/ Yo, ..., Yn/Yo)
Y \*
—m+1)(LE) D
e+ 0(32) 2(7)0" (7))
Y (@2n+3) 3T¢ B;n aTa,B sn
[ 1_0 Y2 ~Faot ou ]
_ N aTa B;n aTa B;n ]
- [Eo““a’i/’”” Faot — “ou (Y0 V1, Y =1,YYo,..., Yx/Yo)
*2n Y Y
DB )
" n Y, Yy
)D (Fa,ﬁ(%, Yﬁ 3 e o ey Yﬁ )
nt1 Yy
+<Y0> D "Yﬁ))’
st Y, YN
D 1<FG,B<*Y7{°3 5 e v ey —YE>>
_rY —(nt2)f 7 aTa,B;n 0T 0. 8:n ]
N <7;A> [fg o 0Y34 Faot - ou  luwv,,. ... YW =LYYo .., Y&/ Yo

—(n+2)<

)oY

(Feo(, Y° ?Z))

Hence we have
ntl yntz prtlf Ya
Sepinir =Y+ Y32 D ( Yﬁ)
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vl B A R ] vo=(en B )
_4n+n(%%YD Q)DK%%)

e e
Topsn+1=Yy*1Yg+2 D"+ -0 '%))

=Yt Yﬁ{[ AIX:"'O aY_;YTﬁ_n" Fao+ _a]%z?n_](u,yo ..... YW =LYYo, .., Y/Yo)
+ (n+2)< )"“D( )D"(F« s\ 1);‘; a i%))]

- Y ﬁ_ﬂbtgmo+nﬁ%§i)—m+2Wmn&n

O0O<ea,p<N;n=01,2...).
This proves (12) and (13). Further more it follows

deg Sa,ﬁ;n+1 =2+ deg Sa,ﬂ;n= 2(" + l) + 1:

degTo,p;n+1 =2+ degTe,p;n =2(n+ 1)+ 2.
We shall prove that the initial variety W’ is a projective algebraic
variety. A projective algebraic variety W in Py is called the projective
algebraic variety corresponding to a homogeneous ideal a in C[Y,, . .. .Yy]

if W coincides with the set of all the point 2 in Py such that f(z)=0 for
every f in a.

THEOREM 3. Let a” be the homogeneous ideal in C[Y,, . .. ,Yy] generated
by homogeneous forms

SG,B;n+1(uo, Yo, ... ’YN)_YOTG-B;”(MO’ Yo, . .. ,Yy)
O0<apB<N;n=012...).

Then the initial variety W at u, for the osculating system (1) of type

(N, 1) 2)

dy«, dyq,

Yoo » Yoy
det =—Fo,8(t, Yo, . . .,¥n) (0< apa, <N)
du ’° du
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is the projective algebraic variety corresponding to the homogeneous ideals

F
ad.

Proof. Since u, is a regular point of all the coefficients in F.p
(0< &, < N), by virtue of (12) and (13) the coefficients in S«.8;2, Ts.8;n
0<a,SN;n=0,1,2...) are holomorphic at #,. Hence Se.g;n+1 (%,
Yo, .. .. Yy) — Y Tap;n(4g,Yy,...,Yy) O0<e,p<N; n =0,1,2,...) are
homogeneous elements in C[Y,, ...,Yy]. Let ¥V be the projective variety

corresponding to . We shall show W{>cV. Let « be a point on

Wff: > and ¢(#,z) be the holomorphic projective solution at #, such that

¢(ue, 2) = z. By virtue of Proposition 1 we may assume without loss of
generality that z3+#0 (0<B<N), where x=(%,,...,2y). Then from
Theorem 1 it follows

1, Yo d-9e
e = 98 = Fuoy(u, - @) (0<a,p<N).
det = B s ) O<ap<)
d [
_ Y8
T d
Since
%o - b1 T
du u = u, F“’(’(uo’ L @o ©? > D< (%0, 91/P0 5+ - - » On/¢0)
(0 ax N) N
there exists a specialization of L[Y,/Y,, ..., Yx/Y,] onto Lig,/¢o, ..., ¢x/¢0)
such that (YV,/Y,, ..., Yx/Y) > (¢1/¢es ..., on/¢,) and the derivation D
corresponds to the derivation ~afi7 Therefore, applying this specialization
on Se8;n+1— Y Tep;n, we have
%—(zn+3) [Se.p5n+1(00, . .. o8) — @0 Ta,85n (00, . . .5 @n)]
d"+1 q)a .
_‘PB n4 2 n+2 dr_a on
=) e = (gE Fos (oo E2)
drtl Qe d-9e.
=Ly T es o Tea
o du"*? du " du ) '
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On the other hand ¢, (#,) = 2, %0 (0 < a <N), hence we have

Sm.B;n+1(xo, ce e xN)"xoTa,B;n<x0a e, %y =0

0<ea,p<N;n=0,1,2,...).

This means « € ¥V, namely W’ c¥V. We shall next prove W’ > V.
For a given point x = (x,, ..., 25) on V we shall construct a holomorphic
projective solution ¢ such that ¢(#,) = «. By virtue of Lemma 2 we may
assume without loss of generality that 2, %0 (0 < e <N). From the Cauchy
Existence Theorem there exists a unique holomorphic solution (¢,,a(u), . . .,
@ ) at u, of the differential equations

dz,,
duﬁ =Fu,3(u,20'ﬁ, EEEE | zN,H) (OgagN)
with the initial condition (¢,g(%o), . . . , ¢n.a() = (% ®g, . . . > Tx/2g).

Therefore it is sufficient to show that

Pap = Puol 050 (0<a,B<N),

because
(0(:0 > (0“1
det = — Fag, a(#, @05 . . ., on) (O0<ae<ea;<N).
dos,  doa
du ° du

The specialization

oo g oo

T
0 0

implies the relation

d”+1 Pane )
980 T Dn+1< Y. )
du" ! Ys /tero. .. oxmo)
= wE.(O”-FZ) de6§"+1 (ly @105 « -+ - > ‘pN,O)

and the specialization

%;%, o %;;L, D)“’(‘”o.a’ e Oy g g%‘)
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implies another relation

A" dFug(Peps s Vrg)
du” ! du”
Y
= " 7‘79_, ,7M,
D <Fm,ﬁ< YB Pt Yﬂ >>(<Poyﬂ ----- (”Nrﬁ)
=908 Tagin(@ngs .0y )) O<e,p<N;n=012,...).

On the other hand, the point 2 belongs to ¥, hence it follows

dn+l (pd_,L) o
n
[ @B _ d @s, B

dun+1 du"+1 U =1u,y
=055 P Sagin+1(L, @uos o s On0) — 008 Targin(@ogs - o o > On,g) e =0
R U Aﬂm)_xnx—n To o (ﬂ?_o . ﬂ)
X Xy Su,ﬂ,n-}-l(l, T, > > 2, BY0 «, B xﬁ > > xﬁ
= xo—("+l)x§<"+2) Sa,B;n+1 (xo, e s xN) — xoTa,B;n(xo, e e xN) =0

Since 1,250, we have

[Sa,B;n+1_YoTa,ﬁ;n](:co ..... :cN)=0 (0< a,ﬁgN, n =O,1,2, .. )

This shows
n Qa0
(d wﬁi> —(dn%"’> O<ap<N;n=012...)
du™ u=uo_ du"’A o = 1y \a’ﬂ\ s M =0,1,4,...).

Since ¢4,/ ¢, and ¢,p (0< a, < N) are holomorphic at u,, it follows
@ao | P80 = ¢ag (0<a,B<N). This completes the proof of Theorem.

3.2 Applying Chow’s theorem” we shall show that projective solutions

induce biregular birational transformations between the initial varieties.

THEOREM 4. Let M be the set of all the regular points of the coefficients
wn an osculating system of type (N, 1,2)

yﬂo B y¢1

det =F¢o>61(u,y0>---’yN)
dYsy _dYe,
duv ’ du

(0<a0<a]<N)

7) See [1] p. 893-914.
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on a complex analytic manifold M of dimension one. Assume M is a connected
open set in M. Let (MY, p) be the universal covering space of M with
the canonical map p: M — M The osculating system can be naturally considered

as an osculating system on M. Then each point @, on MY there exists a unique
holomorphic map

. AFE F
Day : M X W — Py

such that 1° for a fixed point x, on the initial variety ngﬁ)o) at pla,) the map
@ — Oz,(, o) s the projective solution with the initial point x, at plu,), 2° for a
JSixed u, on ME the map x — Qu(a@y, x) is a biregular birational map of the initial

variety W2y onto W25,

3° ¢ﬁ1(12, Qﬁu(ﬁla x)) ¢ﬁo(ﬁ: x) (ﬁo, uy, @€ M(F)> T E W;{B,,)) .

Proof. The uniqueness of @ is a consequence of the uniqueness of
the projective solution with the given initial point. It is sufficient to prove
that for each point #, on M there exist a positive number » and a unique
holomorphic map ®@.,: B(r,u,) x WS> = Py such that for a fixed «, in W
the map # — @u,(u, x,) is a projective solution with the initial point z, at
u,, 2° for a fixed #, in the open ball B(r,u,) the map z—> Pu(u, z) is a

biregular birational map of the initial variety WS}? onto W, 3 gu,(u, @u,

uy o

(4, ) = Quolut, ) (w,u, € B(r,u,), x € W,(,f)). Let ¢u,(n, x) be the holomor-
phic projective solution at #, with the initial point #. Then for every
point #, in a small neighbourhood of #, ¢u(«,x) is regarded as the pro-
jective solution at #, with the initial point gu,(u#,, x), hence by the uniqueness
property it follows

Quy (1, Quy(thy, %)) = Qu,(u, x) .

By virtue of Proposition 3 for each point u, X x, in #, x W}, there exist a
positive number 7(¢,, #,) and a neighbourhood U, of z, in W{’ such that
the map ¢u,: u X & = u,(u, x) of B(r(uy, x,), u,) X Us, into Py are holomor-
phic, where B(r(u,, x,), #,) is the open ball of radius r(u,, z,) with the center
u, with respect to the metric |# —«,|]. Since W’ is a projective variety,
it is a compact subset in Py. Hence there exist positive numbers r
and a such that if |#, —u,|<<s the map # X & — ¢u,(#, ) is a holomorphic
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map of B(r,u,) X WS’ into Py. For fixed z, on W{ the map u—
@us(1, T,) is obviously the projective solution at #, with the initial point x,.

Let #, be a point satisfying |u#, — #,] < Min <s, %4). Then the map

& — uy(5, #) is a holomorphic map of the initial variety W into Wi,
We shall prove first that this map is biholomorphic. Since # X y = gu,(u, y)

is holomorphic in B(r, u,) X W,(f:) and |u, — uyl< »é— r, the map y = gu,(u,, ¥)

is a holomorphic map of W{ into W{’. On the other hand
Puathy, up(tts ®)) = @ and guy(is, Gus(tt, ¥) = ¥, hence the map x — gu,(uy, ) is

a biholomorphic map of W’ onto W{" for every u, satisfying |u, — u,| <

Min (s, —%— r), Finaly, using Chow’s Theorem, we shall prove the map

@ = gu(tty, ®) is a birational map of W onto W, Since the initial

varieties W’ and W’ are projective varieties in Py the graph I' of the
biholomorphic map & — gu,(#,, 2) is a closed complex space in the product
Py X Py. Since Py X Py can be embedded in a large complex projective
space, the graph I' is regarded as a closed complex analytic space in a
complex projective space. Hence by virtue of Chow’s Theorem I' is a pro-

jective variety and thus the map « — gu,(#,, #) is a rational map of W’

onto W . This completes the proof of Theorem.

Derinrrion 3 For each closed path @ on MY starting from u, there
exists a biregular birational map g, of WY such that the analytic continua-

tion of the projective solution ¢u,(%, ) along  coincides with the projective
solution ¢u,(#, o,2). The biregular birational transformation ¢, depends only
on the homotopy class of the path w. Therefore the map w—g, induces

a representation of the fundamental group =, (M, u,) of M by biregular
birational transformations of the initial variety W{’. We shall such the

representation the monodoromy group of the osculating system of type (N,1,2).

3.3 Let us characterize osculating systems of type (N,1,2) with the

initial variety Py.

DeriNiTION 4. A Riccali system means an osculating system

https://doi.org/10.1017/50027763000012757 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000012757

ON OSCULATING SYSTEMS OF DIFFERENTIAL EQUATIONS OF TYPE (N, 1, 2) 273

Yoo > y“x
det = Yoo Loy (U, Yo, . . ., Yn) = Yar Lao (U, Yo, . . ., Yn)
_dYsy  dYey
du ’ du
(O < a'o< ay < N)
such that L,(u,y,, ..., yy) (0< a <N) are linear forms in v,, ..., ¥x.

ProrosiTioN 3. An osculation system of type (N,1,2) is a Riccatt system if
and only if the initial varieties for the system are the whole projective space Py .

Progf. Assume first that the system is a Riccati system, ie. F,p=
YoLg— ygL, with linear forms L, (0<a<N). Let (¢,,...,¢n) bea
solution of the linear system

*d’**‘— a(u:yo,--~,?/1v) (0<a<N)'

We may assume without loss of generality that ¢, (0< e <N) are not
constant zero. Then it follows

LI 7S @u
va’ g dTp; .
det 0 v = ~gu = 98 (9aLlp— ¢pLa)

d-re 4-¥8

_ Y8 ¢8
du ° du

:F_(u,ﬂ,_..’,gl, 0<a< <N
@ vs ¢a ) ( 13 )
This means that ¢: u—> (g (#), ..., ¢x(u)) is a projective solution of the

Riccati system. For a linear system we may choose arbitrary initial values
at the regular points, hence the initial varieties of Riccati systems are the
whole projective N-space Py. We shall next assume that the initial variety
W at a regular point #, coincides with Py. Let K be the field over @
generated by the values of the coefficients in F,.3 (0<a,B<N) at u = u,.
Let (&, ..., éy) be a system of complex numbers such that dimgK(,, . . .,
Ey)=N+1 and ¢ =(¢y, ..., ¢x) be the unique holomorphic projective
solution of the osculating system such that o¢(u,) = (&, ..., &). Putting
(W, Yo, . .., Yn) = (o, &, . . ., Ey) in the relation (2), we have

€7F¢'B(u0’50’ ) EN) +E¢Fﬁrr(u0>§0, ) EN) +€BFT,¢(MO>EO7 e e ey EN) =0
(0<a,BT<N),
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Since u#, can be replaced by an arbitrary regular point and dimgK(&,, ...,
é&v) =N+1, it follows

Y Fapu,Yo, ..., Y8)+ Y Fo,(u,Y, ..., Y8)+YeF ou,Y,,...,Yy)=0
0<a,B7<N)

with indeterminates Y,, ..., Y». We may put

Fost, Yo, ..., Y)=Hu, Yy, ..., Ya) =YLy, Yo, . .., V)
with quadratic forms H,(#,Y,,...,Yy) in Y,,..., Yy and linear forms
La(u,Yﬂ’ ] YN) (l<a<N)~

Then we have

YOFG:B(Ma YO) D) YN) = YBFu,,o(u) YOy Y YN) _YGFB’O(u) Yo, cee s YN)
=YpH,(u,Y,, ..., Yy) =Y. Hu,Y,,...,Yy) '
+ YO {YGLB(u9 YO) I YN) - YﬁLa(u’ YO; D] YN)}~

Hence it follows

YBHa<u> Yl’ s e YN) = YuHﬂ(u)Yl > e e e YN)
Favﬁ(u, YO: LRI} YN) = YﬁLa(u’ Y07 LR ] YN) —“YBLG(M, YO’ LR ] YN)
(1<ea,B<N).
Moreover H,(#,Y,, ..., Yy) is divisible by YV, and Y'H,(«,Y,, ..., Yy) =
Y Hpu,Y,,...,Yy) A1<ep<N). Therefore we may put
Ha(u}Y1y~-',YN)z—YaLO(u)Y0’~--’YN) (1<a<N)
with a linear form L«,Y,,...,Yy). This proves that

FG»B(u’YO> ] YN) = YaLﬁ(u’Y0> s e YN)_YBLL:.(“,-YD, s e YN)
0<a<B<N),

namely the osculating system is a Riccati system.

§4. Osculating systems of type (V,1,2) with constant coefficients

We shall show that projective solutions for osculating system of type
(N,1,2) with constant coefficients are given by mean of analytic homomor-
phism of the additive group € into commutative algebraic transformation
groups of the initial varieties.
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THEOREM 5.  Let W be the initial variety at the origin u =0 for an

osculating system of type (N,1,2) with constant coeffcients:

y“n > yal
det = Fopa1(20, . . ., 25) (0< ap<a; <N)
dYey  _dYsy
du ’ du

and ¢(u,x) be the holomorphic projective solution at u =0 with the initial point w .
Then there exist a commutative algebraic transformation group G of the projective

variety W and an analytic homomorphism o of the additive group C® of complex

numbers into G such that

olu,x) = plw)x (weC,zewW).

Proof. By virtue of Theorem 2 and 3 the projective solutions ¢(«, x)

(x € W) are holomorphic on the whole complex plane € and the initial

varieties W coincides with the initial variety W{™ at the origin. Hence
by virtue of Theorem 3 the map: x —¢(u,x) is a biregular birational map
of the initial variety W{™ onto itself. Since a translation: u —u +#, of
the independent variable leaves the quadratic system invariant, the map:
u—¢(u + u,,2) is a holomorphic projective solution with the initial point
¢(uy, x) at # =0. Hence from Theorem 1 we have

ou, ¢, ) = ¢, p(u, ) = ¢(u + v, x)

and

o(—u,olu, x) = olu, o(—u,x)) = ¢0,2) = .

This shows that the map: u —¢(u,2) is a one-parameter group with the
origin at . Let ¥V be an irreducible component of W§™ and &£=(¢,, ...,
&y) be a generic point of V over the field C of complex numbers. Since the
map p(u#): x —¢(u,z) is a biregular birational transformation of ¥ onto V,
there exist a system (Ry(z), ..., Riz)) of homogeneous forms of the same
degree in 2,, ..., 2y with coefficients in C and a system (aqq(%), .. .,

ay,s(u)) of holomorphic functions in a neighbourhood of # =0 such that

8) C means sometimes the additive group of complex numbers and sometimes the field of
complex numbers.
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1) o(u,§) =(l§odo.z(u)Rz(€), Cees ZZS‘_.O ay,()R,(€)) and (i) R\(8), . .., R,(&) are
lineary independent over €. We denote by T the projective variety in the

projective Ns-space Pwv+1(s+1» -1 such that the point (a,,4(%), . . ., ay..(u))
is a generic point of T over C. For the sake of simplicity we mean by the
same symble p(#) the point (ag,(#), ..., avsu)) on T and denote by

C(p(u)) the field generated by the quotients a,,,(u)/ap.(u) 0<e,B<N;
0<I,h<s) over C. Since & is a generic point of V over C and Ré), ...,
R,(&) are linearly independent over C, there exist C-rational points a®, . ..,
a® on V¥V such that

Ry(@®), ..., Ryfa®)
det . *0.
Ry(a®), . . ., R(a®)

Therefore from the linear equations

¢o(u,a?) = lﬂoaa.z(M)Rz(a@) O<a<N;0<j<ys)

it follows that a, (%) (0

0, a?) 0<a<N; 0<j<s) with coefficients in €. This means that
Clp()) = Clp(u,a®), . . ., o(u,a®)), where Clp(u,a®), ..., ¢(u,a®)) is the
field generated by the inhomogeneous coordinates of ¢(u,a®) (0< 1<)
over C. Since ¢(u, ¢(v,a)) = ¢(v, p(u,a)) = ¢(u + v,a), by virtue of Theorem
3 it follows that Cle(x + v, a)) = C{p(n,a), ¢(v,a)). Hence we have

<a<N;0<I<s) are linear combinations of

Clp(u +v)) =Cleu+v,a®), ..., ¢o(u+v,a™))
=Cleu,a®), ..., ¢u,a®), ¢, a®), ..., ¢,a))
= C(p(u), p(v)) .

This means that there exists a rational map e«: T XT —7T such that
alp(u), o(v) p(u +v) and « is defined over €. Let us next show that there
exists a rational map B such that (p(#)) = p(— #) and g is defined over C.
Since ¢(— u, p(u,a®) = ¢(0,a®) = a® (0< ! < s) and

Ry(@a®), .. ., R(a®)
det : £0.
Rs(a(o)) P Rs(a(s))
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we have
0.(0,a) = lio Gy~ )Ry (o (n, aP))

and

Ry(p(u,a®)), . .., Ryp(u,a’))
det £0
Ri(o(u,a®)), .. ., Rie(u,a™))

This means that

Clo(—u)) = Clp(u,a®), . .., ou,a®),e0,a®), ..., ¢0,a)
= Cle(u,a®), . .., ¢(u,a))
= C(p(n)).

Therefore there exists a rational map g: T —T such that Blp(x)) = p(— u)
and B is defined over €. These rational maps « and g satisfy the conditions:

a(p(n), p(v)) = a(p®), p(u)) = p(u +v),

a(p(), a(p), pw))) = alalp(u), p(v)), p(w)) = p(u + v + w),

a(flp(m)), p(u)) = alp(u), 8(p(u)) = p(0).
Hence we have a commutative normal law of composition © on 7 such
that p(u)o p(v) = a(p(u), p(v)) and p(u)o p(—u) = p(—u)o p(u) = p(0). By
virtue of the general theory on algebraic group® there exist a commutative
algebraic group Gv and a birational equivalence ¢ of T to G such that

Plo(u)o p(w))p(p(u)) o P(p(w)) and ¢(p(u)) o ¢p(p(— u))) = ¢(p©0)).  This shows
that Gv is regarded as a commutative transformation group of ¥ such that

py(u)xp(u,x) and py(u) = ¢(o(u)). Let V,,...,V, be the irreducible com-

ponents of the initial variety W{, G be the direct sum Gy®... DGy,
and p be the direct sum p,,®...®Dp, . Let G be the Zariski closure of

the image p(C) in the commutative algebraic group G. Then G is a
commutative algebraic transformation group of the initial variety W§P

such that

9) See [3] Chap. IX Algebraic groups.
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pw)x=o(u,2) (weC,xcw).

COROLLARY 1.1 Let 2 be a point on WS . Then there exists a commutative
algebraic group G, and an analytic homomorphism p, of the additive group C into G,
such that (i) G, is a local closed subvariety in WS and » is the origin of G,
(i) pn(u) = ou,x) (weC), (i) the Zariski closure of G, in WG coincides
with that of ¢(C,x).

Proof. Let H, be the subgroup of G consisting of all element g such
that g2 =x. Then H, is a normal algebraic subgroup of G. Let G, be
the quotient group G/ H, and n be the natural map: G —+G,. Let p, be
the composite zp. Then, identifying G, with the image G,z of z by G,,
we have Corollary.
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10) This means that the Zariski closure of a projective solution for a system with constant
coeflicients is a Zariski closure of a commutative algebraic group.
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