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Abstract

In this paper we propose a general setting in which to study the radical theory of group graded
rings. If 31 is a radical class of associative rings we consider two associated radical classes of
graded rings which are denoted by 3lG and 3lKi . We show that if 31 is special (respectively,

normal), then both 31 and 3lni are graded special (respectively, graded normal). Also, we
discuss a graded version of the ADS theorem and the termination of the Kurosh lower graded
radical construction.

1991 Mathematics subject classification (Amer. Math. Soc.) 16 A 03, 16 A 21.

Introduction

Let G be an arbitrary group. An associative ring A is a G-graded ring if
the additive group of A is a direct sum of subgroups A , g G G, which
are such that AgAh C Agh for all g, h € G. If h, k e G, A and B are
G-graded rings and f:A^B is a ring homomorphism, then / is said to
have degree (h, k) if f(Ag) c Bhgk for all g € G. Such homomorphisms
will be called graded homomorphisms. A graded homomorphism may have
more than one degree and, in particular, the zero homomorphism has degree
(h ,k) for all h, k e G. Also note that if / is a graded homomorphism of
degree (h, k) and h ^ k~l, then (f(A))2 = 0 because if x, y e G, a e Ax

and beAy then f(a)f(b) = f(ab) € Ahxkhyk n Ahxyk - 0.
Throughout this paper we work in the category of G-graded rings and

graded homomorphisms. Our purpose is to study radical theory in this
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144 Hongjin Fang and Patrick Stewart [2]

category. In the next section we apply recent results of Puczylowski to show
that the ADS theorem is true for graded radical classes and that the Kurosh
lower graded radical construction stops at the first infinite ordinal. The re-
sult about the ADS theorem is not new, it appears in [9] and, in the case of
abelian groups, was published in [13].

The third section of the paper discusses a way of constructing, for each
radical class 32 of associative rings, a radical class 32° of G-graded rings.
The map 32 —• 32G embeds the lattice of radical classes of associative rings
as a meet subsemilattice of the lattice of radical classes of G-graded rings. If
31 is special (respectively, normal) then 31 is graded special (respectively,
graded normal).

Let 31 be a radical class of associative rings. The corresponding reflected
radical class, 32ni, of G-graded rings is defined in [2] and several concrete
reflected radical classes are studied in [2], [3] and [4]. In the fourth section
of this paper we show that the map 32 —> 32Kf embeds the lattice of radical
classes of associative rings as a sublattice of the lattice of radical classes of
G-graded rings and that if 32 is special (respectively, normal), then 32Ki is
graded special (respectively, graded normal).

Although most of the radical classes of graded rings which have been stud-
ied in the past (see [5], [6] and [10]) are either of the form 3lG or 32^, this
is not true in general as we point out in the final section of the paper.

Throughout the paper e will denote the identity of G and 0 will de-
note the prime radical class. If A is a G-graded ring, A" will denote the
underlying ungraded ring. If B is an associative ring, B' will denote the cor-
responding G-graded ring such that (B')e — B and (Bl)g = 0 if e / g e G.
If / is a subset of a G-graded ring A and H c G, IH - ©{/ n Ah\h e H}.
Finally, we refer the reader to [14] for radical theoretic terms which we use
but do not define.

Preliminary results

The following definition and technical lemma are required in order to show
that the results of [11] apply in our situation.

DEFINITION 1. A G-graded ring A is trivial if whenever / is a graded
ideal of A and / is a graded ideal of / , then / is an ideal of A.

LEMMA 1. Suppose that B is a G-graded ring, A is a graded ideal of B
and I is a graded ideal of A. Further, suppose that whenever J and K are
graded ideals of A such that J c / c K and I/J = K/I is trivial we have
J = 1 = K. Then I is an ideal of B.
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[3] Radical theory for graded rings 145

PROOF. Let x e Bg . Define / : / -» (Ix + I)/1 by f(y) = yx +1 for all
y e I. Since / is an ideal of A and A is an ideal of B, IxA C / and
I Ax C / . It follows that if y, z € / , then f(y)f(z) = 0 + 1 = f(yz) and
so / is a graded homomorphism of degree (e, g). Also, both ker(/) and
Ix +1 are graded ideals of A and since / is onto, 7/ker(/) = (Ix + / ) / / .
Moreover, since (/x + I)2 c I, (Ix + / ) / / is trivial. Thus it follows from
our hypothesis that ker(/) = I = Ix +1. From this we see that / is a right
ideal of B and a similar argument shows that / is a left ideal.

DEFINITION 2. A nonempty class 31 of G-graded rings is a graded radical
class if

1. 31 is closed under graded homomorphic images,
2. if B is a graded ideal of A and both B and v4/2? are in 31, then

3. if Iy X e A is an ascending chain of graded ideals of A and Ik e ^
for all A e A, then U{/A: A e A} is in 31.

If 31 is a graded radical class of G-graded rings, then each G-graded
ring A has a graded ideal 31 (A) &31 which contains all graded ideals of A
which are in 31 and is such that A/31 (A) has no nonzero graded ideals in
31.

A nonzero class ^ of associative rings is regular if every nonzero ideal of
a ring A e ^ has a nonzero homomorphic image in ^ . A nonzero class - #
of G-graded rings is graded regular if every nonzero graded ideal of a graded
ring in Jf has a nonzero graded homomorphic image in Jf. In what follows
we will omit explicit definitions of graded concepts which are such obvious
generalizations of their ungraded counterparts.

In order to apply the results of [11] we must ensure that axioms Al to
A6 of that paper are satisfied in our category of G-graded rings. Checking
axioms Al to A5 is straightforward and Lemma 1 establishes A6, so we can
apply the results of [11] the main consequences of which we summarize in
the following theorem.

THEOREM 1. (i) (ADS) If 31 is a graded radical class and I is a graded
ideal of A, then 31(1) is an ideal of A.

(ii) If J[ is any class of G-graded rings, then there is a largest graded rad-
ical class %J! such that every ring in JK is %J? semisimple. When Jf is
graded regular, %M = {A\A is G-graded and no nonzero graded homomor-
phic image of A is in ^} .

(iii) Graded semisimple classes are graded hereditary and every graded iso-
morphism closed class of G-graded rings which is graded regular, graded coin-
ductive and graded extension closed is a graded semisimple class.
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(iv) The Kurosh lower graded radical construction stops at the first infinite
ordinal.

The graded prime radical of a G-graded ring A, fiG(A), is the intersection
of all the graded prime ideals of A (see [6]). As in the case of associative
rings, it can be shown that the class

PG = {A\A is G-graded and 0G(A) = A}

is the lower graded radical class determined by the class of G-graded nilpotent
rings. In fact, because our category includes all homomorphisms of degree
(e, g), for all g e G, one can show that fiG is the lower graded radical class
determined by the zero ring on the infinite cyclic group with trivial grading.
A graded radical class 31 is graded supernilpotent if PG C 31 and 31 is
graded hereditary.

A nonempty class ^ of G-graded rings is graded (weakly) special if (a)
J? consists of graded (semi) prime rings, (b) / e ^ whenever / is a nonzero
graded ideal of some A e 3? and (c) whenever 5 e J is a graded two-sided
essential ideal of a G-graded ring A , then A € X.

THEOREM 2. A graded radical class 31 is graded supernilpotent if and only
if 31 — %J! for some graded weakly special class Jf. In this case, for any
G-graded ring A, 31'(A) = n{ke r / | / : ^ - t i e / is a surjective graded
homomorphism }.

We omit the proof since it is a straightforward adaptation of the proof of
the corresponding theorem for associative rings which is due to Ryabukhin
(see, for instance, [14, Theorem 11.5]).

When J[ is a graded special class of rings, %JH is called graded spe-
cial. It follows from Theorem 2 that if M is graded special and A is %J?
semisimple, then A is isomorphic to a subdirect sum of graded prime rings
in J?.

A left ^-module M is a graded left A-module if M is the direct sum of
a family of submodules {Mg: g e G} and if AhM c M. for all h, g e G.
Graded bimodules are defined in a similar way.

A radical class 3£ of associative rings is normal if for every Morita context
(A,V,W,B), V3Z(B)W C SI (A) (equivalent^, W3l(A)V c Sf(B)).
The meaning of graded normal will be clear once we have denned the notion
of a graded Morita context: a Morita context (A, V, W, B), where A and
B are G-graded rings and V and W are graded bimodules, is a graded
Morita c o n t e x t i f VgWh C A g h a n d WhVg c B h g f o r a l l g , h e G .

Recall that a radical class 32 of associative rings is left strong if whenever
L is a left ideal of a ring A and L e 91, then L C 3?(A). Also, 3t is
principally left hereditary if a e A e 31 implies that Aa €. 31. Sands [12]
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[5] Radical theory for graded rings 147

has shown that 31 is normal if and only if 31 is left strong and principally
left hereditary.

We say that a graded radical class 31 is graded principally left hereditary
if for every A € 31 and every homogeneous element a e A , Aa € 31. Note
that in both the graded and ungraded case, Aa may not be a principal left
ideal of A if A does not have an identity.

THEOREM 3 (Sands). A graded radical class 31 is graded normal if and
only if 32 is left graded strong and graded principally left hereditary.

PROOF. Let A be a G-graded ring which does not have an identity, and
let A1 be the Dorroh extension of A . Then Ax can be G-graded by (A1)e —
{(a, n)\a e Ae, n e Z} and (Al)g = {(a, 0)\a € Ag} if g / e, and with

this grading A is a graded ideal of Ai . Also, if (A, V, W, B) is a graded
Morita context, then

A V

can be G-graded by defining

R~ ' W B

With these two remarks in mind it is easy to see how to adjust the arguments
in [12] in order to complete the proof.

The next proposition concerns one way in which graded radical classes
give rise to radical classes of associative rings.

PROPOSITION 1. Let 31 be a graded radical class of G-graded rings. Then
3i~l = {A\Al e 31} is a radical class of associative rings and if 31 is graded
hereditary {respectively, contains fiG, is graded supernilpotent, is graded spe-
cial, is graded normal) then &~' is hereditary (respectively, contains fi, is
supernilpotent, is special, is normal).

PROOF. The proof is straightforward and so we consider, as an example,
only the case of normality.

Assume that 31 is graded normal and (A, V, W, B) is a Morita context.
Then (A1, V1, W', B') is a graded Morita context where V' and W' have
trivial module gradings. Since 31 is graded normal Wt3l{At)Vt c 3t(Bl).
But since 3l(Xl) = {3?~'(X))' for all associative rings X, it follows that
W3l~l(A)V <Z31~\B) and SO 3l~l is normal.
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Restricted radical classes

Let 3Z be a radical class of associative rings. The restriction of 31 to our
category of G-graded rings is 3lG - {A\A is G-graded and A" e 31} . Note
that (31 ) ~ l =31 and so part of the next proposition follows directly from
Proposition 1.

PROPOSITION 2. Let 31 be a nonempty class of associative rings. Then
31 is a radical class if and only if 31° is a graded radical class and in this
case we have the following: for any G-graded ring A, MG(A) is the unique
largest graded ideal I of A such that /" e3l and, if 31 is hereditary, then
3lG(A) = (32(A))G. Moreover, 31 is hereditary {respectively, contains fi, is

supernilpotent) if and only if 31 is graded hereditary (respectively, contains
fiG, is graded supernilpotent).

We omit the straightforward proof of this proposition.
The graded prime radical class, the graded strongly prime radical class of

[10] and, when G is finite, the graded Jacobson radical class of [5] (see [6,
Theorem 4.4(1)]) are radical classes of this kind, as are the graded Levitzki
and graded von Neumann regular radical classes of [2].

We remark that the correspondence 31 —• 3lG is one-to-one, order pre-
serving and preserves lattice meets since if 31 ̂  and 3l2 are radical classes
of associative rings, 31 f r\3lG = (3$.\ C\312)

G. It is not in general, however,
a lattice homomorphism as the following simple example shows.

EXAMPLE 1. Let G = {e, a} be the cyclic group of two elements and let
A = Z2[X]/(X2) be G-graded as in [2, Example 3.10]; that is, Ae = {0, 1}
and Aa = {0, 1 + x} where 1 = 1 + (X2) and x = X + (X2). Clearly A is
graded simple.

Let 31 x = fi and let 3l2 be the radical class of associative rings which con-
sists of all Boolean rings. Since Au <£ 3l2 , 3lG(A) = 3ZG(A) = 0. However,
A" 6 L(32X \J3l2) which is the join, J , v 3 i 2 , of Mx and 3Z2 in the lattice
of radical classes of associative rings. It follows that (3t\ V312)

G ^ 3lG\l3l2

where the second V denotes the join in the lattice of G-graded radical classes.

THEOREM 4. Let 31 be a radical class of associative rings. Then 31 is
special (respectively, normal) if and only if 3?G is graded special (respectively,
graded normal).

PROOF. First assume that 31 is special, say 31 = %3° where 3s is a.
special class of associative rings. Let J£ = {A\A is graded prime and
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3lG{A) = 0 } . It is straightforward to check that 3? is a graded special
class, and since 3lG{A) = 0 for all A e JT, 3lG c WC.

Suppose that A is G-graded and 3ZG{A) = 0 . Let 31 {A) = n{Px:X e
A} where A/Px is in 3s for all A e A. Each (PX)G is graded prime [6,
Lemma 5.1] and since 31 is hereditary (3£(A))G = 3lG{A) = 0 and hence
n{(Px)G: X e A} = 0. Since PJ{PX)G is an ideal of A/(PX)G and 3?(A/PX) =
0, we must have

3!{AI{PX)G)<ZPXI{PX)G.

Now 3?G(A/(PX)G) C 3?(A/(PX)G) and so 3?G(A/(PX)G) C PA/(PA)G from
which it follows that 31 (A/(PX)G) = 0 because 0 is the only graded ideal
of A/(PX)G which is contained in PJ(PX)G • This shows that each factor
A/(PX)G is in ^ , so WT(A) = 0 and 3lG = WP as required.

Now assume that 31 is normal and let (A, V, W, B) be a graded Morita
context. Since (<!%G(B))U is an ideal of B which is in 31 it follows from
[8, Corollary 6] that Vu{3lG{B))uWu = (V3ZG{B)W)U is in 31. Now, since
V3lG{B)W is a graded ideal of A , V3lG(B)W c ^G(v4). Hence 3lG is
graded normal.

The converse follows from Proposition 1 because {31 ) ~ l = 31.

If 31 is a radical class and 3lC\fi = {0} (that is, 31 contains no nonzero
nilpotent rings), then any nonzero graded homomorphism with domain A €
3lG must have degree (g, g~l) for some g € G. From this we see that if
H is a normal subgroup of G, then

MH = {A\A is G-graded, A = AH and A* € 31}

is closed under graded homomorphic images. It is easy to check the other
two conditions required to show that 3tH is a graded radical class. Also,
from Theorem 1 (iii) it is clear that if 32 is a semisimple class, then 3lH is
a graded semisimple class.

Now suppose that 31 is a radical semisimple class of associative rings (see
[7]). From the above remarks we see that for each normal subgroup H of
G, 3lH is a graded radical graded semisimple class. Thus we have a large
supply of graded radical graded semisimple classes, but the question of how
to characterize such classes remains open.

Reflected radical classes

Reflected radical classes were introduced in [2] where graded rings were
studied in the category which contained only those homomorphisms of degree
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(e, e). The results of that paper, and of [3] and [4], remain valid in our
category, but not conversely: for instance, it is shown in [9, Theorem 2.2]
that if G / {e} , then there is a radical class in the category of G-graded rings
and homomorphisms of degree (e, e) which is not on ADS radical class.

In order to define reflected radical classes we recall the definition of the
smash product [1]. If 4̂ is G-graded, the smash product A#G* is the free left
,4-module ®{Apg: g e G} with an associative multiplication which satisfies
aPgbPh = abgh-xPh f ° r au< a > b e A, and g, h e G (here bgh-\ is the gh~l

component of b). For any class W of associative rings, the reflected class is
g?ef = {A\A is G-graded and A#G* e W} .

PROPOSITION 3. Let 3% be a radical class of associative rings. Then 3ln{

is a graded radical class and 3lK{ is graded hereditary (respectively, con-
tains PG, is graded supernilpotent) if and only if 31 is hereditary (respec-
tively, contains /?, is supernilpotent). Moreover, for any G-graded ring A,
3?ie{(A)#G* = 3Z(A#G*).

PROOF. Suppose A and B are G-graded rings and f:A -> B is a surjec-
tive graded homomorphism of degree (gx, g2) • Consider the additive map
f : A # G * - + B # G * w h i c h s a t i s f i e s f ( a g p h ) = f { a g ) p h f o r g , h e G

and a e Ag. To see that f* is multiplicative we need to show that
f((agPh){akPy)) = r(agPh)f(axpy) and this amounts to showing that

Since (f(A))2 = 0 if g^g^ we can assume that g^gj1 • If f(ag{ox)hy-i)

^ 0, then (ax)hy-x ± 0 and so hy~l = X. Also if / ( ^ ) ( / ( a A ) ) ^ 7 - v # 0 ,

then (f(ax)) h -i -i ^ 0 and so gx^g2 = gxhy~xg,"1 from which it follows,

since gx = g2
l, that hy~l = X. Hence, if either side of the equation (*) is

nonzero we have gx = g2
l and hy~l —k. In this case it is clear that (*) is

true.
The foregoing implies that £%Ki is closed under graded homomorphic im-

ages and it is straightforward to complete the verification that 3lrti is a
graded radical class.

It is clear that if 32 is hereditary (respectively, 31 D fi), then 3i.'ref is
graded hereditary (respectively, contains fiG). In view of Proposition 1, the
converse will follow once we show that (&re{)~' = 3Z • Suppose A e ( ^ r e f ) ' •
Then A'#G* e 31 and since A'#G* is isomorphic to a direct sum of copies
of A, A € 31. On the other hand, A e 3? implies A'#G* e 31 since 31 is
closed under direct sums and so A e (3lKf)~

l.
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The last statement in the proposition is [2, Proposition 1.3].

PROPOSITION 4. The map 32 -»• 32Kf is an embedding of the lattice of
radical classes of associative rings as a sublattice of the lattice of graded radical
classes.

PROOF. Let ^ and 'V be radical classes of associative rings.
From the last part of the proof of Proposition 3 we see that if ^ref = 3^ef

then V = "V because in general we have 32 = {32K{)~'. Also, it is clear
that &;ef n ^ e f = ( ^ n ^ ) r e f . Moreover, since V V 'V is the lower radical
class determined by ^ U 'V and ^ref V 2^f is the lower graded radical class
determined by ^ref U Tni, we see that (2f V V~)ie{ D &Kf v TKi.

Let A be a G-graded ring in ( ^ V V~)Tef. Then A#G* z ^ W and so
either %{A#G*) ^ 0 or ^(A#G*) # 0. This means that ^ is not both ^ref

semisimple and 2̂ "ef semisimple; so ^ is not ^ref V ^ f semisimple. From
this it follows that ( ^ V 2^)ref C ^ref v 2^ef and the proof is complete.

THEOREM 5. Let £% be a radical class of associative rings. Then 31 Ki is
graded special {respectively, graded normal) if and only if 3% is special {re-
spectively, normal).

PROOF. First assume that 31 is special, say 32 = %3* where 3s is
a special class of associative rings. Let 3£ = {A\A is graded prime and
31{A#G*) = 0} . It is straightforward to check that 3f is a graded special
class, and since 3lKi{A) = 0 for all AeJT, 3Zrei c %3?.

Suppose that A is G-graded and 3lref{A) = 0. Then &{A#G*) = 0 and
so there are prime ideals P^: k e A of A#G* such that f){Px:X e A} = 0 and
{A#G*)/PX e 3» for all X e A. For each A e A define /»/ = {a e ^|ap^ e PA

for all g e G } . As in [2], the P\ are graded prime ideals of A and since
/>/#(?• C PA for all X 6 A, n{P/: A e A} = 0. For each A e A,

<*3?{{A#G*)/{P{#G*)) c PJ{Pi
x#G*).

From this it follows that if a + p / is in SP^A/PJ;), then d/?? e PA for

all g e G. Hence 3tKi{AIP\) = 0 and we see that (^/P/) e 3?. Since

nP/ = 0, ^3^{A) = 0 and so 31 = W3? as required.
Now assume that 32 is normal. Since 31 is left strong it follows easily

that 3lni is left graded strong. We now verify that 32ref is graded principally
left hereditary.
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Let a be a homogeneous element in A where A e 32te{. Then Aaph =
(A#G*)aph and so because A#G* £31 and & is principally left hereditary,
Aaph e 31. Also, since 32 is left strong and Aaph is a left ideal of Aa#G*,

Aaph C 3?(Aa#G*). Now, Aa#G* = T,{AaPh:h e G} a n d h e n c e Aa#G* G
^ . Thus Aa e ^"ref and so 32Tef is graded principally left hereditary.

It now follows from Theorem 3 that 3ZKi is graded normal.
Since (^ref)~' = 31, the converse is a consequence of Proposition 1.

Postscript

It follows from Theorem 4 that the graded strongly prime, the graded prime
and the graded Levitzki radical classes are all graded special, and that the last
two of these radical classes are graded normal. Since the graded Jacobson
radical class is /ref (see [2, Proposition 2.2]), where / is the Jacobson radical
class, it follows from Theorem 5 that the graded Jacobson radical class is a
graded special, graded normal radical class.

However, it is easy to find examples of graded radical classes to which
Theorems 4 and 5 do not apply. Consider, for instance, the upper graded
radical class 3t = %Jf where J? is the class of all G-graded rings with
trivial grading. Clearly 3Tl = {0} and 31 ^ {0} , so 31 is not a restricted
or a reflected radical class. In conclusion, we consider one further example
of such a radical class: the graded Brown-McCoy radical class &G of [2].

For any G-graded ring A, S?G(A) = n{/|7 is a graded ideal of A and
A/I is a graded simple ring with identity}. Let 3T = {A\A is a graded
simple ring with identity}. Then 3? is a graded special class and so $£% is
a graded special radical class. Clearly WP{A) C &G{A) and Sulinski's proof
for associative rings (see, for example, [14, Theorem 39.2]) generalizes to the
graded case to show that &G{A) c f/S?{A). Thus &G - %3£ is a graded
special radical class. Also, since {8?G)~' is the Brown-McCoy radical class
t§ which is not normal, it follows from Proposition 1 that %?G is not graded
normal.

When G is finite, &G = &Ki [2, Theorem 3.6] and so &G is a reflected
graded radical class. However, in general 2*G is not a restricted or a reflected
radical class.

PROPOSITION 5. If G is the group of integers, then &G is not a restricted
or a reflected radical class.

PROOF. Let 31 be a radical class of associative rings. Since {31 )~' =
31 and {&G)~' = 9 it follows that &G ^ 32G because ^G ^ &G (this is
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[11] Radical theory for graded rings 153

established in [2, Proposition 3.5] using an example of a Z-graded ring from
[5, example following Lemma 12]). Similarly, since (^ref)~' = 31 we see
that &G # <^ref because &G ± &K{ [2, Theorem 3.6].
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