# ON THE CESÀRO-PERRON INTEGRAL 

M.K. Bose and B. Ghosh

In the present paper a simple proof of a theorem of Sargent on $C_{\lambda} P$-integral of Burkill is given.

## 1. Introduction

Sargent [3] has defined the $C_{\lambda} D$-integral ( $\lambda$ being a non-negative integer) and has shown that the $C_{\lambda} D$-integral is equivalent to the $C_{\lambda} P$-integral of Burkill [1]. But there is a defect in the proof of the following theorem:

Theorem 1.1. (Theorem VIII, Sargent [3], p.237). If $f$ is $C_{\lambda} P$-integrable on $[a, b]$, then $f$ is $C_{\lambda} D$-integrable on $[a, b]$ and

$$
\left(C_{\lambda} D\right) \int_{a}^{b} f=\left(C_{\lambda} P\right) \int_{a}^{b} f
$$

(For definitions of $C_{\lambda} D$-integrable and $C_{\lambda} D$-integrable, see Section 2.)
Verblunsky [5] has given a correct proof of this theorem. But his proof is very long and difficult. Here we give a simple and short proof.

We use the notation $|E|$ for the Lebesgue outer measure of a set $E$ and $f^{\prime}$ for the derivative of the function $f$.

## 2. Preliminaries

Let the real valued function $F$ be $C_{\lambda-1} P$-integrable $(\lambda \geqslant 1)$ on $[a, b]$.
Definition 2.1: (Burkill [1], p.541). The $\lambda$ th Cesàro mean of $F$ on $[a, b]$, $C_{\lambda}(F, a, b)$ is defined as follows:

$$
C_{\lambda}(F, a, b)=\frac{\lambda}{(b-a)^{\lambda}}\left(C_{\lambda-1} P\right) \int_{a}^{b}(b-t)^{\lambda-1} F(t) d t .
$$

If $\lambda=0$, then $C_{0}(F, a, b)$ is defined to be equal to $F(b)$.

[^0]Definition 2.2: (Burkill [1], p.542). The function $F$ is said to be $C_{\lambda}$-continuous at $x$ if

$$
\lim _{h \rightarrow 0} C_{\lambda}(F, x, x+h)=F(x)
$$

Definition 2.3: (Burkill [1], p.542). The upper right $C_{\lambda}$-derivate of $F$ at $x$, $C_{\lambda} D^{+} F(x)$, is defined as follows:

$$
C_{\lambda} D^{+} F(x)=\limsup _{h \rightarrow 0+} \frac{C_{\lambda}(F, x, x+h)-F(x)}{h /(\lambda+1)}
$$

The other derivates $C_{\lambda} D_{+} F(x), C_{\lambda} D^{-} F(x), C_{\lambda} D_{-} F(x)$ have the corresponding definitions. The upper and lower $C_{\lambda}$-derivatives $\overline{C_{\lambda} D} F(x), \underline{C_{\lambda} D} F(x)$ are defined to be $\max \left\{C_{\lambda} D^{+} F(x), C_{\lambda} D^{-} F(x)\right\}$ and $\min \left\{C_{\lambda} D_{+} F(x), C_{\lambda} D_{-} F(x)\right\}$ respectively. If

$$
\overline{C_{\lambda} D} F(x)=\underline{C_{\lambda} D} F(x)
$$

then $F$ is said to have a $C_{\lambda}$-derivative $C_{\lambda} D F(x)$, equal to their common value.
Definition 2.4: (Sargent [3], p.221.) The function $F$ is said to be $A C^{*}\left(C_{\lambda}\right.$-sense) above over a set $E \subset[a, b]$ if to every $\varepsilon>0$, there exists a positive number $\delta$ such that for every set of non-overlapping open intervals $\left\{\left(a_{r}, b_{r}\right)\right\}$ having end points in $E$ with

$$
\sum_{r}\left(b_{r}-a_{r}\right)<\delta,
$$

the relations

$$
\begin{equation*}
\sum_{r} \sup _{a_{r}<x<b_{r}}\left\{C_{\lambda}\left(F, a_{r}, x\right)-F\left(a_{r}\right)\right\}<\varepsilon \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{r} \sup _{a_{r}<x<b_{r}}\left\{F\left(b_{r}\right)-C_{\lambda}\left(F, b_{r}, x\right)\right\}<\varepsilon \tag{2}
\end{equation*}
$$

hold.
If in the above definition the relations (1) and (2) are replaced by ( $1^{\prime}$ ) and ( $2^{\prime}$ ) as follows:

$$
\begin{align*}
& \sum_{r} \inf _{a_{r}<x<b_{r}}\left\{C_{\lambda}\left(F, a_{r}, x\right)-F\left(a_{r}\right)\right\}>-\varepsilon  \tag{1'}\\
& \sum_{r} \inf _{a_{r}<x<b_{r}}\left\{F\left(b_{r}\right)-C_{\lambda}\left(F, b_{r}, x\right)\right\}>-\varepsilon
\end{align*}
$$

then $F$ is said to be $A C^{*}\left(C_{\lambda}\right.$-sense $)$ below on $E \subset[a, b]$.

If $F$ is both $A C^{*}\left(C_{\lambda}\right.$-sense) above and $A C^{*}\left(C_{\lambda}\right.$-sense $)$ below over $E \subset[a, b]$, then $F$ is said to be $A C^{*}\left(C_{\lambda}\right.$-sense $)$ over $E$.

Definition 2.5: (See Sargent [3], p.222.) The function $F$ is said to be $A C G^{*}$ ( $C_{\lambda}$-sense) on $[a, b]$ if $[a, b]$ is expressible as the union of a countable number of sets over each of which $F$ is $A C^{*}\left(C_{\lambda}\right.$-sense).

Definition 2.6: (Verblunsky [5], p.326.) The function $F$ defined on a set $E$ is said to be $V B_{\lambda}^{*}$ on $E$, if there exists a constant $K$ such that for any set of nonoverlapping intervals $\left\{\left(a_{i}, b_{i}\right)\right\}$ whose end points are in $E$,

$$
\begin{aligned}
\sum_{i} & \sup _{a_{i}<x<b_{i}}\left|C_{\lambda}\left(F, a_{i}, x\right)-F\left(a_{i}\right)\right| \\
& +\sum_{i} \sup _{a_{i}<x<b_{i}}\left|F\left(b_{i}\right)-C_{\lambda}\left(F, b_{i}, x\right)\right|<K
\end{aligned}
$$

Definition 2.7: (Saks [2], p.224). A function $G$ is said to fulfil the Lusin's condition ( $N$ ) on a set $E$, if for every set $H \subset E$ of measure zero, $G(H)$ is a set of measure zero.

Definition 2.8: (Burkill [1], p.548). Let $f$ be án extended real valued function on $[a, b]$.

Then $M$ is said to be a $C_{\lambda} P$-major function of $f$ on $[a, b]$ if
(i) $M$ is $C_{\lambda}$-continuous on $[a, b]$,
(ii) $M(a)=0$,
(iii) $C_{\lambda} D M(x)>-\infty$ for all $x \in[a, b]$,
(iv) $C_{\lambda} D M(x) \geqslant f(x)$ for all $x \in[a, b]$.

In a similar manner, a $C_{\lambda} P$-minor function $m$ of $f$ on $[a, b]$ is defined.
The function $f$ is said to be $C_{\lambda} P$-integrable on $[a, b]$ if
(i) it has at least one $C_{\lambda} P$-major function $M$ and at least one $C_{\lambda} P$-minor function $m$ and
(ii) $\inf \{M(b)\}=\sup \{m(b)\}$.

If $f$ is $C_{\lambda} P$-integrable on $[a, b]$, the common value $\inf \{M(b)\}=\sup \{m(b)\}$ is called the $C_{\lambda} P$-integral of the function $f$ on $[a, b]$ and is denoted by

$$
\left(C_{\lambda} P\right) \int_{a}^{b} f
$$

Definition 2.9: (Sargent [3], p.232). The function $f$ is said to be $C_{\lambda} D$-integrable on $[a, b]$ if there exists a function $F$ on $[a, b]$ such that
(i) $F$ is $C_{\lambda}$-continuous,
(ii) $F$ is $A C G^{*}\left(C_{\lambda}\right.$-sense)
and
(iii) $C_{\lambda} D F(x)=f(x)$ almost everywhere.

Theorem 2.1. (Lemma 3, Verblunsky [5], p.328). If $f$ is $C_{\lambda} P$-integrable on $[a, b]$ and

$$
F(x)=\left(C_{\lambda} P\right) \int_{a}^{x} f
$$

then $[a, b]$ is the union of closed sets on each of which $F$ is $V B_{\lambda}^{*}$.
Thedrem 2.2. (Theorem 2, Sargent [4], p.120). If $F$ is $C_{\lambda}$-continuous on [a, b], $F(a)>0$ and $F(b)<0$, then there is a point $c \in(a, b)$ such that $F(c)=0$.

THEOREM 2.3. (Theorem 6.5, Saks [2], p.227). If a function $G$ is derivable at every point of a measurable set $D$, then

$$
|G(D)| \leqslant \int_{D}\left|G^{\prime}\right|
$$

Theorem 2.4. (Theorem II, Sargent [3], p.226). For $F$ to be $A C^{*}\left(C_{\lambda}\right.$-sense) over a bounded closed set $Q$ with complementary intervals $\left\{\left(a_{n}, b_{n}\right)\right\}$, it is necessary and sufficient that $F$ should be absolutely continuous over $Q$ and $C_{\lambda-1} D$-integrable on each interval ( $a_{n}, b_{n}$ ), while

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \sup _{a_{n}<x<b_{n}}\left|C_{\lambda}\left(F, a_{n}, x\right)-F\left(a_{n}\right)\right|<\infty \\
& \sum_{n=1}^{\infty} \sup _{a_{n}<x<b_{n}}\left|C_{\lambda}\left(F, b_{n}, x\right)-F\left(b_{n}\right)\right|<\infty
\end{aligned}
$$

## 3. Proof of Theorem 1.1

Let $f$ be $C_{\lambda} P$-integrable on the closed interval $[a, b]$ with

$$
F(x)=\left(C_{\lambda} P\right) \int_{a}^{x} f
$$

It is sufficient to prove that $F$ is $A C G^{*}\left(C_{\lambda}\right.$-sense $)$ on $[a, b]$. We first show that $F$ satisfies Lusin's condition ( $N$ ).

Consider a set $E \subset[a, b]$ with $|E|=0$. For arbitrary $\varepsilon>0$, let $M$ and $m$ be a pair of $C_{\lambda} P$-major and minor functions of $f$ on $[a, b]$ with $H(b)<\varepsilon$ where $H=M-m$. For every natural number $n$, let $E_{n}$ denote the set of points $\boldsymbol{x}$ of $E$ such that

$$
\begin{aligned}
& \frac{\lambda+1}{h}\left[C_{\lambda}(M, x, x+h)-M(x)\right]>-n \\
& \frac{\lambda+1}{h}\left[C_{\lambda}(m, x, x+h)-m(x)\right]<n
\end{aligned}
$$

whenever $0<|h| \leqslant 1 / n$. Then the sequence $\left\{E_{n}\right\}$ is expanding and $E=\bigcup_{n=1}^{\infty} E_{n}$. Again $E_{n}=\bigcup_{i=-\infty}^{\infty} E_{n}^{i}$, where

$$
E_{n}^{i}=E_{n} \cap\left[\frac{i}{n}, \frac{i+1}{n}\right]
$$

It is easy to show that if $\left\{\left(a_{k}, b_{k}\right)\right\}$ is a sequence of pairwise disjoint open intervals having end points in $E_{n}^{i}$ with

$$
\sum_{k}\left(b_{k}-a_{k}\right)<\frac{(\lambda+1) \varepsilon}{n 2^{|i|}}
$$

then $\sum_{k} \sup _{a_{k}<x<b_{k}}\left|C_{\lambda}\left(F, a_{k}, x\right)-F\left(a_{k}\right)\right|+\sum_{k} \sup _{a_{k}<x<b_{k}}\left|C_{\lambda}\left(F, b_{k}, x\right)-F\left(b_{k}\right)\right|$

$$
<2\left[\frac{\varepsilon}{2^{|i|}}+\sum_{k}\left\{H\left(b_{k}\right)-H\left(a_{k}\right)\right\}\right],
$$

and hence

$$
\begin{equation*}
\sum_{k}\left|F\left(b_{k}\right)-F\left(a_{k}\right)\right|<2\left[\frac{\varepsilon}{2^{|i|}}+\sum_{k}\left\{H\left(b_{k}\right)-H\left(a_{k}\right)\right\}\right] . \tag{3}
\end{equation*}
$$

Since $\left|E_{n}^{i}\right|=0$, there exists a sequence $\left\{I_{k}^{i}\right\}$ of pairwise disjoint open intervals contained in $[1 / n,(i+1) / n]$ such that $\bigcup_{k} I_{k}^{i}$ covers $E_{n}^{i} \cap(i / n,(i+1) / n)$ and

Then

$$
\begin{gathered}
\sum_{k}\left|I_{k}^{i}\right|<\frac{(\lambda+1) \varepsilon}{n 2^{|i|}} \\
\left|F\left(E_{n}^{i}\right)\right| \leqslant \sum_{k}\left|F\left(E_{n}^{i} \cap I_{k}^{i}\right)\right| .
\end{gathered}
$$

We write $I_{k}^{i}=\left(a_{k}^{i}, b_{k}^{i}\right)$. Since $\left|F\left(E_{n}^{i} \cap I_{k}^{i}\right)\right|$ cannot exceed the oscillation of $F$ on $E_{n}^{i} \cap I_{k}^{i}$ and since $H$ is non-decreasing, from (3) it follows that

$$
\left|F\left(E_{n}^{i}\right)\right|<2\left[\frac{\varepsilon}{2^{|i|}}+\sum_{k}\left\{H\left(b_{k}^{i}\right)-H\left(a_{k}^{i}\right)\right\}\right] .
$$

Therefore

$$
\begin{aligned}
\left|F\left(E_{n}\right)\right| & \leqslant \sum_{i=-\infty}^{\infty}\left|F\left(E_{n}^{i}\right)\right| \\
& \leqslant 2\left[3 \varepsilon+\sum_{i=-\infty}^{\infty} \sum_{k}\left\{H\left(b_{k}^{i}\right)-H\left(a_{k}^{i}\right)\right\}\right] \\
& \leqslant 6 \varepsilon+2\{H(b)-H(a)\} \\
& <8 \varepsilon
\end{aligned}
$$

Since $\left\{E_{n}\right\}$ is expanding, it follows that

$$
|F(E)|=\left|\bigcup_{n=1}^{\infty} F\left(E_{n}\right)\right|=\lim _{n}\left|F\left(E_{n}\right)\right| \leqslant 8 \varepsilon
$$

and hence $|F(E)|=0$. Thus $F$ satisfies Lusin's condition ( $N$ ).
Next we use Theorem 2.1, by which $[a, b]$ is the union of closed sets $Q_{n}$ on each of which $F$ is $V B_{\lambda}^{*}$. We now fix $Q_{n}$. Let $[c, d]$ be the smallest closed interval containing $Q_{n}$ and let $\left\{\left(c_{r}, d_{r}\right)\right\}$ be the complementary intervals of $Q_{n}$. Since $F$ is $V B_{\lambda}^{*}$ on $Q_{n}$, it is $V B$ on it and

$$
\begin{align*}
\sum_{r} & \sup _{c_{r}<x<d_{r}}\left|C_{\lambda}\left(F, c_{r}, x\right)-F\left(c_{r}\right)\right|  \tag{4}\\
& +\sum_{r} \sup _{c_{r}<x<d_{r}}\left|C_{\lambda}\left(F, d_{r}, x\right)-F\left(d_{r}\right)\right|<\infty .
\end{align*}
$$

Let $G(x)=F(x)$ on $Q_{n}$ and linear on each closed interval $\left[c_{r}, d_{r}\right]$. Then $G$ is $V B$ on $[c, d]$ and hence $G^{\prime}$ exists finitely almost every where on $[c, d]$. Since $F$ is $C_{\lambda}$-continuous on $[a, b], G$ is so on $[c, d]$. For any interval $[\alpha, \beta] \subset[c, d]$, let

$$
D=\left\{x \in[\alpha, \beta]: G^{\prime}(x) \text { exists finitely }\right\}
$$

and

$$
H=[\alpha, \beta]-D
$$

Then $|H|=0$. Again since $F$ satisfies Lusin's condition (N) on $[a, b], G$ does so on $[c, d]$ and hence $|G(H)|=0$. Now

$$
\begin{aligned}
|G(\beta)-G(\alpha)| & \leqslant|G[\alpha, \beta]| \quad \text { (by Theorem 2.2) } \\
& \leqslant|G(H)|+|G(D)| \\
& =|G(D)| \\
& \leqslant \int_{\alpha}^{\beta}\left|G^{\prime}\right| \quad \text { (by Theorem 2.3). }
\end{aligned}
$$

This implies that $G$ is absolutely continuous on $[c, d]$. Hence $F$ is absolutely continuous on $Q_{n}$. Therefore by (4) and Theorem 2.4, $F$ is $A C^{*}\left(C_{\lambda}\right.$-sense) on $Q_{n}$. Thus $F$ is $A C G^{*}\left(C_{\lambda}\right.$-sense) on $[a, b]$. This completes the proof.

## References

[1] J.C. Burkill, 'The Cesàro-Perron scale of integration', Proc. London Math. Soc. 39 (1935), 541-552.
[2] S. Saks, Theory of integral (Warsaw, 1937).
[3] W.L.C. Sargent, 'A descriptive definition of Cesàro-Perron integrals', Proc. London Math. Soc. (2) 47 (1941), 212-247.
[4] W.L.C. Sargent, 'Some properties of $C_{\lambda}$-continuous functions', J. London Math. Soc. 26 (1951), 116-121.
[5] S. Verblunsky, 'On a descriptive definition of Cesàro-Perron integrals', J. London Math. Soc. 3 (1971), 326-333.

Department of Mathematics
University of North Bengal
Darjeeling - 734430
West Bengal
India


[^0]:    Received 25 June 1990
    Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.

