OSCULATING SPAGES

PETER SCHERK

In this paper an attempt is made to prove some of the basic theorems on the osculating spaces of a curve under minimum assumptions. The natural approach seems to be the projective one. A duality yields the corresponding results for the characteristic spaces of a family of hyperplanes. A duality theorem for such a family and its characteristic curve also is proved. Finally the results are applied to osculating hyperspheres of curves in a conformal space.

The analytical tools are collected in the first three sections. Some of them may be of independent interest.

1. On Taylor's theorem. The following version of Taylor's theorem should be known. For the convenience of the reader, we include a proof.

In this paper, the symbol I always denotes an interval on the real axis. It may be open or closed. If $t_{0} \in I$, put

$$
J=\left\{h \mid t_{0}+h \in I\right\} ; \quad \text { thus } 0 \in J
$$

"Neighbourhoods" are neighbourhoods on I respectively J.
Theorem 1.1. Let $f(t)$ be defined in I and p-times differentiable at $t_{0} \in I$; $p>0$. Then

$$
\begin{aligned}
f\left(t_{0}+h\right)=f\left(t_{0}\right)+\frac{h}{1!} f^{\prime}\left(t_{0}\right)+\ldots & +\frac{h^{p-1}}{(p-1)!} f^{(p-1)}\left(t_{0}\right) \\
& +\frac{h^{p}}{p!}\left(f^{(p)}\left(t_{0}\right)+\epsilon(h)\right) ; \lim _{h \rightarrow 0} \epsilon(h)=0 .
\end{aligned}
$$

Proof. The function

$$
\dot{\phi}(\dot{h})=f\left(t_{0}+h\right)-\left(f\left(t_{0}\right)+\frac{h}{1!} f^{\prime}\left(t_{0}\right)+\ldots+\frac{h^{p}}{p!} f^{(p)}\left(t_{0}\right)\right)
$$

is defined in J and p-times differentiable at $h=0$. It satisfies

$$
\begin{equation*}
\phi(0)=\phi^{\prime}(0)=\ldots=\phi^{(p)}(0)=0 . \tag{1.1}
\end{equation*}
$$

Apply Taylor's theorem to $\phi(h)$ with $p-1$ instead of p. Thus there exists a $\theta=\theta(h)$ with $0<\theta<1$ such that

$$
\phi(h)=\frac{h^{p-1}}{(p-1)!} \phi^{(p-1)}(\theta h) .
$$

Received October 12, 1961.

Since $\phi^{(p-1)}(h)$ is still differentiable at $h=0$, (1.1) implies

$$
\phi^{(p-1)}(h)=\phi^{(p-1)}(0)+h \eta(h)=h \eta(h)
$$

where

$$
\lim _{h \rightarrow 0} \eta(h)=\phi^{(p)}(0)=0 .
$$

Replacing h by θh we obtain

$$
\phi(h)=\frac{h^{p-1}}{(p-1)!} \cdot \theta h \cdot \eta(\theta h)=\frac{h^{p}}{p!} \epsilon(h), \quad \lim _{h \rightarrow 0} \epsilon(h)=0 .
$$

This proves Theorem 1.1.
If we put $\epsilon(0)=0$, the function $\epsilon(h)$ will be continuous in J. The same applies to the functions

$$
\epsilon_{m}(h)=h^{m} \epsilon(h) ; \quad m=0,1, \ldots, p
$$

The function

$$
\epsilon_{p}(h)=p!\phi(h)
$$

was p-times differentiable at $h=0$ and satisfied

$$
\begin{equation*}
\epsilon_{p}(0)=\epsilon_{p}^{\prime}(0)=\ldots=\epsilon_{p}^{(p)}(0)=0 \tag{1.2}
\end{equation*}
$$

It will be differentiable in some neighbourhood of the origin.
We require the case $m=p-1$ of the following remark.
Theorem 1.2. Let $p>1,1 \leqslant m \leqslant p-1$. Then $\epsilon_{m}(h)$ is m-times continuously differentiable at $h=0$ and satisfies

$$
\epsilon_{m}(0)=\epsilon_{m}^{\prime}(0)=\ldots=\epsilon_{m}^{(m)}(0)=0 .
$$

Proof. Applying Theorem 1.1 to $\epsilon_{p}{ }^{\prime}(h)$, we obtain on account of (1.2)

$$
\epsilon_{p}^{\prime}(h)=h^{p-1} \delta(h) \quad \text { where } \quad \lim _{h \rightarrow 0} \delta(h)=\delta(0)=0
$$

Put

$$
\delta_{m}(h)=h^{m} \delta(h) ; \quad m=0,1, \ldots, p-1 .
$$

We first verify that in some neighbourhood of the origin

$$
\begin{equation*}
\epsilon_{m}^{\prime}(h)=\delta_{m-1}(h)-(p-m) \epsilon_{m-1}(h) ; \quad m=1,2, \ldots, p-1 . \tag{1.3}
\end{equation*}
$$

The right-hand term vanishes at $h=0$. On the other hand

$$
\epsilon_{m}^{\prime}(0)=\lim _{h \rightarrow 0} \frac{\epsilon_{m}(h)-\epsilon_{m}(0)}{h}=\lim _{h \rightarrow 0} \frac{\epsilon_{m}(h)}{h}=\lim _{h \rightarrow 0} \epsilon_{m-1}(h)=0 .
$$

Now let $h \neq 0$. Then

$$
\begin{aligned}
\epsilon_{m}^{\prime}(h)=\left(\frac{1}{h^{p-m}} \epsilon_{p}(h)\right)^{\prime} & =\frac{1}{h^{p-m}} \epsilon_{p}^{\prime}(h)-\frac{p-m}{h^{p-m+1}} \epsilon_{p}(h) \\
& =h^{m-1} \delta(h)-(p-m) h^{m-1} \epsilon(h) .
\end{aligned}
$$

This yields (1.3).

For $m=1$, (1.3) implies

$$
\epsilon_{1}^{\prime}(h)=\delta(h)-(p-1) \epsilon(h) .
$$

The right-hand term being continuous and zero at the origin, the same holds true of $\epsilon_{1}{ }^{\prime}(h)$.

Suppose Theorem 1.2 has been proved up to $m-1$. Then either of the two functions in the right-hand term of (1.3) is ($m-1$)-times continuously differentiable at $h=0$ and vanishes there together with its derivatives up to the order $m-1$. The same will therefore apply to $\epsilon_{m}{ }^{\prime}(h)$. This proves our theorem for m.
2. Divided differences. Suppose the function $f(t)$ is defined in the interval $I ; t_{0}, t_{1}, \ldots$ lie in I and are mutually distinct. The divided differences of $f(t)$ are defined through

$$
\left\{\begin{array}{l}
{\left[t_{0}\right]=f\left(t_{0}\right)} \tag{2.1}\\
{\left[t_{0} t_{1} \ldots t_{p}\right]=\frac{\left[t_{0} t_{1} \ldots t_{p-1}\right]-\left[t_{1} \ldots t_{p-1} t_{p}\right]}{t_{0}-t_{p}} ; \quad p=1,2, \ldots .}
\end{array}\right.
$$

The divided differences of another function $g(t)$ are denoted by

$$
\left[t_{0} t_{1} \ldots t_{p}\right]_{g}
$$

The following well-known formula is readily verified by induction:

$$
\begin{equation*}
\left[t_{0} t_{1} \ldots t_{m}\right]=\sum_{k=0}^{m}\left\{\left[t_{k}\right] / \prod_{\substack{i=0 \\ i \neq k}}^{m}\left(t_{k}-t_{i}\right)\right\} ; \quad m=1,2, \ldots \tag{2.2}
\end{equation*}
$$

The following mean value theorem also is known: Let $f(t)$ be p-times differentiable in I. Then

$$
\left\{\begin{array}{l}
{\left[t_{1} \ldots t_{p+1}\right]=f^{(p)}(\tau) / p!} \tag{2.3}\\
\operatorname{Min}\left(t_{1}, \ldots, t_{p+1}\right)<\tau<\operatorname{Max}\left(t_{1}, \ldots, t_{p+1}\right)
\end{array}\right.
$$

cf. (1).
We need
Theorem 2.1. Let $f(t)$ be p-times differentiable at $t_{0} ; p>0$. Then

$$
\lim _{t_{1} \ldots, t_{p \rightarrow t_{0}}}\left[t_{0} t_{1} \ldots t_{p}\right]=\frac{f^{(p)}\left(t_{0}\right)}{p!} .
$$

Proof. We may assume $p>1$. Put

$$
g(t)=\left\{\begin{array}{lll}
\frac{f(t)-f\left(t_{0}\right)}{t-t_{0}} & t \neq t_{0} \\
f^{\prime}\left(t_{0}\right) & \text { if } & t=t_{0}
\end{array}\right.
$$

By Theorem 1.1

$$
g\left(t_{0}+h\right)=\sum_{1}^{p} \frac{h^{n-1}}{n!} f^{(n)}\left(t_{0}\right)+\frac{h^{p-1}}{p!} \epsilon(h) .
$$

By Theorem 1.2, the function $h^{p-1} \epsilon(h)$ is ($p-1$)-times continuously differentiable at $h=0$. It vanishes there together with its derivatives up to the order $p-1$. Hence $g(t)$ is $(p-1)$-times continuously differentiable at t_{0} and

$$
\begin{equation*}
g^{(p-1)}\left(t_{0}\right)=\frac{1}{p} f^{(p)}\left(t_{0}\right) \tag{2.4}
\end{equation*}
$$

We readily verify by induction that

$$
\left[t_{1} \ldots t_{m}\right]_{g}=\left[t_{0} t_{1} \ldots t_{m}\right] ; \quad m=1,2, \ldots
$$

Replacing f by g and p by $p-1$ in (2.3), we therefore obtain

$$
\begin{aligned}
& {\left[t_{0} t_{1} \ldots t_{p}\right]=\left[t_{1} \ldots t_{p}\right]_{g}=\frac{g^{(p-1)}(\tau)}{(p-1)!}} \\
& \operatorname{Min}\left(t_{1}, \ldots, t_{p}\right)<\tau<\operatorname{Max}\left(t_{1}, \ldots, t_{p}\right)
\end{aligned}
$$

Let t_{1}, \ldots, t_{p} tend to t_{0}. Then τ will also converge to t_{0} and we obtain on account of (2.4)

$$
\begin{aligned}
\lim _{t_{1}, \ldots, t_{p} \rightarrow t_{0}}\left[t_{0} t_{1} \ldots t_{p}\right] & =\lim _{\tau \rightarrow t_{0}} \frac{g^{(p-1)}(\tau)}{(p-1)!} \\
& =\frac{g^{(p-1)}\left(t_{0}\right)}{(p-1)!}=\frac{f^{(p)}\left(t_{0}\right)}{p!}
\end{aligned}
$$

Obviously, (2.1), (2.2) and Theorem 2.1 may be applied to vector valued functions.
3. Some mean-values and limits. In the following let $n>0$ be fixed. The vector function

$$
\mathfrak{x}(t)=\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right)
$$

is defined in the interval I. Let $0<m \leqslant n$. The parameter values t_{1}, \ldots, t_{m} are mutually distinct. Let $\mathfrak{a}_{m+1}, \ldots, \mathfrak{a}_{n}$ be fixed vectors, say

$$
\mathfrak{a}_{k}=\left(a_{k 1}, \ldots, a_{k n}\right) ; k=m+1, \ldots, n .
$$

Put

$$
\begin{aligned}
& \left(\mathfrak{r}\left(t_{1}\right), \mathfrak{x}\left(t_{2}\right), \ldots, \mathfrak{x}\left(t_{m}\right), \mathfrak{a}_{m+1}, \ldots, \mathfrak{a}_{n}\right) \\
& \quad=\left|\begin{array}{llll}
x_{1}\left(t_{1}\right) & x_{1}\left(t_{2}\right) & \ldots & x_{1}\left(t_{m}\right) \\
x_{2}\left(t_{1}\right) & a_{2}\left(t_{2}\right) & \ldots & x_{2}\left(t_{m}\right) \\
a_{m+1,1} & \ldots & \ldots & a_{n 1} \\
\ldots & & a_{n 2} \\
x_{n}\left(t_{1}\right) & x_{n}\left(t_{2}\right) & \ldots & x_{n}\left(t_{m}\right) \\
a_{m+1, n} & \ldots & a_{n n}
\end{array}\right| .
\end{aligned}
$$

Let

$$
\begin{equation*}
\Delta_{m}=\frac{\left(\mathfrak{r}\left(t_{1}\right), \mathfrak{x}\left(t_{2}\right), \ldots, \mathfrak{r}\left(t_{m}\right), \mathfrak{a}_{m+1}, \ldots, \mathfrak{a}_{n}\right)}{\prod_{1 \leqslant i<k \leqslant m}\left(t_{k}-t_{i}\right)} . \tag{3.1}
\end{equation*}
$$

Formula (2.2) readily implies

$$
\begin{equation*}
\Delta_{m}=\left(\left[t_{1}\right],\left[t_{1} t_{2}\right], \ldots,\left[t_{1} \ldots t_{m}\right], \mathfrak{a}_{m+1}, \ldots, \mathfrak{a}_{n}\right) \tag{3.2}
\end{equation*}
$$

where the divided differences are those of $\mathfrak{x}(t)$.
Theorem 3.1. Let $\mathfrak{r}(t)$ be $(m-1)$-times differentiable at t_{1}. Then

$$
\lim _{t_{2}, \ldots, t_{m \rightarrow t_{1}}} \Delta_{m}=\frac{\left(\mathfrak{r}\left(t_{1}\right), \mathfrak{r}^{\prime}\left(t_{1}\right), \ldots, \mathfrak{x}^{(m-1)}\left(t_{1}\right), \mathfrak{a}_{m+1}, \ldots, \mathfrak{a}_{n}\right)}{1!2!\ldots(m-1)!}
$$

Proof. Write

$$
\left[t_{1} t_{2} \ldots t_{p}\right]_{x_{i}}=\left[t_{1} t_{2} \ldots t_{p}\right]_{i}
$$

Thus this number is the i th component of the vector $\left[t_{1} t_{2} \ldots t_{p}\right]$.
By (3.2)

$$
\Delta_{m}=\left|\begin{array}{l}
{\left[t_{1}\right]_{1}\left[t_{1} t_{2}\right]_{1} \ldots\left[\begin{array}{lllll}
& \ldots & \left.t_{m}\right]_{1} & a_{m+1,1} & \ldots
\end{array} a_{n 1}\right.} \tag{3.3}\\
{\left[t_{1}\right]_{2}\left[t_{1} t_{2}\right]_{2} \ldots}
\end{array} \ldots\left[t_{1} \ldots t_{m}\right]_{2} a_{m+1,2} \ldots a_{n 2}\right|
$$

By Theorem 2.1

$$
\lim _{t 2, \ldots, t_{p} \rightarrow t 1}\left[t_{1} \ldots t_{p}\right]_{i}=\frac{x_{i}^{(p-1)}\left(t_{1}\right)}{(p-1)!}
$$

The determinant being a continuous function of its elements, (3.3) therefore readily implies our assertion.

Theorem 3.2. Let $\mathfrak{x}(t)$ be $(m-1)$-times differentiable in I. Then there are m numbers $\tau_{1}=t_{1}, \tau_{2}, \ldots, \tau_{m}$ such that

$$
\begin{aligned}
& \Delta_{m}=\frac{\left(\mathfrak{r}\left(\tau_{1}\right), \mathfrak{x}^{\prime}\left(\tau_{2}\right), \ldots, \mathfrak{x}^{(m-1)}\left(\tau_{m}\right), \mathfrak{a}_{m+1}, \ldots, \mathfrak{a}_{n}\right)}{1!2!\ldots(m-1)!}, \\
& \operatorname{Min}\left(t_{1}, \ldots, t_{k}\right)<\tau_{k}<\operatorname{Max}\left(t_{1}, \ldots, t_{k}\right) ; k=2, \ldots, m .
\end{aligned}
$$

In order to prove this statement, we generalize it. Let $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n}$ be constant vectors. For each k let $t_{k 1}, \ldots, t_{k k}$ lie in I and be mutually distinct. Put

$$
\begin{aligned}
\Gamma_{k} & =\left(\left[t_{11}\right],\left[t_{21} t_{22}\right], \ldots,\left[t_{k 1} \ldots t_{k k}\right], \mathfrak{a}_{k+1}, \ldots, \mathfrak{a}_{n}\right), \\
f(t) & =\left(\left[t_{11}\right],\left[t_{21} t_{22}\right], \ldots,\left[t_{k-1,1} \ldots t_{k-1, k-1}\right], \mathfrak{x}(t), \mathfrak{a}_{k+1}, \ldots, \mathfrak{a}_{n}\right) .
\end{aligned}
$$

Thus the $(k-1)$ st divided difference

$$
\left[t_{k 1} \ldots t_{k k}\right]_{s}
$$

of f is equal to Γ_{k}. By (2.3) with $p=k-1$, there exists a τ_{k} satisfying

$$
\begin{equation*}
\operatorname{Min}\left(t_{k 1}, \ldots, t_{k k}\right)<\tau_{k}<\operatorname{Max}\left(t_{k 1}, \ldots, t_{k k}\right) \tag{3.4}
\end{equation*}
$$

such that

$$
\left[t_{k 1} \ldots t_{k k}\right]_{f}=f^{(k-1)}\left(\tau_{k}\right) /(k-1)!
$$

or

$$
\Gamma_{k}=\left(\left[t_{11}\right],\left[t_{21} t_{22}\right], \ldots,\left[t_{k-1,1} \ldots t_{k-1, k-1}\right], \frac{\mathfrak{\mathfrak { x }}^{(k-1)}\left(\tau_{k}\right)}{(k-1)!}, \mathfrak{a}_{k+1}, \ldots, \mathfrak{a}_{n}\right)
$$

Applying this result consecutively with $k=m, m-1, \ldots, 2$, we obtain

$$
\Gamma_{m}=\frac{\left(\mathfrak{r}\left(\tau_{1}\right), \mathfrak{x}^{\prime}\left(\tau_{2}\right), \ldots, \mathfrak{x}^{(m-1)}\left(\tau_{m}\right), \mathfrak{a}_{m+1}, \ldots, \mathfrak{a}_{n}\right)}{1!2!\ldots(m-1)!}
$$

where $\tau_{1}=t_{11}$ and where the τ_{k} satisfy (3.4) if $2 \leqslant k \leqslant m$.
The case $m=n$ of Theorem 3.2 is a slight refinement of a mean-value theorem for determinants due to Schwarz. He developed it for similar purposes; cf. (2). We note the following corollary.

Theorem 3.3. Suppose $\mathfrak{x}(t)$ is $(m-1)$-times continuously differentiable at t_{0}. Then

$$
\lim _{t_{1}, t_{2}, \ldots, t_{m \rightarrow t_{0}}} \Delta_{m}=\frac{\left(\mathfrak{x}\left(t_{0}\right), \mathfrak{x}^{\prime}\left(t_{0}\right), \ldots, \mathfrak{x}^{(m-1)}\left(t_{0}\right), \mathfrak{a}_{m+1}, \ldots, \mathfrak{a}_{n}\right)}{1!2!\ldots(m-1)!}
$$

4. A definition of the osculating spaces. Existence. A curve C in projective n-space R_{n} is the continuous image of an interval I. Thus C can be described through a vector function

$$
C: \mathfrak{x}=\mathfrak{x}(t) ;
$$

We do not distinguish between a point and its-homogeneous-co-ordinate vector.

Let $t_{0} \in I$ be fixed. Put $L_{0}\left(t_{0}\right)=\mathfrak{r}\left(t_{0}\right)$. Suppose $L_{0}\left(t_{0}\right), \ldots, L_{k-1}\left(t_{0}\right)$ have been defined and they exist. Let $t \in I, t \neq t_{0}$. It can happen that the $(k-1)$ space $L_{k-1}\left(t_{0}\right)$ and $\mathfrak{x}(t)$ span a k-space whenever t is sufficiently close to t_{0}, and that this k-space converges if t tends to t_{0}. The limit space $L_{k}\left(t_{0}\right)$ is then called the osculating k-space of C at t_{0}.

Theorem 4.1. Let $0<m<n$. Let C be m-times differentiable at t_{0},

$$
\begin{equation*}
\mathfrak{x}\left(t_{0}\right) \wedge \mathfrak{x}^{\prime}\left(t_{0}\right) \wedge \ldots \wedge \mathfrak{x}^{(m)}\left(t_{0}\right) \neq 0 \tag{4.1}
\end{equation*}
$$

Then C has osculating k-spaces at t_{0} for $0 \leqslant k \leqslant m$, and $L_{m}\left(t_{0}\right)$ is given by

$$
\begin{equation*}
\mathfrak{y} \wedge \mathfrak{r}\left(t_{0}\right) \wedge \mathfrak{r}^{\prime}\left(t_{0}\right) \wedge \ldots \wedge \mathfrak{x}^{(m)}\left(t_{0}\right)=0 \tag{4.2}
\end{equation*}
$$

Formula (4.1) states that $\mathfrak{x}\left(t_{0}\right), \ldots, \mathfrak{r}^{(m)}\left(t_{0}\right)$ are linearly independent. By (4.2), these points span $L_{m}\left(t_{0}\right)$.

We prove Theorem 4.1 by induction. In the case $m=1$ we have

$$
\lim _{t \rightarrow t_{0}} \mathfrak{x}\left(t_{0}\right) \wedge \frac{\mathfrak{r}(t)-\mathfrak{x}\left(t_{0}\right)}{t-t_{0}}=\mathfrak{x}\left(t_{0}\right) \wedge \lim _{t \rightarrow t_{0}} \frac{\mathfrak{x}(t)-\mathfrak{x}\left(t_{0}\right)}{t-t_{0}}=\mathfrak{x}\left(t_{0}\right) \wedge \mathfrak{r}^{\prime}\left(t_{0}\right) \neq 0 .
$$

Thus

$$
\begin{equation*}
\mathfrak{x}\left(t_{0}\right) \wedge \frac{\mathfrak{r}(t)-\mathfrak{r}\left(t_{\mathrm{c}}\right)}{t-t_{0}} \neq 0 \tag{4.3}
\end{equation*}
$$

if $\left|t-t_{0}\right|$ is sufficiently small. But the straight line through $\mathfrak{r}\left(t_{0}\right)$ and $\mathfrak{r}(t)$ is spanned by the bivector (4.3). Thus the last two formulae prove the case $m=1$.

Suppose Theorem 4.1 has been proved up to $m-1$. Put $h=t-t_{0}$. By Theorem 1.1,

$$
\begin{gathered}
\mathfrak{x}\left(t_{0}+h\right)=\mathfrak{x}\left(t_{0}\right)+\frac{h}{1!} \mathfrak{x}^{\prime}\left(t_{0}\right)+\ldots+\frac{h^{m-1}}{(m-1)!} \mathfrak{x}^{(m-1)}\left(t_{0}\right)+\frac{h^{m}}{m!} \mathfrak{x}_{m}(h), \\
\lim _{h \rightarrow 0} \mathfrak{x}_{m}(h)=\mathfrak{x}^{(m)}\left(t_{0}\right) .
\end{gathered}
$$

By (4.1),

$$
\begin{equation*}
\mathfrak{x}\left(t_{0}\right) \wedge \mathfrak{r}^{\prime}\left(t_{0}\right) \wedge \ldots \wedge \mathfrak{r}^{(m-1)}\left(t_{0}\right) \neq 0 \tag{4.4}
\end{equation*}
$$

Hence by our induction assumption, $L_{m-1}\left(t_{0}\right)$ exists and is given by the m vector (4.4). From the above

$$
\begin{aligned}
\frac{m!}{h^{m}} \mathfrak{x}\left(t_{0}\right) \wedge \mathfrak{x}^{\prime}\left(t_{0}\right) \wedge \ldots \wedge \mathfrak{x}^{(m-1)}\left(t_{0}\right) & \wedge \mathfrak{x}\left(t_{0}+h\right) \\
& =\mathfrak{x}\left(t_{0}\right) \wedge \mathfrak{x}^{\prime}\left(t_{0}\right) \wedge \ldots \wedge \mathfrak{x}^{(m-1)}\left(t_{0}\right) \wedge \mathfrak{x}_{m}(h)
\end{aligned}
$$

If h tends to zero, this $(m+1)$-vector converges to the $(m+1)$-vector (4.1). In particular, it does not vanish if h is sufficiently small. Thus $L_{m-1}\left(t_{0}\right)$ and $\mathfrak{r}\left(t_{0}+h\right)$ span an m-space for these h. If h tends to zero, this m-space converges to the m-space spanned by the ($m+1$)-vector (4.1). This yields our theorem.

In the special case $m=n-1$ we obtain the osculating hyperplane $L_{n-1}\left(t_{0}\right)$. We formulate this case explicitly:

Corollary 4.2. Let C be $(n-1)$-times differentiable at t_{0}. Suppose the points $\mathfrak{x}\left(t_{0}\right), \mathfrak{x}^{\prime}\left(t_{0}\right), \ldots, \mathfrak{x}^{(n-1)}\left(t_{0}\right)$ are linearly independent. Then the osculating hyperplane of C at t_{0} exists. It has the equation

$$
\left(\mathfrak{y}, \mathfrak{x}\left(t_{0}\right), \mathfrak{x}^{\prime}\left(t_{0}\right), \ldots, \mathfrak{x}^{(n-1)}\left(t_{0}\right)\right)=0 .
$$

We do not prove the following observation.
Theorem 4.3. Let C be n-times differentiable in I,

$$
\left.\begin{array}{r}
\mathfrak{x}(t) \wedge \mathfrak{x}^{\prime}(t) \wedge \ldots \wedge \mathfrak{x}^{(n-1)}(t) \neq 0 \tag{4.5}\\
\prime(t) \wedge \ldots \wedge \mathfrak{x}^{(n-1)}(t) \wedge \mathfrak{x}^{(n)}(t)=0
\end{array}\right\} \text { for all } t \in I .
$$

Then $L_{n-1}(t)$ is constant. Thus C lies in this constant hyperplane.
It should be noted that this theorem becomes false without the assumption (4.5) even if C is of class $C^{(\infty)}$.

5. Osculating spaces as "subspaces through neighbouring points."

Theorem 5.1. Let $0<m<n$. Suppose the curve

$$
C: \mathfrak{x}=\mathfrak{x}(t) ; \quad t \in I
$$

is m-times differentiable at t_{0} and satisfies (4.1); the parameter values $t_{0}, t_{1}, \ldots, t_{m}$ are mutually distinct. Then if t_{1}, \ldots, t_{m} are sufficiently close to t_{0}, the points

$$
\begin{equation*}
\mathfrak{x}\left(t_{0}\right), \mathfrak{x}\left(t_{1}\right), \ldots, \mathfrak{x}\left(t_{m}\right) \tag{5.2}
\end{equation*}
$$

span an m-space. It converges to $L_{m}\left(t_{0}\right)$ if the t_{i} tend to t_{0}.
Proof. Let $\mathfrak{a}_{m+1}, \ldots, \mathfrak{a}_{n}$ be any $n-m$ constant vectors.
By Theorem 3.1,

$$
\begin{aligned}
\lim _{t_{1}, \ldots, t_{m \rightarrow t 0}} \frac{\left(\mathfrak{x}\left(t_{0}\right), \mathfrak{x}\left(t_{1}\right), \ldots, \mathfrak{r}\left(t_{m}\right), \mathfrak{a}_{m+1}, \ldots, \mathfrak{a}_{n}\right)}{} & \prod_{0 \leqslant i<k \leqslant m}\left(t_{k}-t_{i}\right) \\
& =\frac{\left(\mathfrak{r}\left(t_{0}\right), \mathfrak{x}^{\prime}\left(t_{0}\right), \ldots, \mathfrak{x}^{(m)}\left(t_{0}\right), \mathfrak{a}_{m+1}, \ldots, \mathfrak{a}_{n}\right)}{1!2!\ldots m!} .
\end{aligned}
$$

Since this holds for every choice of $\mathfrak{a}_{m+1}, \ldots, \mathfrak{a}_{n}$, this implies

$$
\lim _{t_{1}, \ldots, t_{m \rightarrow t_{0}}} \frac{\mathfrak{x}\left(t_{0}\right) \wedge \mathfrak{x}\left(t_{1}\right) \wedge \ldots \wedge \mathfrak{x}\left(t_{m}\right)}{\prod_{0 \leqslant i<k \leqslant m}\left(t_{k}-t_{i}\right)}=\frac{\mathfrak{x}\left(t_{0}\right) \wedge \mathfrak{x}^{\prime}\left(t_{0}\right) \wedge \ldots \wedge \mathfrak{x}^{(m)}\left(t_{0}\right)}{1!2!\ldots m!} .
$$

By (4.1), the right-hand multivector does not vanish. Hence

$$
\mathfrak{x}\left(t_{0}\right) \wedge \mathfrak{x}\left(t_{1}\right) \wedge \ldots \wedge \mathfrak{x}\left(t_{m}\right) \neq 0
$$

if the t_{i} lie sufficiently close to t_{0}, and the m-space through the points (5.2) converges to the m-space spanned by the ($m+1$)-vector (4.1), that is, to $L_{m}\left(t_{0}\right)$ if the t_{i} converge to t_{0}; cf. Theorem 4.1.

Theorem 5.2. Let $0<m<n$. Suppose the curve (5.1) is m-times continuously differentiable at t_{0} and satisfies (4.1). The parameter values $t_{1}, t_{2}, \ldots, t_{m+1}$ are mutually distinct. Then if t_{1}, \ldots, t_{m+1} lie close enough to t_{0}, the points

$$
\mathfrak{x}\left(t_{1}\right), \ldots, \mathfrak{x}\left(t_{m+1}\right)
$$

span an m-space. It converges to $L_{m}\left(t_{0}\right)$ if the t_{i} tend to t_{0}.
The proof of this statement is based on Theorem 3.3 rather than 3.1. Otherwise it is parallel to the preceding proof.

5a. A limit case. The question arises whether the results of $\mathbf{5}$ remain valid if some of the t_{i} coincide. In our comments we shall only consider Theorem 5.1.

Let $0<m<n$. Suppose the curve (5.1) is m-times differentiable at t_{0} and satisfies (4.1). The parameter values $t_{0}, t_{1}, \ldots, t_{r}$ are mutually distinct;

$$
m_{0} \geqslant 0, \quad m_{1} \geqslant 0, \ldots, m_{r} \geqslant 0 ; \quad \sum_{0}^{\tau}\left(m_{i}+1\right)=m+1 .
$$

Suppose the t_{i} lie sufficiently close to t_{0}. Then C will be m_{i}-times differentiable at each t_{i} and $L_{m_{i}}\left(t_{i}\right)$ will exist. It is the limit of m_{i}-spaces through points determined by $m_{i}+1$ parameter values $t_{i 0}=t_{i}, t_{i 1}, \ldots, t_{i m_{i}}$ converging to t_{i}. We may assume that all the $m+1$ parameter values $t_{i j}$ are mutually distinct. Keep the t_{i} fixed and let the $t_{i j}$ converge to t_{i} for each i. Any limit space of the m-spaces spanned by the $\mathfrak{t}\left(t_{i j}\right)$ will contain the $L_{m_{i}}\left(t_{i}\right)$. This yields:

Remark 5.3. There exist m-spaces containing all the $L_{m_{i}}\left(t_{i}\right)$ which converge to $L_{m}\left(t_{0}\right)$ as the t_{i} tend to t_{0}.

There remains the question whether the assumption (4.1) is sufficient to ensure that the osculating spaces

$$
L_{m_{0}}\left(t_{0}\right), L_{m_{1}}\left(t_{1}\right), \ldots, L_{m_{r}}\left(t_{r}\right)
$$

actually span an m-space if the t_{i} lie near enough to t_{0}. We have only been able to discuss the case $r=1$.

Let $k \geqslant 0, p \geqslant 0, k+p=m+1$. Without loss of generality let $t_{0}=0$ and put $t_{1}=t \neq 0$. If
(5.3) $\Xi=\mathfrak{x}(0) \wedge \mathfrak{r}^{\prime}(0) \wedge \ldots \wedge \mathfrak{r}^{(k)}(0) \wedge \mathfrak{x}(t) \wedge \mathfrak{x}^{\prime}(t) \wedge \ldots \wedge \mathfrak{r}^{(p)}(t) \neq 0$,
then $L_{k}(0)$ and $L_{p}(t)$ span an m-space. If (5.3) holds for all small t, Remark 5.3. will show that this m-space converges to $L_{m}(0)$ as t tends to zero.

Assume $p \leqslant k+1$. By Theorem 1.1

$$
\begin{gathered}
\mathfrak{x}^{(j)}(t)=\mathfrak{x}^{(j)}\left(t_{0}\right)+\frac{t}{1!} \mathfrak{x}^{(j+1)}\left(t_{0}\right)+\ldots+\frac{t^{m-1-j}}{(m-1-j)!} \mathfrak{x}^{(m-1)}(0) \\
+\frac{t^{m-j}}{(m-j)!} \mathfrak{r}_{m-j}^{j}(t), \quad \lim _{t \rightarrow 0} \mathfrak{r}_{m-j}^{j}(t)=\mathfrak{x}^{(m)}(0) .
\end{gathered}
$$

Hence

$$
\begin{aligned}
& \boldsymbol{\Xi}=\mathfrak{x}(0) \wedge \ldots \wedge \mathfrak{x}^{(k)}(0) \\
& \wedge\left(\frac{t^{k+1}}{(k+1)!} \mathfrak{x}^{(k+1)}(0)+\ldots+\frac{t^{m-1}}{(m-1)!} \mathfrak{x}^{(m-1)}(0)+\frac{t^{m}}{m!} \mathfrak{r}_{m}^{0}(t)\right) \\
& \wedge\left(\frac{t^{k}}{k!} \mathfrak{x}^{(k+1)}(0)+\ldots+\frac{t^{m-2}}{(m-2)!} \mathfrak{x}^{(m-1)}(0)+\frac{t^{m-1}}{(m-1)!} \mathfrak{x}_{m-1}^{1}(t)\right) \\
& \wedge \ldots \wedge\left(\frac{t^{k+1-p}}{(k+1-p)!} \mathfrak{x}^{(k+1)}(0)+\ldots+\frac{t^{k}}{k!} \mathfrak{x}^{(m-1)}(0)+\frac{t^{k+1}}{(k+1)!} \mathfrak{x}_{k+1}^{p}(t)\right) .
\end{aligned}
$$

This yields

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\Xi}{t^{(k+1)(p+1)}}=E_{k, p} \mathfrak{x}(0) \wedge \mathfrak{x}^{\prime}(0) \wedge \ldots \wedge \mathfrak{x}^{(m)}(0) \tag{5.4}
\end{equation*}
$$

where
$E_{k, p}=\left|\begin{array}{ccccc}\frac{1}{(k+1)!} & \frac{1}{(k+2)!} & \cdots & \frac{1}{(m-1)!} & \frac{1}{m!} \\ \frac{1}{k!} & \frac{1}{(k+1)!} & \cdots & \frac{1}{(m-2)!} & \frac{1}{(m-1)!} \\ \cdots & & & & \\ \frac{1}{(k+1-p)!} & \frac{1}{(k+2-p)!} & \cdots & \frac{1}{k!} & \frac{1}{(k+1)!}\end{array}\right|=\frac{p!}{m!} E_{k, p-1}$.
In particular $E_{k, p} \neq 0$ and the right-hand term of (5.4) does not vanish. Thus $\Xi \neq 0$ if t is sufficiently small.

If $p>k+1$, (5.4) remains valid if $E_{k, p}$ denotes a similar determinant satisfying the same recursion formula. This proves

Theorem 5.4. Let $k \geqslant 0, p \geqslant 0, m=k+p+1<n$. Suppose the curve C satisfies the assumptions of Theorem 5.1. Then $L_{k}\left(t_{0}\right)$ and $L_{p}\left(t_{1}\right)$ span an m-space if t_{1} is sufficiently close to t_{0}. If t_{1} tends to t_{0}, this m-space converges to $L_{m}\left(t_{0}\right)$.
6. Families of hyperplanes. Capital German letters denote hyperplane co-ordinate vectors.

Given a family of hyperplanes

$$
\begin{equation*}
\Gamma: \mathfrak{X}=\mathfrak{X}(t) ; \tag{6.1}
\end{equation*}
$$

in projective n-space R_{n}.
Let $t_{0} \in I, t \neq t_{0}$. The characteristic subspaces $\Lambda_{k}\left(t_{0}\right)$ of Γ at t_{0} are defined dually to the osculating spaces of a curve. Put $\Lambda_{n-1}\left(t_{0}\right)=\mathfrak{X}\left(t_{0}\right)$. Suppose $\Lambda_{n-1}\left(t_{0}\right), \ldots, \Lambda_{n-k}\left(t_{0}\right)$ have been defined and they exist. If the intersection of $\Lambda_{n-k}\left(t_{0}\right)$ with $\mathfrak{X}(t)$ is an ($n-k-1$)-space for every t close to t_{0} and if this $(n-k-1)$-space converges as t tends to t_{0}, then the limit space $\Lambda_{n-1-k}\left(t_{0}\right)$ is called the characteristic $(n-1-k)$-space of Γ at t_{0}. We obtain from Theorem 4.1 by a duality

Theorem 6.1. Let $0<m<n$. Suppose Γ is m-times differentiable at t_{0} and

$$
\begin{equation*}
\mathfrak{X}\left(t_{0}\right) \wedge \mathfrak{X}^{\prime}\left(t_{0}\right) \wedge \ldots \wedge \mathfrak{X}^{(m)}\left(t_{0}\right) \neq 0 \tag{6.2}
\end{equation*}
$$

Then Γ has characteristic subspaces of the dimensions $n-1, n-2, \ldots$, $n-1-m$ at t_{0} and $\Lambda_{n-1-m}\left(t_{0}\right)$ has the equation

$$
\mathfrak{Y} \wedge \mathfrak{X}\left(t_{0}\right) \wedge \mathfrak{X}^{\prime}\left(t_{0}\right) \wedge \ldots \wedge \mathfrak{X}^{(m)}\left(t_{0}\right)=0
$$

[or in point co-ordinates

$$
\left.\mathfrak{y} \mathfrak{X}\left(t_{0}\right)=\mathfrak{y} \mathfrak{X}^{\prime}\left(t_{0}\right)=\ldots=\mathfrak{y} \mathfrak{X}^{(m)}\left(t_{0}\right)=0\right] .
$$

Theorems 5.1 and 5.2 can also readily be translated to families of hyperplanes.

Theorem 6.2. Let $0<m<n$. Suppose Γ is m-times [continuously] differentiable at t_{0} and satisfies (6.2). The parameter values $t_{0}, t_{1}, \ldots, t_{m}\left[t_{1}, \ldots\right.$, $\left.t_{m}, t_{m+1}\right]$ are mutually distinct. Then if the t_{i} are sufficiently close to t_{0}, the intersection of the hyperplanes

$$
\mathfrak{X}\left(t_{0}\right), \mathfrak{X}\left(t_{1}\right), \ldots, \mathfrak{X}\left(t_{m}\right) \quad\left[\mathfrak{X}\left(t_{1}\right), \ldots, \mathfrak{X}\left(t_{m}\right), \mathfrak{X}\left(t_{m+1}\right)\right]
$$

is an $(n-1-m)$-space. It converges to $\Lambda_{n-1-m}\left(t_{0}\right)$ if the t_{i} tend to t_{0}.
7. On the characteristic curve of a family of hyperplanes. If the family Γ of hyperplanes (6.1) is ($n-1$)-times differentiable in I and if

$$
\mathfrak{X}(t) \wedge \mathfrak{X}^{\prime}(t) \wedge \ldots \wedge \mathfrak{X}^{(n-1)}(t) \neq 0 \quad \text { for all } t \in I
$$

then Γ has by Theorem 6.1 a characteristic point $\Lambda_{0}(t)$ at each t. We call

$$
C: \Lambda_{0}=\Lambda_{0}(t) ; \quad t \in I
$$

the characteristic curve of Γ. Let $\mathfrak{x}(t)$ be a homogeneous co-ordinate vector of the point $\Lambda_{0}(t)$. Then

$$
\begin{equation*}
\mathfrak{x}(t) \mathfrak{X}(t)=\mathfrak{x}(t) \mathfrak{X}^{\prime}(t)=\ldots=\mathfrak{x}(t) \mathfrak{X}^{(n-1)}(t)=0 \quad \text { for all } t \in I . \tag{7.1}
\end{equation*}
$$

Theorem 7.1. Let $\mathfrak{X}(t)$ be n-times differentiable at $t_{0} \in I$,

$$
\left(\mathfrak{X}\left(t_{0}\right), \mathfrak{X}^{\prime}\left(t_{0}\right), \ldots, \mathfrak{X}^{(n)}\left(t_{0}\right)\right) \neq 0 .
$$

Then the characteristic curve C has osculating spaces $L_{k}\left(t_{0}\right)$ of every dimension at t_{0}, and

$$
L_{k}\left(t_{0}\right)=\Lambda_{k}\left(t_{0}\right) ; \quad k=0,1, \ldots, n-1
$$

Proof. There is a neighbourhood N of t_{0} such that $\mathfrak{X}(t)$ is $(n-1)$-times differentiable in N and that

$$
\begin{equation*}
\left(\mathfrak{X}(t), \mathfrak{X}^{\prime}(t), \ldots, \mathfrak{X}^{(n-1)}(t), \mathfrak{X}^{(n)}\left(t_{0}\right)\right) \neq 0 \quad \text { for all } t \in N . \tag{7.2}
\end{equation*}
$$

This follows from our assumptions and from the fact that the left-hand term of (7.2) is differentiable and therefore continuous at t_{0}.

By (7.1) and (7.2)

$$
\mathfrak{x}(t) \mathfrak{X}^{(n)}\left(t_{0}\right) \neq 0 \quad \text { for all } t \in N
$$

We can therefore norm $\mathfrak{x}(t)$ such that

$$
\begin{equation*}
\mathfrak{x}(t) \mathfrak{X}^{(n)}\left(t_{0}\right)=1 \quad \text { for all } t \in N . \tag{7.3}
\end{equation*}
$$

Then the differentiability of (7.2) at t_{0} implies that of $\mathfrak{r}(t)$ there. In particular, $\mathfrak{x}(t)$ will be continuous at t_{0}.

Define the points $\mathfrak{y}_{0}, \mathfrak{y}_{1}, \ldots, \mathfrak{y}_{n}$ through

$$
\mathfrak{y}_{i} \mathfrak{X}^{(n-k)}\left(t_{0}\right)=\left\{\begin{array}{lll}
1 & & k=i \tag{7.4}\\
& \text { if } & k \neq i
\end{array} \quad i, k=0,1, \ldots, n .\right.
$$

Thus

$$
\left(\mathfrak{y}_{0}, \mathfrak{y}_{1}, \ldots, \mathfrak{y}_{n}\right)\left(\mathfrak{X}^{(n)}\left(t_{0}\right), \mathfrak{X}^{(n-1)}\left(t_{0}\right), \ldots, \mathfrak{X}\left(t_{0}\right)\right)=1 .
$$

In particular

$$
\left(\mathfrak{y}_{0}, \mathfrak{y}_{1}, \ldots, \mathfrak{y}_{n}\right) \neq 0
$$

Hence for each i the points $\mathfrak{y}_{0}, \mathfrak{y}_{1}, \ldots, \mathfrak{y}_{i}$ span an i-space. Since they lie in each of the spaces $\mathfrak{X}\left(t_{0}\right), \ldots, \mathfrak{X}^{(n-i-1)}\left(t_{0}\right)$, they must lie in $\Lambda_{i}\left(t_{0}\right)$.
This implies
Lemma 1. The points $\mathfrak{y}_{0}, \mathfrak{y}_{1}, \ldots, \mathfrak{y}_{i}$ span $\Lambda_{i}\left(t_{0}\right) ; i=0,1, \ldots, n-1$.
Lemma 2.

$$
\lim _{t \rightarrow t_{0}} \frac{\mathfrak{x}(t) \mathfrak{X}^{(n-k)}\left(t_{0}\right)}{\left(t-t_{0}\right)^{i}}=\left\{\begin{array}{lll}
\frac{(-1)^{i}}{i!} & k=i \\
& \text { if } & \\
0 & & k>i
\end{array} i, k=0,1, \ldots, n .\right.
$$

Proof. Let $0 \leqslant i \leqslant k \leqslant n$. We have

$$
\lim _{t \rightarrow t_{0}} \mathfrak{x}(t) \mathfrak{X}^{(n-k)}\left(t_{0}\right)=\mathfrak{x}\left(t_{0}\right) \mathfrak{X}^{(n-k)}\left(t_{0}\right)=\left\{\begin{array}{lll}
1 & & k=0 \\
& \text { if } & \\
0 & & k>0
\end{array}\right.
$$

This verifies our statement if $i=0$. Suppose it is proved up to $i-1 \geqslant 0$ [thus $k>0$].

By Theorem 1.1,

$$
\begin{aligned}
\mathfrak{X}^{(n-k)}(t)=\mathfrak{X}^{(n-k)}\left(t_{0}\right)+ & \sum_{h=1}^{i-1} \frac{\left(t-t_{0}\right)^{h}}{h!} \mathfrak{X}^{(n-k+h)}\left(t_{0}\right)+\frac{\left(t-t_{0}\right)^{i}}{i!} \mathfrak{X}_{i}^{n-k}(t) ; \\
& \lim _{t \rightarrow t_{0}} \mathfrak{X}_{i}^{n-k}(t)=\mathfrak{X}^{(n-k+i)}\left(t_{0}\right) .
\end{aligned}
$$

Hence

$$
\frac{\mathfrak{x}(t) \mathfrak{X}^{(n-k)}(t)}{\left(t-t_{0}\right)^{i}}=\frac{\mathfrak{x}(t) \mathfrak{X}^{(n-k)}\left(t_{0}\right)}{\left(t-t_{0}\right)^{i}}+\sum_{h=1}^{i-1} \frac{1}{h!} \frac{\mathfrak{x}(t) \mathfrak{X}^{(n-k+h)}\left(t_{0}\right)}{\left(t-t_{0}\right)^{i-h}}+\frac{1}{i!} \mathfrak{x}(t) \mathfrak{X}_{i}^{n-k}(t) .
$$

Here

$$
\begin{aligned}
& \lim _{t \rightarrow t_{0}} \frac{\mathfrak{x}(t) \mathfrak{X}^{(n-k)}(t)}{\left(t-t_{0}\right)^{i}}=\lim _{t \rightarrow t_{0}} 0=0, \\
& \lim _{t \rightarrow t_{0}} \mathfrak{x}(t) \mathfrak{X}_{i}^{n-k}(t)=\mathfrak{x}\left(t_{0}\right) \mathfrak{X}^{(n-k+i)}\left(t_{0}\right)=\left\{\begin{array}{ll}
1 & k=i \\
& \text { if } \\
0 & k>i
\end{array} .\right.
\end{aligned}
$$

By our induction assumption

$$
\lim _{t \rightarrow t_{0}} \frac{\mathfrak{x}(t) \mathfrak{X}^{(n-k+h)}\left(t_{0}\right)}{\left(t-t_{0}\right)^{i-h}}=\left\{\begin{array}{lll}
\frac{(-1)^{i-h}}{(i-h)!} & k=i \\
& \text { if } & \\
0 & & k>i
\end{array} \quad 1 \leqslant h \leqslant i-1 .\right.
$$

Hence

$$
L_{i, k}=\lim _{t \rightarrow t_{0}} \frac{\mathfrak{x}(t) \mathfrak{X}^{(n-k)}\left(t_{0}\right)}{\left(t-t_{0}\right)^{i}}
$$

exists and we have $L_{i, k}=0$ if $k>i$. Finally

$$
L_{i, i}=-\sum_{h=1}^{i} \frac{(-1)^{i-h}}{h!(i-h)!}=-\frac{1}{i!}\left(\sum_{h=0}^{i}(-1)^{i-h}\binom{i}{h}-(-1)^{i}\right)=\frac{(-1)^{i}}{i!}
$$

This proves Lemma 2. We only need the following observation:
(7.5) $\quad \lim _{t \rightarrow t_{0}} \frac{\mathfrak{x}(t) \mathfrak{X}^{(n-i)}\left(t_{0}\right)}{\left(t-t_{0}\right)^{i}}$ exists and is not zero; $i=0,1, \ldots, n$.

By making the neighbourhood N of t_{0} smaller, we may therefore assume

$$
\begin{equation*}
\mathfrak{x}(t) \mathfrak{X}^{(n-i)}\left(t_{0}\right) \neq 0 \text { for all } t \in N, t \neq t_{0} ; i=0,1, \ldots, n . \tag{7.6}
\end{equation*}
$$

Furthermore (7.5) implies
Lemma 3. Let $0 \leqslant i<k \leqslant n$. Then

$$
\lim _{t \rightarrow 0^{\circ}} \frac{\left.\mathfrak{x}(t) \mathfrak{X}^{(n-k)}(t) \mathfrak{X}_{0}\right)}{\mathfrak{x}(t)\left(x_{0}\right)}=0
$$

The point $\mathfrak{x}(t)$ must be a linear combination

$$
\mathfrak{x}(t)=\sum_{0}^{n} \alpha_{k}(t) \mathfrak{q}_{k}
$$

of the $n+1$ linearly independent points \mathfrak{y}_{k}. Multiplying this equation by $\mathfrak{X}^{(n-i)}\left(t_{0}\right)$ we determine the $\alpha_{k}(t)$ and obtain

Lemma 4.

$$
\mathfrak{x}(t)=\sum_{0}^{n} \mathfrak{x}(t) \mathfrak{X}^{(n-k)}\left(t_{0}\right) \cdot \mathfrak{y}_{k} .
$$

Trivially $L_{0}\left(t_{0}\right)=\Lambda_{0}\left(t_{0}\right)$. Thus Theorem 7.1 holds true for $i=0$. Suppose it is proved up to $i-1 \geqslant 0$. Thus $L_{i-1}\left(t_{0}\right)=\Lambda_{i-1}\left(t_{0}\right)$ is spanned by $\mathfrak{y}_{0}, \mathfrak{y}_{1}$, $\ldots, \mathfrak{y}_{i-1}$. By Lemma 4,

$$
\left\{\begin{array}{l}
\mathfrak{x}(t)=\sum_{0}^{i-1} \mathfrak{x}(t) \mathfrak{X}^{(n-k)}\left(t_{0}\right) \cdot \mathfrak{y}_{k}+\mathfrak{r}(t) \mathfrak{X}^{(n-i)}\left(t_{0}\right) \cdot \mathfrak{z}_{i}(t) \tag{7.7}\\
z_{i}(t)=\sum_{k=i}^{n} \frac{\mathfrak{x}(t) \mathfrak{X}^{(n-k)}\left(t_{0}\right)}{\mathfrak{x}(t) \mathfrak{X}^{(n-i)}\left(t_{0}\right)} \cdot \mathfrak{y}_{k} .
\end{array}\right.
$$

By Lemma 3

$$
\begin{equation*}
\lim _{t \rightarrow t_{0}} z_{i}(t)=\mathfrak{y}_{i} . \tag{7.8}
\end{equation*}
$$

On account of (7.7), the i-space through $L_{i-1}(t)$ and $\mathfrak{x}(t)$ is spanned by the points $\mathfrak{y}_{0}, \mathfrak{y}_{1}, \ldots, \mathfrak{y}_{i-1}, \mathfrak{z}_{i}(t)$; cf. (7.6). By (7.8) it converges to the i-space
spanned by $\mathfrak{y}_{0}, \mathfrak{y}_{1}, \ldots, \mathfrak{y}_{i-1}, \mathfrak{y}_{i}$, that is, to $\Lambda_{i}\left(t_{0}\right)$ if t tends to t_{0}. This proves our theorem.

8. Osculating spheres. Given a curve

$$
C: P=P(t)
$$

in conformal n-space Γ_{n}. Thus C is the continuous image in Γ_{n} of the interval I.
Let t_{0}, t_{1}, t_{2} be three mutually distinct parameter values. If the circle through $P\left(t_{0}\right), P\left(t_{1}\right), P\left(t_{2}\right)$ is uniquely determined for all t_{1} and t_{2} sufficiently close to t_{0} and if it converges to the circle $\Gamma_{1}\left(t_{0}\right)$ if t_{1} and t_{2} converge independently to t_{0}, then $\Gamma_{1}\left(t_{0}\right)$ is called the osculating circle or the osculating 1 -sphere of C at t_{0}.

Let $t_{0} \in I$ be fixed, $t \neq t_{0}$. Suppose we have already defined $\Gamma_{1}\left(t_{0}\right), \Gamma_{2}\left(t_{0}\right)$, $\ldots, \Gamma_{k-1}\left(t_{0}\right)$ and they exist; $k \geqslant 2$. It can happen that the k-sphere through the $(k-1)$-sphere $\Gamma_{k-1}\left(t_{0}\right)$ and $P(t)$ is unique if t lies sufficiently close to t_{0} and that it converges if t tends to t_{0}. Then the limit k-sphere $\Gamma_{k}\left(t_{0}\right)$ will be called the osculating k-sphere of C at t_{0}.

We can formulate conditions for the existence of $\Gamma_{k}\left(t_{0}\right)$ in terms of arbitrary polyspherical co-ordinates. The following approach seems convenient. Let ξ_{1}, \ldots, ξ_{n} be the co-ordinates of a point P in euclidean n-space with respect to some normed orthogonal co-ordinate system; $\xi_{0}=\sum_{1}{ }^{n}{ }_{\xi_{\lambda}}{ }^{2}$. We associate with P the homogeneous co-ordinate vector

$$
\mathfrak{x}=\left(x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}, x_{n+2}\right)=\rho\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}, \frac{1}{2}\left(\xi_{0}-1\right), \frac{1}{2}\left(\xi_{0}+1\right)\right)
$$

where $\rho \neq 0$ is an arbitrary scalar. If

$$
\mathfrak{y}=\left(y_{1}, \ldots, y_{n+2}\right),
$$

put

$$
\mathfrak{x y}=\sum_{1}^{n+1} x_{i} y_{i}-x_{n+2} y_{n+2}
$$

Thus $\mathfrak{x x}=0$ and \mathfrak{x} can also be interpreted as the homogeneous co-ordinate vector of a point \bar{P} on the unit sphere $\bar{\Gamma}_{n}$ if the latter is imbedded into projective R_{n+1}. If we adjoin an ideal point with the co-ordinate vector

$$
\left(0,0, \ldots, 0, x_{n+1}, x_{n+1}\right)
$$

to euclidean n-space, we arrive at conformal n-space Γ_{n}. The mapping $P \rightarrow \bar{P}$ will then be a homeomorphism of Γ_{n} onto $\bar{\Gamma}_{n}$.

An $(n-1)$-sphere Γ_{n-1} in Γ_{n} is given by equations

$$
\begin{equation*}
\mathfrak{a x}=0, \mathfrak{x x}=0 \tag{8.1}
\end{equation*}
$$

It corresponds to the $(n-1)$-sphere $\bar{\Gamma}_{n-1}$ in which the hyperplane $\mathfrak{a r}=0$ in R_{n+1} intersects $\bar{\Gamma}_{n}$. Thus it contains real points if and only if $\mathfrak{a a} \geqslant 0$. If $\mathfrak{a} \mathfrak{a}=0, \Gamma_{n-1}$ contains exactly one real point, viz. the point P with the coordinate vector \mathfrak{a}. We then identify Γ_{n-1} with P.

Suppose the curve C is given by means of the vector function

$$
\mathfrak{x}=\mathfrak{x}(t) ; \mathfrak{x} \mathfrak{r}=0 ; \quad t \in I
$$

Its image in R_{n+1} is a curve

$$
\bar{C}: \bar{P}=\bar{P}(t)
$$

$$
t \in I
$$

Theorem 8.1. Let $\mathfrak{x}(t)$ be twice differentiable at t_{0},

$$
\mathfrak{x}\left(t_{0}\right) \wedge \mathfrak{x}^{\prime}\left(t_{0}\right) \wedge \mathfrak{x}^{\prime \prime}\left(t_{0}\right) \neq 0
$$

Then C has an osculating circle $\Gamma_{1}\left(t_{0}\right)$ at t_{0}. It satisfies the equations

$$
\begin{equation*}
\mathfrak{y} \wedge \mathfrak{x}\left(t_{0}\right) \wedge \mathfrak{x}^{\prime}\left(t_{0}\right) \wedge \mathfrak{x}^{\prime \prime}\left(t_{0}\right)=0, \mathfrak{y} \mathfrak{y}=0 \tag{8.2}
\end{equation*}
$$

Thus $\Gamma_{1}\left(t_{0}\right)$ has a parametric representation

$$
\mathfrak{y}=\lambda_{0} \mathfrak{x}\left(t_{0}\right)+\lambda_{1} \mathfrak{x}^{\prime}\left(t_{0}\right)+\lambda_{2} \mathfrak{x}^{\prime \prime}\left(t_{0}\right)
$$

where the λ_{i} are subject to the condition $\mathfrak{y y}=0$.
Proof. Let t_{0}, t_{1}, t_{2} be mutually distinct. Theorem 5.1 implies: If t_{1} and t_{2} lie sufficiently close to t_{0}, the three points $\bar{P}\left(t_{i}\right)$ span a plane which converges to the osculating plane \bar{L}_{2} of \bar{C} at t_{0} if t_{1} and t_{2} converge to t_{0}. Hence the circle through the $\bar{P}\left(t_{i}\right)$ then converges to the circle

$$
\bar{\Gamma}_{1}=\bar{L}_{2} \cap \bar{\Gamma}_{n}
$$

Since the first equation of (8.2) represents \bar{L}_{2} in $R_{n+1}, \bar{\Gamma}_{1}$ is given by (8.2). The mapping $\bar{\Gamma}_{n} \rightarrow \Gamma_{n}$ being topological, the image of the circle through the $\bar{P}\left(t_{i}\right)$ converges to the image of $\bar{\Gamma}_{1}$. This proves our theorem.

The theorems of $\mathbf{4}$ and $\mathbf{5}$ are now readily translated.
Theorem 8.2. Let $m \geqslant 2$. If $\mathfrak{x}(t)$ is m-times differentiable at t_{0} and if

$$
\begin{equation*}
\mathfrak{x}\left(t_{0}\right) \wedge \mathfrak{x}^{\prime}\left(t_{0}\right) \wedge \ldots \wedge \mathfrak{x}^{(m)}\left(t_{0}\right) \neq 0 \tag{8.3}
\end{equation*}
$$

then C has osculating spheres of every dimension $\leqslant m-1$ at t_{0} and $\Gamma_{m-1}\left(t_{0}\right)$ has the equations

$$
\mathfrak{y} \wedge \mathfrak{x}\left(t_{0}\right) \wedge \mathfrak{x}^{\prime}\left(t_{0}\right) \wedge \ldots \wedge \mathfrak{x}^{(m)}\left(t_{0}\right)=0 ; \mathfrak{y} \mathfrak{y}=0
$$

Theorem 8.3. Let $m \geqslant 2$. Let $\mathfrak{x}(t)$ be m-times [continuously] differentiable at t_{0} and satisfy (8.3). Suppose

$$
t_{0}, t_{1}, \ldots, t_{m} \quad\left[t_{1}, \ldots, t_{m}, t_{m+1}\right]
$$

are mutually distinct. Then if the t_{i} lie sufficiently close to t_{0}, there exists exactly one ($m-1$)-sphere through the points

$$
\mathfrak{x}\left(t_{0}\right), \mathfrak{x}\left(t_{1}\right), \ldots, \mathfrak{x}\left(t_{m}\right) \quad\left[\mathfrak{x}\left(t_{1}\right), \ldots, \mathfrak{x}\left(t_{m}\right), \mathfrak{x}\left(t_{m+1}\right)\right] .
$$

It converges to $\Gamma_{m-1}\left(t_{0}\right)$ if the t_{i} tend to t_{0}.

References

1. L. M. Milne-Thomson, The calculus of finite differences, London (1933).
2. H. A. Schwarz, Verallgemeinerung eines analytischen Fundamentalsatzes, Mathematische Abhandlungen, Berlin (1890), II, 296-302.

University of Toronto
and
The Summer Research Institute
of the Canadian Mathematical Congress

