
OSCULATING SPACES 

PETER SCHERK 

In this paper an attempt is made to prove some of the basic theorems on 
the osculating spaces of a curve under minimum assumptions. The natural 
approach seems to be the projective one. A duality yields the corresponding 
results for the characteristic spaces of a family of hyperplanes. A duality 
theorem for such a family and its characteristic curve also is proved. Finally 
the results are applied to osculating hyperspheres of curves in a conformai 
space. 

The analytical tools are collected in the first three sections. Some of them 
may be of independent interest. 

1. On Taylor's theorem. The following version of Taylor's theorem 
should be known. For the convenience of the reader, we include a proof. 

In this paper, the symbol I always denotes an interval on the real axis. 
It may be open or closed. If t0 G / , put 

J = {h\t0 + h e I}; thus 0 e J. 

"Neighbourhoods" are neighbourhoods on / respectively / . 

THEOREM 1.1. Let f(t) be defined in I and p-times differentiable at to € I; 
p > 0. Then 

ttto + h)= f(t0) + ±f'(fo) + ...+ {p
V_\yf

v'l\t,) 

hP ,Av)t 

Proof. The function 

+ xi (/('•) + eW) ; lim <w = °-

h „ , . N , , n A P ) , 
m = f{u + h) - \f(k) + YJ/'(*O) + . . . + f,r\t«)) 

is defined in / and £-times differentiable at h — 0. It satisfies 

(1.1) 0(0) = 0'(O) = . . .== *<p>(0) = 0. 

Apply Taylor's theorem to <j>(h) with p — 1 instead of p. Thus there exists a 
B = 6{h) with 0 < 6 < 1 such that 
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Since </>(p~1} (A) is still differentiable a t A = 0, (1.1) implies 

<p-D(A) = 0 (^ i ) (0) + AT? (A) = hV(h) 

where 

l im 77(A) = <t>(p)(0) = 0. 

Replacing A by 0A we obtain 

0(A) = 7 T ^ ^ • M • *(**) = ^ e(A), lim e(A) = 0. 

This proves Theorem 1.1. 
If we pu t e(0) = 0, the function e(A) will be continuous in J. T h e same 

applies to the functions 

em(h) = hme(h); m = 0, 1, . . . , p. 

The function 

ep(h) = p 14(h) 

was ^-t imes differentiable a t A = 0 and satisfied 

(i.2) e,(o) = 4(0) = . . . = 4p)(o) = o. 
I t will be differentiable in some neighbourhood of the origin. 

We require the case m = p — 1 of the following remark. 

T H E O R E M 1.2. Letp > l , l < r a < £ — 1. Then em(h) ism-times continuously 
differentiable at h = 0 and satisfies 

6.(0) = e.;(0) = . . . = eiw)(0) = 0. 

Proof. Applying Theorem 1.1 to e/(A), we obtain on account of (1.2) 

ev(h) = hp~lb(h) where lim 0(h) = 5(0) = 0. 

P u t 

<5m(A) - hmb(h)\ m = 0, 1, . . . ,p - 1. 

We first verify t h a t in some neighbourhood of the origin 

(1.3) 4 (A) = ^_ i (A) - (p - m)€TO_i(ft) ; m = 1, 2, . . . , £ - 1. 

The right-hand term vanishes a t A = 0. On the other hand 

, / m r em(A) — em(0) r ew(A) 
em(0) = lim = hm —j— = lim ew_i(A) = 0. 

h->0 rl n^o ft ji^o 

Now let A 4= 0. Then 

tmvl) = V T-V—rn ep\^) I = r^P~m ^p\^J -ip—m+l ^p\f^) 

= A"_1Ô(A) - (/» - m)hm-\{h). 

This yields (1.3). 
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For m = 1, (1.3) implies 

ei(A) = 8(h) - (p - l)e(A). 

The right-hand term being continuous and zero at the origin, the same holds 
true of ei(h). 

Suppose Theorem 1.2 has been proved up to m — 1. Then either of the two 
functions in the right-hand term of (1.3) is im — 1)-times continuously dif
ferentiate at h = 0 and vanishes there together with its derivatives up to 
the order m — 1. The same will therefore apply to em'(h). This proves our 
theorem for m. 

2. Divided differences. Suppose the function fit) is defined in the 
interval / ; to, h, . . . lie in / and are mutually distinct. The divided differences 
of f{t) are defined through 

j[*o]=/(*o) 
{2A) [ ^ • • • g = [ W l - - - / - ; ] - f 1 - - - ^ ] ; p = l,2,.... 

\ to — tp 

The divided differences of another function g(t) are denoted by 

[Wl • • • tp\g. 

The following well-known formula is readily verified by induction: 

mi / m ) 

(2.2) [ « ! ...tm]= Y,\ [**] / EI (h - ti)} ; m =1,2,.... 
H / & ) 

The following mean value theorem also is known: Let f(t) be ^-times dif-
ferentiable in / . Then 

(2~ Uh...tp+1]=f^{T)/Pl 
K ' \Min (h, tp+1) < T < Max (tu . .. , tp+i); 

cf. (1). 
We need 

THEOREM 2.1. Let jit) be p-times differentiable at /0; p > 0. Then 

lim [Mi . . . tp] = . 
ti...,tp^to P-

Proof. We may assume p > 1. Put 

t •£ 

Xr 
By Theorem 1.1 

(fit) -f(h) 
J t - to 

(') = 

f'(to) t = t0 
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g(t0+h) = É Ç A M + Ç ^ ) . 
i ni p\ 

By Theorem 1.2, the function hv~le{h) is (p — l)-times continuously dif-
ferentiable at A = 0. It vanishes there together with its derivatives up to the 
order p — 1. Hence g(t) is (p — l)-times continuously differentiate at /0 and 

(2.4) g™(t0) = | /W(M. 

We readily verify by induction that 

[t\ . . . tm]g = [toti . . . tm]\ m = 1, 2, . . . . 

Replacing/ by g and p by p — 1 in (2.3), we therefore obtain 

[tcti . . . tp] — [t\ . . . /p]^ — 
^ ( r ) 

Min(/i, ... ,tp) <T < Max(/i, . . . , ^ ) . 

Let tu ... j tp tend to /0. Then r will also converge to t0 and we obtain on 
account of (2.4) 

^(P_1)(r) 
hm [toti. . .tp] = lim y - rry 

(P-I)l 

Obviously, (2.1), (2.2) and Theorem 2.1 may be applied to vector valued 
functions. 

3. Some mean-values and l imits. In the following let n > 0 be fixed. 
The vector function 

l(t) = (x1(t),x2(t)1 . . . ,xn(t)) 

is defined in the interval / . Let 0 < m < n. The parameter values tu 
are mutually distinct. Let ctm+i, . . . , an be fixed vectors, say 

a* = (aku • • • , akn) ; k = m + 1, . . . , n. 
Put 

Xi(^i) Xi(^2) . . . Xi(tm) am+i,i . . . ani 

x2(ti) x2(t2) . . . x2(tm) am+it2 • . . an2 

In, 

Let 

(3.1) Am = 

Xn{ti) Xn(t2) . . . Xn{tm) 

(?(<l), ? f e ) , • • • . ? ( Q , Ûrn+l, . • • , On) 

IT (** ~ t,) 
1< i</c<m 

https://doi.org/10.4153/CJM-1962-057-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1962-057-9


OSCULATING SPACES 673 

Formula (2.2) readily implies 

(3.2) Am = ([hi [tit2], . . . , [h . . . tm], aOT+i, . . . , an) 

where the divided differences are those of %(t). 

T H E O R E M 3.1. Let % it) be (m — l)-times differentiable at tx. Then 

lim An 
tl,..., tm-> tl 

Proof. Wri te 

Q : ( 0 , y ' ( / i ) , . . . , 3 : ( m 1)(t1)9an^if...ian) 
1!2! . . . (w - 1)! 

[̂ 1̂ 2 • • • tP]xi — [tlt2 • • . tp]i. 

T h u s this number is the ith component of the vector [tit2 • . . tv 

By (3.2) 

(3.3) Am = 

By Theorem 2.1 

[h]i [̂ 1̂ 2] 1 • • • [ti . . . tm]i flm+i,i . . . an\ 

[hh [hhh • • • [h • • >t raj 2 Q>m+1,2 • • • CLn2 

[tl]n LM2Jrc . . . [t\ . . . tm]n 

lim [h. . .tp]i = Y- r ~ . 
12 tp^ti \P — i;! 

T h e determinant being a continuous function of its elements, (3.3) therefore 
readily implies our assertion. 

T H E O R E M 3.2. Let i(t) be (m — 1)-times differ entiable in I. Then there are 
m numbers n = h, r2, . . . , rm such that 

ATO = 
( ï ( n ) , r ' ( T 2 ) , . . . , ^ ( Q . t W i . - . - . O n ) 

1 ! 2 Ï . . . (m - 1)! 

Min(/ l 5 . . . , tk) < rk < Max(/ i , . . . , / * ) ; k = 2, . . . , m. 

In order to prove this s ta tement , we generalize it. Let Ch, . . . , ctn be constant 
vectors. For each k let hi, • • • , fe lie in / and be mutual ly distinct. Pu t 

TJC = ([*n], [̂ 21/22], . • • , [hi. . . hi;], a,+i, . . . , a»), 

fit) = ([^11], [W22], • . . , fc-1,1 • . . ^ - I . A - I ] , lit), ctife+i, . . . , a„). 

T h u s the (k — l ) s t divided difference 

[hi • • • J**]/ 

o f / is equal to I \ . By (2.3) with p = k — 1, there exists a r/c satisfying 

(3.4) Min (tkl, . . . , foO < rk < Max (*«, . . . , tkk) 

such t ha t 
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[ f e i . . . / * * ] / = / ( * - 1 ) ( r * ) / ( * - 1)! 

or 

/ ra_1)f ) \ 
Fk — \[hi], [ W 2 2 L . . . , [4-i f i • • • h-i,k-i], /7 _ 1 Nj , ûjfc+i,.. . , an J. 

Applying this result consecutively with k = m, m — 1, . . . , 2, we obtain 

r = (f ( r i ) , g '(r2) , . . . , ? (m~1}(rm), Qm + b . . . , Qw) 
1!2!. . . ( m - 1)! 

where n = £n and where the r^ satisfy (3.4) if 2 < & < ra. 
T h e case m — n of Theorem 3.2 is a slight refinement of a mean-value 

theorem for de te rminants due to Schwarz. He developed it for similar purposes ; 
cf. (2). We note the following corollary. 

T H E O R E M 3.3. Suppose jc(t) is (m — 1)-times continuously differentiable at to. 
Then 

y A 0K*o), t'-(to), . • . , t^ito), am+h . . . , q,) 
11m i\m - j j . . f 

*i,*2,...,r»»-»*o l i ^ . . . . ^ w 1 ; . 

4. A definition of the osculating spaces. Existence. A curve C in 
projective w-space Rn is the continuous image of an interval I. T h u s C can be 
described through a vector function 

C: f = ï (0 ; *<E / . 

W e do not distinguish between a point and i ts—homogeneous—co-ordinate 
vector. 

Let to 6 I be fixed. P u t L0(t0) = %(to). Suppose L0(t0), . . . , L^xito) have 
been defined and they exist. Let t £ I, t 5e t0. I t can happen t h a t the (k — 1)-
space Ljc-i(to) and j(£) span a &-space whenever £ is sufficiently close to /0, 
and t h a t this &-space converges if t t ends to to. T h e limit space Lk(to) is then 
called the osculating k-space of C a t £0. 

T H E O R E M 4.1 . Z ^ 0 < w < n. Let C be m-times differ entiable at U, 

(4.1) f(/0) A ï'(*o) A . . . A £(w)(*o) 5* 0. 

77£en C /zas osculating k-spaces at to for 0 < & < m, and Lm(to) is given by 

(4.2) t) A f(*o) A f'(/0) A . . . A £(w)('o) = 0. 

Formula (4.1) s ta tes t h a t £(£0), • . • , £(m)(^o) are linearly independent . By 
(4.2), these points span Lm(to). 

W e prove Theorem 4.1 by induction. In the case m = 1 we have 

lim s(*o) A Xit\ ~ f°] = r(*o) A U m m - f o ) = f(*0) A ï'(*.) * 0. 

T h u s 

https://doi.org/10.4153/CJM-1962-057-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1962-057-9


OSCULATING SPACES 675 

(4.3) j(*0) A m
f " fç) A 0 

t — to 
if \t — t0\ is sufficiently small. But the straight line through i(to) and %(t) is 
spanned by the bivector (4.3). Thus the last two formulae prove the case 
m = 1. 

Suppose Theorem 4.1 has been proved up to m — 1. Put h = t — t0. By 
Theorem 1.1, 

7 -rm— 1 im 

ï(*o + h) = ï(*0) + £ ï'(*o) + . . . + " n , ï(OT-1,(M + ^ &.(*), 1! (m — l j ! m\ 

limf,.(A) =ï (" l )(M-
ft->0 

By (4.1), 

(4.4) ï(*0) A ï'Oo) A . . . A tm~'\U) * 0. 

Hence by our induction assumption, Lm_i(/0) exists and is given by the m-
vector (4.4). From the above 

jp ï(*o) A ï'(*0) A . . . A ?(m-1}(^o) A * + *) 

= ï(*o) Aï'(/o) A . . . A ^ - ^ ^ o ) Afm(A). 

If h tends to zero, this (m + 1)-vector converges to the (m + 1)-vector 
(4.1). In particular, it does not vanish if h is sufficiently small. Thus Lm-i(£o) 
and %(to + h) span an m-space for these h. If A tends to zero, this ra-space 
converges to the m-space spanned by the (m + 1)-vector (4.1). This yields 
our theorem. 

In the special case m = n — 1 we obtain the osculating hyperplane Ln_i(£0). 
We formulate this case explicitly: 

COROLLARY 4.2. Let C be (n — 1)-times differentiable at t0. Suppose the 
points %(to), ï'(Jo), • • • , ï(w_1)(^o) are linearly independent. Then the osculating 
hyperplane of C at to exists. It has the equation 

fatito),? (to),..., %<*-»&)) =0. 
We do not prove the following observation. 

THEOREM 4.3. Let C be n-times differentiable in / , 

(4.5) f(/) A r/(0 A . . . A Ï < - D ( / ) -A 0) „ 

(4.6) f(0 A ic'(t) A . . . A r^-DW A j<»>(0 = 0) 

Then Ln-\(t) is constant. Thus C lies in this constant hyperplane. 

It should be noted that this theorem becomes false without the assumption 
(4.5) even if C is of class C(co). 
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5. Osculating spaces as "subspaces through neighbouring points ." 

THEOREM 5.1. Let 0 < m < n. Suppose the curve 

(5.1) C : f = ï ( 0 ; t e l 

is m-times differentiable at to and satisfies (4.1); the parameter values to, tu . . . , tm 

are mutually distinct. Then if ti, . . . , tm are sufficiently close to to, the points 

(5.2) ï ( * o ) , ? ( * i ) , . . . , ï ( U 

span an m-space. It converges to Lm(to) if the ti tend to to. 

Proof. Let ctm+i, . . . , ctw be any n — m constant vectors. 

By Theorem 3.1, 

J im hc(to),Z(h), . .. . ,JC(tm),am+l, . . . , ttw) 
tl'-tm^t° TI (h-U) 

= (g(/o),S'(*o),. . • ,S(w)(*o),tWi, . . . ,0,) 

l ! 2 ! . . . m ! 

Since this holds for every choice of am+u . . . , aw, this implies 
j . g(*o) A g(/i) A . . . A ? ( U = ï(to) A g'(*o) A . . . A £(m)(*o) 

- • ™ - n & - * o 1!2L*-m! 

0< i<kKm 

By (4.1), the right-hand multivector does not vanish. Hence 

ï(*o) A ic(h) A . . . A ic(tm) ^ 0 

if the tt lie sufficiently close to to, and the m-space through the points (5.2) 
converges to the m-space spanned by the (m + 1)-vector (4.1), that is, to 
Lm{to) if the ti converge to to', cf. Theorem 4.1. 

THEOREM 5.2. Let 0 < m < n. Suppose the curve (5.1) is m-times continuously 
differ entiable at to and satisfies (4.1). The parameter values tu h, • • • , W i are 
mutually distinct. Then if ti, . . . , tm+i lie close enough to to, the points 

ic(h), . . . ,£ (Wi) 

span an m-space. It converges to Lm{to) if the tt tend to t0. 

The proof of this statement is based on Theorem 3.3 rather than 3.1. Other
wise it is parallel to the preceding proof. 

5a. A limit case. The question arises whether the results of 5 remain 
valid if some of the ti coincide. In our comments we shall only consider 
Theorem 5.1. 
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Let 0 < m < n. Suppose the curve (5.1) is m-times differentiable at to and 
satisfies (4.1). The parameter values to, ti, . . . , tr are mutually distinct; 

T 

ra0 > 0, mi > 0, . . . , mr > 0 ; 22 (m i + 1) = m + 1. 
o 

Suppose the ti lie sufficiently close to to. Then C will be rartimes differenti
able at each ti and Lmi(ti) will exist. It is the limit of w rspaces through points 
determined by Wj + 1 parameter values ti0 = tu tiU . . . , ^m i converging to 
tir We may assume that all the m + 1 parameter values £<y are mutually 
distinct. Keep the tt fixed and let the ti} converge to tf for each i. Any limit 
space of the m-spaces spanned by the l{ttJ) will contain the Lmi(ti). This yields: 

Remark 5.3. There exist m-spaces containing all the Lmi(ti) which converge 
to Lm(to) as the tt tend to to. 

There remains the question whether the assumption (4.1) is sufficient to 
ensure that the osculating spaces 

^mQ\to)i -L'miK.tl), • • • j •L>mr\f'r) 

actually span an m-space if the tt lie near enough to to. We have only been 
able to discuss the case r = 1. 

Let & > 0, £ > 0, k + p = m + 1. Without loss of generality let to = 0 
and put h = t ?± 0. If 

(5.3) S = f(0) A f '(0) A . . . A f<*>(0) A ^ ) A ? '(*) A . . . A ic^(t) je 0, 

then 1^(0) and Lv(t) span an w-space. If (5.3) holds for all small t, Remark 
5.3. will show that this m-space converges to Lm(fl) as / tends to zero. 

Assume p < k + 1. By Theorem 1.1 

. ,m-l-j 

,m—j 

Hence 

S = ï(0) A . . . A ï (*'(0) 

/ JH-1 ±m— 1 .w \ 

ra—2 .ra—1 

( m - 2)!4 W ^ ( r o - 1)!' 
A I j-, ïtt+1) (0) +. . . + J 0„ j0-» (0) + J ,., f^,(o 

A • • • A ( ( , ; , _ ^ ' > ( o ) + . . , + L ^ ( o ) + - i — M)). 

This yields 
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(5.4) 

where 

J-'k.v 

lim ^FFÏTO+Ï) = Ek.p ï (0) A ï ' (0) A . . . A ï 

1 

(m) (0) 

(* + l)! 
1_ 

1 

1 

1 

( * + ! - / > ) ! (k + 2-p)l 

(m 
1 

D! 

(m 

1 

2)! 
1 

(m - 1)! 

1 

(*+D! 

PL 

In part icular EktV ^ 0 and the r ight-hand term of (5.4) does not vanish. T h u s 
S 5^ 0 if J is sufficiently small. 

If /> > £ + 1, (5.4) remains valid if EktP denotes a similar de te rminan t 
satisfying the same recursion formula. This proves 

T H E O R E M 5.4. Let & > 0 , £ > 0 , m = £ + £ + l < n. Suppose the curve C 
satisfies the assumptions of Theorem 5.1. Then Lk(to) and Lp(ti) span an m-space 
if t\ is sufficiently close to to. If t\ tends to to, this m-space converges to Lm(to). 

6. F a m i l i e s of h y p e r p l a n e s . Capi tal German letters denote hyperplane 
co-ordinate vectors. 

Given a family of hyperplanes 

(6.1) T: 1 = X(/); te I 

in projective w-space Rn. 
Let to (z I, t 5^ t0m T h e characteristic subspaces Ak(t0) of T a t to are defined 

dually to the osculating spaces of a curve. P u t A„_i(/0) = 36(to). Suppose 
An_i(/o), . • • , An_k(t0) have been defined and they exist. If the intersection 
of An-k(to) with 36(0 is an (n — k — 1)-space for every t close to t0 and if 
this (n — k — 1)-space converges as t tends to to, then the limit space 
Kn-i-1:{to) is called the characterist ic (n — 1 — &)-space of T a t to. W e obta in 
from Theorem 4.1 by a dual i ty 

T H E O R E M 6.1. Let 0 < m < n. Suppose T is m-times differentiable at to and 

(6.2) ï(*o) A X'(to) A . . . A Wm)(to) * 0. 

Then V has characteristic subspaces of the dimensions n — 1, n — 2, . . . , 
n — 1 — m at to and Aw_i_m(/0) has the equation 

g) A ï(*o) A 31'(to) A . . . A 36(m)(*o) = 0 

[or in point co-ordinates 

l)X(*o) = W(to) = . . . = Wm)(to) = 0]. 

Theorems 5.1 and 5.2 can also readily be t ransla ted t o families of hyperplanes. 
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THEOREM 6.2. Let 0 < m < n. Suppose T is m-times [continuously] dif
fer entiable at t0 and satisfies (6.2). The parameter values t0, t\, . . . , tm [tlt . . . , 
tm, tm+i] are mutually distinct. Then if the tt are sufficiently close to to, the inter
section of the hyperplanes 

x(^o), H{t\), . . . , x(tm) [x{ti), • • • » X{tm), x(tm+l)] 

is an (n — 1 — m)-space. It converges to Are_i_m(£0) if the tt tend to t0. 

7. On the characteristic curve of a family of hyperplanes. If the 
family T of hyperplanes (6.1) is (n — l)-times differentiable in / and if 

X(0 A ï ' ( 0 A . . . A ^"-"(O s* 0 for all t 6 / , 

then T has by Theorem 6.1 a characteristic point AQ(t) at each t. We call 

C: Ao = A0(t); t £ I 

the characteristic curve of T. Let $(t) be a homogeneous co-ordinate vector of 
the point A0(t). Then 

(7.1) ï (0ï(0 = ï(*)X'(0 = . . . = ïWï(n-1} (0 = 0 for all / Ç I. 

THEOREM 7.1. Let X(t) be n-times differentiable at t0 £ / , 

(ï(/o),X ,(/o)> . . .>ï (n )(^o)) ^ 0 . 

Then the characteristic curve C has osculating spaces Lk(to) of every dimension 
at to, and 

Lk{U) = Ajcik); k = 0, 1,. . . ,n - 1. 

Proof. There is a neighbourhood N of to such that £(/) is (n — l)-times 
differentiable in N and that 

(7.2) ( ï (0 , X'(0, • • • , ^ " 1 } ( 0 , *(n)(*o)) ?* 0 for all * £ iV. 

This follows from our assumptions and from the fact that the left-hand term 
of (7.2) is differentiable and therefore continuous at to. 

By (7.1) and (7.2) 

ï(Oï(w)(*o) 7* 0 for all / £ N. 

We can therefore norm $(t) such that 

(7.3) ï(0*(n)(*o) = 1 fora l l / £ N. 

Then the differentiability of (7.2) at to implies that of $(t) there. In particular, 
$(t) will be continuous at to-

Define the points t)0, tji, . . . , tjn through 

( l k = i 
(7.4) \)iWn-V(k) = < if i, k = 0, 1, . . . , n. 

[O k ?* i 

Thus 
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(t)o, th, • • • , t)„)@(n)(*o), X(n-l)(to), • • • , *(/„)) = 1. 

In particular 

0)0, t)l, • • • , t)n) 5* 0. 

Hence for each i the points t)o, tyi> . . . , Xji span an z-space. Since they lie in each 
of the spaces ïOo), . • • , 3E(n~i-1)Oo), they must lie in A*00). 
This implies 

LEMMA 1. The points t)o, t)i, . . . , V)t span A^Oo); i = 0, 1, . . . , n — 1. 

LEMMA 2. 

" ^ ( ' ~ ' ° r ( o k>i 

Proof. Let 0 < i < £ < n. We have 

hm — —V^ = 1 if Î, fe = 0, 1, . . . , «. 

1 k = 0 
lim s t O X ^ f t O = ï(io)3Êc'l-*)(/o) = < if 

(o k>o 
This verifies our statement if i = 0. Suppose it is proved up to i — 1 > 0 
[thus & > 0]. 

By Theorem 1.1, 

x<"-»(0 = *(B-w«o) + £ —^r^x(n"ft+ft)(io) + ( / ~ / o ) ' yr* (0 ; 

lim ÏT*(0 = 3eCre-':+i)(<o). 

Hence 

(t-toY ~ (t-toY + fci hi (*-*„)'"* +i\W)Xt w -
Here 

hm —— —-7— = hm 0 = 0, 

( l * = * 

lim imr\t) = i(to)tn'k+i)\t0) = ^ if 
^'° ( o k>i 

By our induction assumption 

f-(n-*+ft)/. \ / 0 — /^)! 

hm ^ T T F V ^ = J if 1 < A < i — 1. 

k = i 

k > i 
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Hence 

Litk = lim —r —rj— 
t->to \t — to) 

exists and we have Litk = 0 if k > i. Finally 

This proves Lemma 2. We only need the following observation: 

i(f)7t},n~ii (t ) 
(7.5) lim —y TTT~ exists and is not zero] i= 0, 1, . . . , n. 

t->t0 \t — to) 
By making the neighbourhood N of to smaller, we may therefore assume 

(7.6) ïWï^- 'K'o) ^ 0 for allte N,t9* h\ i = 0, 1, . . . , ». 

Furthermore (7.5) implies 

LEMMA 3. Let 0 < i < k < n. Then 

StïWï^'fo)-0-
The point $(£) must be a linear combination 

n 

tit) = £ «*(09* 
o 

of the » + 1 linearly independent points t)fc. Multiplying this equation by 
ï(w-i)(£o) we determine the «*(£) and obtain 

LEMMA 4. 

0 

Trivially Lo(̂ o) = A0(/o). Thus Theorem 7.1 holds true for i = 0. Suppose 
it is proved up to i — 1 > 0. Thus Lt-i{to) = Af_i(^0) is spanned by ty0, th> 
. . . , t)z_i. By Lemma 4, 

(7.7) ^ w %.//\^(»-t) 

*_', ï(^)3ê("-<)(«o) ' **• 

By Lemma 3 

(7.8) Km j,(J) = t),. 

On account of (7.7), the i-space through L*_i(£) and j(£) is spanned by the 
points t)0, t)i, . . . , t)î-i, j i (0; cf. (7.6). By (7.8) it converges to the x-space 
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spanned by t)o, tyi, . . . , t)i-i, X)u that is, to A^o) if t tends to to. This proves 
our theorem. 

8. Osculating spheres. Given a curve 

C: P = P(t)\ t £ I 

in conformai n-space Tn. Thus C is the continuous image in Tn of the interval / . 
Let to, h, h be three mutually distinct parameter values. If the circle through 

P(to), P(ti)j P(t2) is uniquely determined for all h and h sufficiently close to 
to and if it converges to the circle Ti(to) if h and h converge independently to 
to, then ri(£o) is called the osculating circle or the osculating 1-sphere of C 
at to. 

Let to £ I be fixed, £ ̂  Jo. Suppose we have already defined ri(/0), r2(/o), 
. . . , rfc__i(/o) and they exist; k > 2. It can happen that the ^-sphere through 
the (k — l)-sphere IVi(£o) and P(t) is unique if t lies sufficiently close to to 
and that it converges if t tends to to. Then the limit ^-sphere Tk(to) will be 
called the osculating k-sphere of C at /0-

We can formulate conditions for the existence of I\(£0) in terms of arbitrary 
polyspherical co-ordinates. The following approach seems convenient. Let 
£i, . • • » in be the co-ordinates of a point P in euclidean n-space with respect 
to some normed orthogonal co-ordinate system; £0 = LiM x̂2- We associate 
with P the homogeneous co-ordinate vector 

I = (XU *2, . . . , %n, Xn+1, Xn+2) = p(£l , {2, . • • , f», | (f 0 ~ 1) , § (f 0 + 1)) 

where p 5̂  0 is an arbitrary scalar. If 

*) = (yu . . . ,^+2), 

put 
n+1 

Thus ïî = 0 and £ can also be interpreted as the homogeneous co-ordinate 
vector of a point P on the unit sphere Tn if the latter is imbedded into pro
jective Rn+v If we adjoin an ideal point with the co-ordinate vector 

(0, 0, . . . , 0, xn+i, xn+i) 

to euclidean w-space, we arrive at conformai w-space Tn. The mapping P —> P 
will then be a homeomorphism of Tn onto Tn. 

An (n — 1)-sphere IV1 in Tn is given by equations 

(8.1) aç = 0 , K = 0. 

It corresponds to the (n — 1)-sphere Tn_i in which the hyperplane a£ = 0 
in Rn+i intersects Tn. Thus it contains real points if and only if eta > 0. If 
aa = 0, rn_i contains exactly one real point, viz. the point P with the co
ordinate vector a. We then identify rw_i with P. 

https://doi.org/10.4153/CJM-1962-057-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1962-057-9


OSCULATING SPACES 683 

Suppose the curve C is given by means of the vector function 

Ï = f(0; K = 0; te L 

Its image in Rn+i is a curve 

C: P = P{t)\ t 6 J. 

THEOREM 8.1. Le/ $(/) be twice differentiable at to, 

tifo) A f'(*0) A f"(*o) 5*0. 

TTzew C /zas aw osculating circle Ti(t0) at t0. It satisfies the equations 

(8.2) t) A f(*o) A ?'(*<>) A f"(*0) = 0, W = 0. 

Thus Ti(t0) has a parametric representation 

t) - Xo?(*o) H-Xrf'C/o) + X*"(*o) 

where the X* are subject to the condition t)t) = 0. 

Proof. Let to, h, to be mutually distinct. Theorem 5.1 implies: If t\ and t% 
lie sufficiently close to to, the three points P(tt) span a plane which converges 
to the osculating plane L2 of C at *o if h and /2 converge to t0. Hence the circle 
through the P(ti) then converges to the circle 

rx = u r\ Tn. 
Since the first equation of (8.2) represents L2 in Rn+i, Pi is given by (8.2). 
The mapping Tn —> I \ being topological, the image of the circle through the 
P(ti) converges to the image of IV This proves our theorem. 

The theorems of 4 and 5 are now readily translated. 

THEOREM 8.2. Let m > 2. If jc(t) is m-times differ entiable at to and if 

(8.3) ï(*o) A l'ito) A . . . A tm)(to) * 0, 

then C has osculating spheres of every dimension <ra — 1 at to and Tm-\(to) 
has the equations 

t) A lito) A ï'(*o) A . . . A tm)(to) = 0; t)t) = 0. 

THEOREM 8.3. Let m > 2. Let i(t) be m-times [continuously] differ entiable 
at to and satisfy (8.3). Suppose 

to, h, . . . , tm [ti, . . . , tm, /m+i] 

are mutually distinct. Then if the ti lie sufficiently close to to, there exists exactly 
one (m — 1)-sphere through the points 

ï(*o), ï(*i), • • • , f(*m) fe(*i)» • • > ? ( U , ï (Wi) ] . 

It converges to Tm-i(to) if the ti tend to tQ. 
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