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ABSTRACT. A constitutive law for snow derived from a complementary power po-
tential is proposed.The total deformation of snow is divided into elastic and creep parts.
A hereditary integral using Norton’s power law is employed to describe primary creep.
The concept of effective stress, which takes compressibility of snow into account, is used
to calculate creep deformation. The hereditary integral is approximated by a non-linear
spring^dashpot model. Results from uniaxial compression experiments (stress range 15^
45 kPa) on sieved snow of density range 180^470 kgm�3 were used to determine the con-
stants appearing in the constitutive equation.The response of snow to constant strain rate
(7.4�10�6 s�1 to 2.2�10�5 s�1) under bilaterally confined conditions was found with an
iterative scheme employing the proposed constitutive law. The simulated results agree
well with the measured axial stresses and volumetric changes.

INTRODUCTION

Snow is a non-linear compressible viscoelastic material.
Modelling of the continuously changing stress regime in
creeping snowpack on an avalanche slope requires a multi-
axial constitutive law. Prior to 1970, the equation for a four-
parameter viscoelastic fluid with linear elements was used
as the most general constitutive relationship (Mellor, 1964).
Salm (1967) investigatedmultiaxial behaviour of snow using
a constitutive law similar to Hooke’s law, with strain rate in
place of strain. Probably the first comprehensive non-linear
constitutive relation was proposed by Salm (1971). An ap-
proach similar to the stress^strain relationship for a
Green^Rivlin material was used by Brown and others
(1973) and Brown (1976) to describe the non-linear deform-
ation behaviour of snow. Salm (1977) developed a constitu-
tive equation for creeping snow in a quasi-stationary state
by the principle of maximum entropy production.

In this paper, we extend the phenomenological ap-
proach of Szyszkowski and Glockner (1986) for incompressi-
ble ice to compressible snow.This is achieved by defining an
effective viscoelastic stress, which takes into account the
effect of compressibility.The deformation of snow is divided
into elastic, primary creep and secondary creep. A non-
linear hereditary integral is used to describe the primary
creep. Secondary creep strain is approximated by a general-
ized Norton’s power law. In the phenomenological approach
used here, the constants appearing in the constitutive law
are determined from macroscopic observations without
considering microstructure or its evolution. Instead, these
constants are related to the relative density. Finally, the pro-
posed constitutive law is applied to triaxial test data to de-
termine how well it approximates this behaviour.The snow
here is assumed tobe isotropic and non-age-hardening. Both
these assumptions seem reasonable for the duration and

environmental conditions of the laboratory experiment.
Snow samples prepared and tested under laboratory con-
ditions show comparatively less scatter in deformation
behaviour and properties, thereby facilitating analytical
modelling. Hence, results of cold-laboratory experiments
on sieved snow samples were used both to determine the
constants and to validate the law.

MULTIAXIAL CONSTITUTIVE LAW

For snow we propose the existence of a complementary
power potentialW such that

Dij ¼ De
ij þDc

ij ¼
dW

d�ij
; ð1Þ

whereDij is the rate-of-deformation tensor which is divided
into elastic and creep parts De

ij and Dc
ij. The complemen-

tary power potential is expressed as a function of the first
and second invariant of stress tensor �ij and consists of three
terms:

W ¼ d

dt

�2
m

2K
þ S2

6G

� �
þ A1

d

dt

Z t

0

F ½P ð�Þ�jðt� �Þ d�

þ A2

Z t

0

F ½P ð�Þ�: ð2Þ

The first term represents linear elastic strain energy, and the
second is recoverable viscoelastic potential, while the third
term signifies permanent deformation. In Equation (2), K,
G and �m denote the elastic bulk modulus, shear modulus
and hydrostatic stress respectively. The second invariant of
deviatoric-stress tensor spq is depicted as

S2 ¼ ð3=2Þspqspq spq ¼ �pq �
1

3
�kk�ij: ð3Þ
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The function F ½P ð�Þ� is defined as

F ðP Þ ¼ BPnþ1

nþ 1
P 2 ¼ 3c

2
spqspq þ fðtr�Þ2; ð4Þ

Dc
ij ¼ A1

d

dt

Z t

0

BPn�1 3c

2
sij þ f�kk�ij

� �
jðt� �Þ d�

þ A2BPn�1 3c

2
sij þ f�kk�ij

� �
; ð5Þ

where ½P ð�Þ� is the effective stress (Chenot and others,1990).
Using Equations (1^4), we have

De
ij ¼

1

E
ð1þ �Þ _�ij � 3 _�m�ij
� �

; ð6Þ

where � is the Poisson’s ratio.
Defining

~�n
ij ¼ Pn�1 3c

2
sij þ f�kk�ij

� �
; ð7Þ

and replacing A1B and A2B by 1=�1 and 1=�2 respectively,
the creep deformation rate can be written as

Dc
ij ¼ Dp

ij þDs
ij ¼

1

�1

d

dt

Z t

0

~�n
ij jðt� �Þ d� þ 1

�2
~�n
ij : ð8Þ

Dp
ij and D s

ij are the primary and secondary creep deform-
ation rates. The function jðtÞ is normalized such that
jð0Þ ¼ 1 and jðtÞ ! 0, as t ! 1; this implies that area
(J) under the j vs time curve is finite, i.e.

Jðt ! 1Þ ¼
Z t!1

0

jð�Þ d� ¼ J1: ð9Þ

A non-linear spring^dashpot model (Fig. 1) is used to

represent the hereditary integral jðtÞ (Szyszkowski and
others,1986), so that

ð~� 00
ij Þn ¼ �1D

p
ij; ð10aÞ

ð~� 0
ij Þ

n þ �ð~�ijÞn�1 ~� 0
ij ¼ E1

Z t

0

Dp
ij dt; ð10bÞ

~� 0
ij þ ~� 00

ij ¼ ~�ij ð10cÞ
(� is introduced so that E1 6¼ 0 at ~� ¼ 0).

The postulated constitutive law expressed as Equa-
tion (8) implies certain invariant features for creep curves
for various constant stress levels. It can be shown thatZ 1

0

ðDij �D s
ijÞ dt ¼

~�n
ij

�1
J1 ¼ t0 tan� ¼ t0

~�n
ij

�2
: ð11Þ

We thus obtain a stress-independent parameter t0 (see
Fig. 2):

t0 ¼
�2
�1

J1: ð12Þ

From Equation (8), we obtain

dDij

dt
¼

~�n
ij

�1

dj

dt

����
t¼0

¼ � cot � ¼ �
~�n
ij

�1t1
: ð13Þ

A second stress-independent parameter, t1, can be written
as (see Fig. 3)

t1 ¼ � 1
dj
dt

��
t¼0

: ð14Þ

When a constant stress is removed at time t ¼ t0, the rever-
sible portion, amounting to ð~�n

ij=�1ÞJðt0Þ; should be recov-
ered while the irreversible component, ð~�n

ij=�2Þt0; remains
as permanent viscous strain. If the time, t0, is chosen such
that the creep process is in its ‘‘steady creep’’ stage, measure-
ments of the ‘‘permanent’’

R
Ds

ij dt and ‘‘recoverable’’R
Dp

ij dt viscous strains may also be used in determining
the parameter, t0, from the relation

t0 ¼
R
Dp

ij dtR
Ds

ij dt
t0 ¼

R
Dp

ij dt

~�n
ij

�2: ð15Þ

The memory function jðtÞ in the proposed equation is ap-
proximated with that of the model’s jmðtÞ shown in
Figure1and expressed by Equations (10a^c). jmðtÞ is a char-
acteristic function of the model describing the hardening

Fig. 1. A non-linear spring^dashpot model for primary creep.

Fig. 2. Concept of t0 shown graphically on a typical creep

curve.

Fig. 3. Concept of t1 shown on a strain-rate vs time plot.
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process during primary creep stage. For the model, the
creep deformation-rate tensorDc

ij can be written as

Dc
ij ¼

~�n
ij

�1
jmðtÞ þ

~�n
ij

�2
: ð16Þ

Comparing the first term with Equation (10a),

~� 00
ij ðtÞ ¼ ~�n

ffiffiffiffiffiffiffiffiffiffiffi
jmðtÞ

p
ð17Þ

which, when used with Equations (10b) and (10c) (for
spring element), gives

~� 0
ij ðtÞ ¼ ~� 1�

ffiffiffiffiffi
jm

n
p

ðtÞ
	 


ð18Þ

and

1�
ffiffiffiffiffiffiffiffiffiffiffi
jmðtÞn

ph in
þ� 1�

ffiffiffiffiffiffiffiffiffiffiffi
jmðtÞn

ph i
¼

E1

R
Dp

ij dt

~�n
: ð19Þ

From Equation (19), by differentiation, we obtain

djmðtÞ
dt

¼ � E1ðjmÞ2�
1
n

�1 ð1�
ffiffiffiffiffi
jm

n
p

Þn�1 þ �
n

h i : ð20Þ

Substituting Equations (14) and (20) into Equation (10a),
one arrives at

1

t1
¼ E1

�1

1

� þ �=n
; where � ¼ 1 for n ¼ 1:0

0 for n > 1:0

���� : ð21Þ

In the model, it may be appreciated that as t ! 1,
~� 00ðtÞ ! 0, while ultimately the total stress applied to the
model is taken by the spring. This condition, together with
Equations (16) and (10b), leads toZ 1

0

Dp
ij dt ¼

~�n

�1

Z 1

0

jmðtÞ dt ¼ ð1þ �Þ ~�
n

E1
; ð22Þ

fromwhich we obtain
E1

�1
J1 ¼ 1þ �: ð23Þ

Using Equations (21), (23) and (12), two additional constants,
� and E1, for the model can be related to the material para-
meters, t0 and t1 (for n > 1), by

� ¼ �

1� �
; ð24aÞ

E1 ¼
�1
t1

�

n

1

1� �
; ð24bÞ

where

� ¼ �2
�1

t1
t0
n: ð24cÞ

From the above it is evident that the determination of strain
in snow requires knowledge of all the constants �1, �2, t0, t1,
E1, �, n, c and f appearing in the constitutive law.

The authors realize that the spring^dashpot model for
snow may not be very exact. In snow, primary creep occurs
largely from deformation of bonds/grains, whereas second-
ary creep occurs both from deformation of bonds/grains
and from sliding of grains after bonds break. If grain sliding
is the predominant deformation mechanism, only a fraction
of the primary creep strainwill be recovered. Onunloading,
a spring^dashpot model will show full recovery over a
period of time, which may not happen in the case of snow.

EXPERIMENTS

Three sets of experiments were conducted for the present
study: (1) Over 60 constant-load unconfined compression
creep tests were conducted, results of which were utilized

for the determination of all the constants appearing in the
developed constitutive law. (2) Results from about 15 con-
stant-load unconfined compression creep experiments were
used to validate the determined constants. (3) About 60 con-
stant displacement-rate tests under different confining pres-
sures were conducted. Since the constants are determined
from constant-load experiments, the form of the proposed
constitutive law will be confirmed if it works for triaxial
state of stress under altogether different boundary condi-
tion, i.e. constant displacement rate.

Uniaxial tests

Snow samples collected from the field are stored in a small
cold chamber, maintained at ^20‡C. Cylindrical samples
(diameter: 0.065m; height: 0.15m) are prepared by sieving
to maintain a uniform grain-size of 0.5�10�3 m to
1.0�10�3 m. Tests were performed on a 10 kN Universal
Testing Machine. The density range of samples was 180^
470 kgm�3. No sample was more than 14 days old. All tests
were performed for 8 hours at ^10‡C. Lateral strain ratewas
monitored with a spring-loaded displacement sensor. Stres-
ses applied were in the range 0.015^0.045MPa.

Multiaxial tests

Atriaxial testing machine for snow, developed and installed
in the cold room of the Snow and Avalanche Study Estab-
lishment (SASE), Manali, India, can conduct constant-
strain-rate (CSR) tests under different confining pressures
(up to 0.030MPa). It is also capable of recording the volu-
metric change in the sample with the help of a flow-meter
attachment. Snow type, sample preparation method and
sample dimensions were the same as those used for uniaxial
experiments. Strain rates ranging from 7.4�10�6 s�1 to
2.2�10�5 s�1 were used. Again, samples up to 14 days old
were tested at an environment temperature of ^10‡C.

DETERMINATIONOF PARAMETERS FROM
UNIAXIALTESTS

During uniaxial tests, from the instantaneous axial and
lateral deformation at t ¼ 0, the Young’s modulus E and
Poisson’s ratio � were determined. Based on these, three
values for E, namely 4,10 and 17MPa, were used for snow-
density ranges 230^300 kgm�3, 300^370 kgm�3 and
370 kgm�3 and above, respectively.

For the uniaxial unconfined creep test, the primary
creep rate reduces continuously and acquires a negligible
value in 1^2 hours in a test conducted for 8 hours.With this
assumption, for time t > 2 hours

Dc
11 ¼ D s

11 ¼
� n
0

�2
ðcþ fÞ

nþ1
2 ; ð25Þ

where � n
0 is applied axial stress.

The following form of c and f was chosen so that the
constitutive law reduces to that for incompressible matrix
material for relative density, i.e. 	snow=	ice ¼ � ¼ 1:

c ¼ 1þ c1ð1� �Þq; f ¼ c2ð1� �Þr: ð26Þ
By substituting Equations (26a) and (26b) into Equa-
tion (25),

Ds
11 ¼

~�n
0

�2
1þ c1ð1� �Þq þ c2ð1� �Þr½ �

nþ1
2 : ð27Þ

By performing creep tests on two samples of the same
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density, the approximate value of n canbe determined from
Equation (25).

Writing an equation for Ds
22 similar to Equation (27),

and dividing that by Equation (27),

c1 � c2ð1� �Þq�r
D22

D11
þ 0:5

1� D22

D11

" #
¼ 0: ð28Þ

A regression fit, using software developed by D. Hyams
(http://www.ebicon.com/�dhyams/cvxpt.html), performed
on Equations (28) and (27) gives c1, c2, q, r and �2.We next
determine the constants �1,E1, � required in primary creep
equations. �1 is calculated from the deformation rate at
t ¼ 0 from the following equation:

1

�1
¼

ðD11Þt¼0 �
� n
0

�2
ðcþ fÞ

nþ1
2

� n
0 ðcþ fÞ

nþ1
2

: ð29Þ

The determination ofE1 and � requires evaluation of t0 and
t1 as shown in Equations (24a^c). Table 1 lists the values of
various constants appearing in the constitutive equation.
The proposed law is now used to predict the deformation
behaviour of snow for uniaxial confined compression tests
not used in determining the constants. Figures 4 and 5 show
the comparison of actual and simulated creep response for
low- and high-density snow, respectively. The constitutive
law predicts the creep response accurately, though it ap-
pears that in a few cases the difference is appreciable (e.g.
Fig. 6). Since, the values of c and f have been considered to
be initial-density-dependent only, a different microstructure
arrangement may significantly alter the snow response.

MULTIAXIALTESTS

Validation of the proposed constitutive equation was at-
tempted along similar lines to Desrues and others (1980).To
determine the longitudinal stress and volume change, cor-
responding to the above strain rates and confining pressure,
from the model, the following equations, combined with
Equation (8), were solved in an iterative manner:

�11 ¼
E

ð1þ �Þ
1� �

1� 2�

� �Z t

0

ðD11 �Dc
11Þ dt

þ 2
�E

ð1þ �Þð1� 2�Þ

Z t

0

ðD22 �Dc
22Þ dt ð30aÞ

�22 ¼
Eð1þ �Þ

ð1þ �Þð1� 2�Þ

Z t

0

ðD22 �Dc
22Þ dt

þ �E

ð1þ �Þð1� 2�Þ

Z t

0

ðD11 �Dc
11Þ dt: ð30bÞ

For the given strain rates, the axial stress developed was in
the range 0.02^0.14MPa. Figure 7 shows the comparison of
actual and simulated axial stress developed in the sample
due to the subjection of the sample to constant strain rate
under lateral confining pressure. It may be noted that stress
develops more during the first 500 s than has been pre-
dicted. One may expect fast adjustment of grains/bonds
during the initial period of strain-rate application for such
moderate-density snow. Figure 8 shows a comparison of ac-
tual and simulated volume change.The theory simulates the
experimental results moderately well.

Fig. 4 Comparison of actual and simulated deformation for

low-density snow.

Fig. 5. Comparison of actual and simulated creep deformation

for high-density snow.

Fig. 6. Comparison of actual and simulated deformation for

low-density snow.

Table 1.Values and units of the constants determined

Notations for constants Unit Average value

C1 Dimensionless 3279
C2 Dimensionless 7256
�2 (MPa)n s 3.9�106

t0 s 2.57�104

r Dimensionless 5.63
t1 s 100
q Dimensionless 5.07
�1 (MPa)n s 1.8�105

E1 (MPa)n 215.2
� Dimensionless 0.1764
n Dimensionless 1.48
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CONCLUSION

A constitutive law has been proposed, and various con-
stants required for it have been determined from creep tests
on snow. A comparison of the model predictions with uni-
axial tests other than those used to determine constants
showed a good match. Also, the generally overlooked pri-
mary-stage strain contribution in creep response is pre-
dicted satisfactorily. In certain cases, however (e.g. high-
density sample subjected to long-duration curing and low-
density samples of less age (<7 days)), the creep deform-
ation predictions were not very accurate. In the model,
parameters c and f were introduced as functions of initial
density. In future we aim to relate these to a non-dimen-
sional parameter (Sethi and others, 2002) which charac-
terizes snow. Experiments (with microstructure index
measured) are in progress to see if these parameters can
be made dependent upon the index. In nature, creep
occurs over a long time and the snow density shows signifi-
cant variation. To account for this it is possible to have dif-
ferent forms of P in primary and secondary creep. For
example, ‘‘P ’’ in primary creep (which becomes insignifi-
cant in 1^2 hours) may be taken as a function of initial
density whereas it may be taken as a function of current
density for secondary creep. Since density changes are not
very high in the laboratory, in the proposed constitutive
law P is assumed to depend on initial density only.

The triaxial tests were also performed and the constitu-
tive model was used to predict the behaviour. Generally, the
model accurately predicts the stresses developed and the vo-
lumetric change for bilaterally confined snow samples sub-
jected to axial strain rates.The same theory canbe extended
to tensile tests by employing the damage factor.

The highlight of this proposed law is its ability to deter-

mine volumetric change, while a moderate degree of accu-
racy is obtained in the prediction of volume change.
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