
6

Moduli Problems with Flat Divisorial Part

So far we have identified stable pairs (X,∆) as the basic objects of our moduli
problem, the one-parameter families that we want to allow, and worked out the
reduced part of the moduli spaces. Now we come to the next step of identifying
the stable families over an arbitrary base scheme.

In this chapter we consider several special cases that are easier to handle,
since we are able to treat the underlying variety X and the boundary divisor ∆

as separate objects that are both flat over the base. This is achieved by imposing
one of four different types of restrictions on the coefficients occurring in ∆.
• (No boundary) Stable varieties X with ∆ = 0.
• (Standard coefficients) The coefficients in ∆ are in the “diminished standard

coefficient” set {1 − 1
3 , 1 −

1
4 , 1 −

1
5 , . . . , 1}.

• (Major coefficients) The coefficients in ∆ are all > 1
2 .

• (Generic coefficients) The coefficients in ∆ are Q-linearly independent.
These examples cover many cases; the most jarring omission is that none of
these allow 1

2 as a coefficient.
After a general discussion of moduli problems in Section 6.1, we treat two

notions of stability for stable varieties in Sections 6.2–6.3. The first of these –
introduced in Kollár and Shepherd-Barron (1988) – starts with the proposal
that all plurigenera should be deformation invariant. The second – introduced
in Viehweg (1995) – posits that all sufficiently divisible plurigenera should be
deformation invariant. The two versions agree over reduced base schemes.

Both of these versions can be extended to pairs (X,∆), as long as ∆ is a
standard or major boundary as above.

In Section 6.4 we discuss another variant – due to Alexeev (2006, 2015) –
that works if the coefficients in ∆ are sufficiently general. This is especially
natural when the boundary arises as a small perturbation of a basic situation.

The infinitesimal deformation theory of stable varieties is not yet well
understood, but a large part of the first order theory for surfaces is treated
in Altmann and Kollár (2019). After a general discussion of first order
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6.1 Introduction to Moduli of Stable Pairs 217

deformations of singular varieties in Section 6.5, we work out in detail the
theory for cyclic quotient surface singularities in Section 6.6. These are
the simplest noncanonical singularities and they show that the two versions
outlined in Sections 6.2–6.3 differ from each other already over Spec k[ε].

Assumptions In this chapter we work over a Q-scheme, but the definitions are
set up in full generality. See Section 8.8 for a discussion of some problems in
positive characteristic.

6.1 Introduction to Moduli of Stable Pairs

Based on the outline in Section 1.2, we discuss the plan that we use to
treat many moduli problems in algebraic geometry. The following version is
designed to work best for the moduli of stable pairs (X,∆).

The method first deals with stable pairs with an embedding into a fixed
projective space and then removes the effect of the embedding.

Step 6.1 (Objects of the moduli problem) At the beginning we have to decide
which objects and families our moduli problem should cover. This is usually
done in three stages.

6.1.1 (Interior objects over algebraically closed fields) As the very first step, we
have to decide what kind of objects we want to parametrize. Probably the first
nonlinear moduli problem considered was elliptic curves, followed by smooth
projective curves of higher genus and their close relatives, abelian varieties.
The study of the moduli of higher dimensional smooth projective varieties was
systematically undertaken first by Matsusaka. His approach focuses on polar-
ized pairs (X, L), where X is a variety and L an ample divisor or divisor class.
Here our main aim is to study canonical models of varieties and pairs of general
type.

It is expected that, once we understand the moduli of varieties, it should
be relatively easy to work out the moduli theory of related compound objects.
For example varieties with a group action, pointed varieties, maps between
varieties, or various combinations of these.

6.1.2 (Boundary objects over algebraically closed fields) By now the answers
are mostly well established, but historically this was a difficult and very non-
trivial step. The compactification of the moduli of smooth curves by stable
curves was discovered by Deligne and Mumford (1969).
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218 Moduli Problems with Flat Divisorial Part

For surfaces, the need to work with canonical models (instead of minimal
models) seems to have become clear early, but the choice of stable surfaces for
boundary points was proposed only in Kollár and Shepherd-Barron (1988).

It should be noted that the distinction between interior and boundary points
is not always clear cut. While everyone agrees that smooth curves give the
interior points and nodal curves the boundary points of Mg, for surfaces one
may view either canonical models or only smooth canonical models as interior
points.

Although historically the development went in the other direction, for a log-
ical treatment of a moduli problem it is better to settle on the right class of
interior and boundary objects at the beginning. Then gradually prove that they
have the required properties.

6.1.3 (Objects over arbitrary fields) For stable pairs, the definitions of (6.1.1–2)
carry over to arbitrary fields, but in a few examples new questions emerge.

For pointed schemes (X, p1, . . . , pr) it may be better to replace the set of
closed points {p1, . . . , pr} by a 0-dimensional subscheme Z ⊂ X of length r. A
more subtle problem appears for polarizations, due to the difference between
Pic(Xk) and Pic(Xk)(k), where Pic(Xk)(k) is the set of k-points of the Picard
scheme of Xk; see Bosch et al. (1990, sec.8.1) for a discussion. This will not be
a major issue for us. There are also problems caused by inseparable extensions
in positive characteristic.

Conclusion 6.1.4 We are working with stable varieties (1.41) and, more gen-
erally, with stable pairs (X,∆) as defined in (2.1). There seems to be full
agreement about these being the right objects in characteristic 0.

Step 6.2 (Families of the moduli problem) In many moduli problems, it is
considered obvious that the families are determined by the objects: one should
work with flat families whose fibers are among our objects. Then the traditional
approach is to determine families over Spec k[ε], and, more generally, over
Artinian base schemes. This is usually called obstruction theory; see Artin
(1976), Sernesi (2006), and Hartshorne (2010) for introductions to various
cases.

However, for stable varieties and pairs, flat families with stable fibers do not
give a sensible moduli theory. We need to proceed differently.

6.2.1 (Families over DVRs) In Chapter 2, we defined and described stable fam-
ilies over smooth curves and one-dimensional regular schemes. The advantage
of this setting is that the total space of a family is also a locally stable pair, so
minimal model theory can be applied both to the fibers and to the total space.
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6.1 Introduction to Moduli of Stable Pairs 219

6.2.2 (Families over reduced bases) For stable varieties, we proved in (3.1)
that stable families over DVRs determine stable families over reduced base
schemes. We needed to work quite a bit harder to extend the theory to stable
families of pairs over reduced base schemes in Chapter 4, but the end result
is the same, at least in characteristic 0: the families over DVRs determine the
families over reduced base schemes.

6.2.3 (Families over arbitrary bases) This is where the picture becomes rather
complicated. For stable varieties, there have been different proposals for about
30 years; we discuss these in Sections 6.2–6.3. These were proved to be non-
equivalent in Altmann and Kollár (2019); see Section 6.6.

We believe that the notion of KSB stability – to be treated in Section 6.2 –
gives the optimal answer for stable varieties.

For pairs, the problem is that, while KSB stability has a natural generaliza-
tion to pairs, not all stable families over smooth curves satisfy it; see (2.41).
Thus insisting on it frequently gives nonproper moduli spaces. Still, the strong-
est version of KSB stability is expected to work well for pairs (X,∆) if all the
coefficients in ∆ are > 1

2 ; we discuss these in (6.24) and (6.29).
Another approach, outlined in Alexeev (2006, 2015), gives a good theory if

the coefficients in ∆ are sufficiently general real numbers; see (6.40).
However, there was not even a plausible proposal for the general theory

before Kollár (2019). We work out the details of it in Chapter 7.

Conclusion 6.2.4 We are not aware of any other proposed definition that might
work in general, but it is too soon to tell whether the theory of Chapter 7 is the
final word on the subject. We comment on some of the issues next.

Once we have settled on the right objects and families, we need to start
working on producing all families and constructing the moduli spaces.

We would like to have a “sensible” way to obtain all stable varieties, pairs,
and their stable families. It is not a priori clear what this means.

For example, every variety of dimension n is obtained as the normalization
of a hypersurface in Pn+1. We can thus start working through all hypersurfaces
and describe their normalizations.

For curves, this is not a bad approach. Classical authors developed much of
the theory by thinking of smooth curves as normalizations of plane curves with
nodes. However, this becomes harder as the genus increases. The problem is
that even if a curve is general, the nodal sets of its plane representatives are
always in special position.

There are some cases of surfaces where such a description is useful. For
example, Enriques obtained his namesake surfaces in 1896 as sextics in P3
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220 Moduli Problems with Flat Divisorial Part

that are double along the edges of a tetrahedron. However, for most surfaces,
projection to P3 introduces very complicated singular sets that hide the geom-
etry of the surface. There is no “optimal” representation and it is quite hard to
decide when the normalizations of two hypersurfaces are isomorphic to each
other. This approach does not seem very helpful in general; see, however, the
proof of Noether’s formula in Griffiths and Harris (1978, sec.4.6).

Thus we aim to find projective embeddings of varieties that do not depend
on too many auxiliary choices.

Step 6.3 (Rigidification by embedding) A global coordinate system on a space
V is a way of associating a string of numbers (called coordinates) to any point
of V . Equivalently, a choice of a map from V to Rn or Cn. We prefer to work
with projective objects, so for us the natural choice is to use homogeneous
coordinates. Equivalently, we fix an algebraic morphism X → PN . (There is
a slight notational issue here. Although we almost always construct PN as
Proj k[x0, . . . , xN], we usually emphasize that there are no natural coordinates
on it. By contrast, with rigidification we do think of the target PN as having
fixed coordinates.)

For varieties, the most frequently used approach is to use an embedding
(X ↪→ PN), though sometimes finite maps X → PN or maps to other targets –
weighted projective spaces or PN-bundles over curves – give better insight.

Thus we choose a very ample line bundle L on X, a subspace VN+1 ⊂

H0(X, L) and a basis of VN+1 (up to a multiplicative constant). In practice, it is
much better to eliminate the second of these choices by taking V = H0(X, L).
That is, we work with embeddings (X ↪→ PN) whose image is linearly normal.
The rigidification involves two types of choices.

6.3.1 (Discrete choice) A very ample line bundle L. (We use this terminology
although Pic(X) is not always discrete).

If C is a stable curve, then ωr
C is very ample for r ≥ 3. If S is a canonical

model of a surface of general type, then ωS is an ample line bundle and ωr
S is

very ample for r ≥ 5 by Bombieri (1973), and Ekedahl (1988). Thus again we
get an embedding of S into a projective space whose dimension depends only
on the coefficients of the Hilbert polynomial χ(ωr

S ), namely (K2
S ) and χ(OS ).

The situation is more complicated for stable surfaces. These can have sin-
gularities where ωS is not locally free. Even worse, for any m ∈ N there are
stable surfaces S m and canonical 3-folds Xm such that ω[m]

S m
(resp. ω[m]

Xm
) is not

locally free at some point xm ∈ S m. Thus every section of ω[m]
S m

vanishes at xm

and H0(X, ω[m]
S m

)
gives a rational map that is not defined at xm.
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We skirt this problem by fixing m > 0 and aiming to construct a moduli
space for those stable varieties for which ω[m]

S is locally free, very ample and
has no higher cohomologies. Similarly, if (X,∆) is a stable pair and ∆ is a Q-
divisor, we can take L = ω[m]

X (m∆) for some m > 0. Thus L is indeed a discrete
choice for us.

Then we show in Step 6.8 that, if m is sufficiently divisible (depending on
other numerical invariants), then the theory we get is independent of m.

There does not seem to be a similarly natural choice of L if ∆ is an R-divisor.
We have to work around this in Section 8.2.

6.3.2 (Continuous choice) Different bases in H0(X, L) are equivalent to each
other under the natural group action by GL

(
H0(X, L)

)
. We eliminate the effect

of this choice in Step 6.5.

Aside For smooth varieties over C, the use of topological rigidifiers can be very
powerful; leading to the Teichmüller space for curves and to Griffiths’s theory
of period domains. These work well for smooth varieties, but have many prob-
lems for their degenerations. For flat families of stable varieties f : X → S ,
the topological type, or even dimension of H∗

(
Xs(C),C

)
need not be a locally

constant function on S . It does not seem to be possible to make sense of a
topological rigidification in general.

6.3.3 (Moduli of embedded varieties) Once we have a rigidification, we con-
struct moduli spaces of more general embedded objects. Instead of embedded
stable varieties (X ↪→ PN) of dimension n, one can work either with n-cycles
(Cayley–Chow approach) or, which works better for us, with all subschemes
(X ⊂ PN) (Hilbert–Grothendieck approach). Thus we start with the universal
family over the Hilbert scheme of n-dimensional subschemes

π : Univn(PN)→ Hilbn(PN).

We encounter a severe difficulty when we try to work with pairs (X,∆).

6.3.4 (Moduli of embedded pairs) We need to construct the universal family of
relative Mumford divisors (6.13)

MDiv
(
Univn(PN)/Hilbn(PN)

)
→ Hilbn(PN).

The traditional approaches try to obtain this as a subscheme of either
• Hilbn−1

(
Univn(PN)/Hilbn(PN)

)
, or of

• Chown−1
(
Univn(PN)/Hilbn(PN)

)
.

By (4.76), the Chow version works over reduced schemes, but neither works
in general.
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222 Moduli Problems with Flat Divisorial Part

Conclusion 6.3.5 We have the universal family of embedded varieties, but we
hit a problem with pairs. This was a long-standing conundrum in the theory;
K-flatness – to be worked out in Chapter 7 – was introduced to solve it.

Here we take an easier path, and in Sections 6.2–6.4 we consider several
cases when the Hilbert scheme variant works in (6.3.4); see (6.13) for details.

Assume now that the above steps have been completed. Then, instead of
our original moduli problem, we have solved a related one that also includes a
rigidification and has many more objects. In order to get back to our original
problem, we need to remove the nonstable objects and then see how to undo
the effects of rigidification.

Step 6.4 (Representability) Assume first that ∆ = 0 and let us go back to
Hilbn(PN) as in (6.3.3). As we saw in Section 3.5, the set of stable fibers of π
is not even a locally closed subset of Hilbn(PN). Nonetheless, as we proved in
Section 3.5, stable families are parametrized by a locally closed partial decom-
position of Hilb(PN). By the choice we made in Step 6.3.1, we aim to work
only with those stable subvarieties X ⊂ PN for which OX(1) ' ω[m]

X . This is
again a representable condition by (9.42). Thus we get the moduli space of
m-canonically embedded stable subvarieties of dimension n in PN

CmESV(n, ∗,PN)→ Hilbn(PN). (6.4.1)

(Here ∗ stands for the not-yet-specified volume.)
For pairs, we start with the case when ∆ is a Q-divisor, which we write

as ∆ =
∑

aiDi for some fixed a := (a1, . . . , ar), where the Di are effective
Z-divisors. (This will be called a marking in Section 8.1; see (8.21) for real
coefficients.) Once we solve the questions raised in Step 6.3.4, the results of
Section 4.6 give the moduli space of m-canonically embedded stable pairs

CmESP(a, n, ∗,PN)→ Hilbn(PN). (6.4.2)

Conclusion 6.4.3 For each m> 0, we have obtained universal families of
m-canonically embedded stable varieties and pairs. However, m and the
embedding are artificial choices; we still need to undo their effect.

(In practice we need to be more precise here and control various properties
of the embedding – like linear normality, vanishing of certain cohomology
groups – but these turn out to be technical issues; see Section 8.4.)

Step 6.5 (Quotients by group actions) Let us deal next with the continuous
choice in the rigidification, which is a basis in H0(X, L). As we noted in (6.3.2),
the different continuous choices are equivalent to each other under a GL-action.
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This gives a group action on the moduli of rigidified objects, and the moduli
space of the nonrigidified objects is the space of orbits of this action

CmESP(a, n, ∗,PN)/PGLN+1. (6.5.1)

We discuss in Section 8.6 that such quotients have a natural algebraic space
structure. So, aside from the slight difference between schemes and algebraic
spaces, we consider the quotient problem solved.

6.6 (Conclusion of Steps 6.1–6.5) As in Step 6.4, fix a rational coefficient
vector a. Let SP(a, n, v) denote the functor of stable pairs (X,∆ =

∑
aiDi) of

dimension n and volume v.
We check in Step 6.8 that there is an m = m(a, n, v) such that ω[m]

X (m∆) is
locally free, very ample, and has no higher cohomologies. Thus Pm(X,∆) :=
H0(X, ω[m]

X (m∆)
)

is a locally constant function on stable families in SP(a, n, v).
Using (8.62), we obtain the coarse moduli space of SP(a, n, v) as the union of
geometric quotients

SP(a, n, v) = qi CmESP(a, n, v,PNi )//PGLNi+1,

where Ni + 1 runs through the possible values of Pm(X,∆). (See (8.21) for real
coefficients.)

Now that we have constructed our moduli spaces SP(a, n, v), we should
study their properties.

Step 6.7 (Separatedness and valuative-properness) Since these notions depend
only on families over DVRs, these will always hold for us. The discussion in
(1.20) needs no amplification.

The next two topics merit a treatment of their own; here we give only a few
comments and the main references to the literature.

Step 6.8 (Boundedness) We aim to prove that SP(a, n, v) is actually of finite
type, hence proper. Equivalently, that SP(a, n, v) = SP(a, n, v,m) for some m
(depending on a, n, v).

We discussed stable varieties in (1.21), but there are some changes for pairs.
The Hilbert function χ

(
X, ω[r]

X (br∆c)
)

is no longer deformation invariant, but
its (rescaled) leading coefficient vol(X,∆) = (KX + ∆)dim X , and the constant
coefficient χ(X,OX) are. This is why we use only the volume in the definition
of SP(a, n, v) in (6.5.1).
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An infinite union is of finite type only if it eventually stabilizes, so one can
formulate our question independent of moduli theory as follows. It was proved
by Alexeev (1993) for surfaces and by Hacon et al. (2018) in general.

6.8.1 (Boundedness theorem, rational coefficients) Assume that the ai are
rational. Then there is an m = m(a, n, v) such that mKX + m∆ is a very ample
Cartier divisor for every (X,∆) ∈ SP(a, n, v).

If some of the ai are irrational, then usually mKX + m∆ is never a Z-divisor.
The natural correction would be to use mKX + bm∆c, but there are examples
when it is never Cartier (11.50.3). Thus we need a different form.

6.8.2 (Boundedness theorem, real coefficients) Assume that the ai are real. Fix
an algebraically closed field k of characteristic 0. Then there is a k-scheme of
finite type S and a stable morphism p : (XS ,∆S ) → S such that every (X,∆) ∈
SP(a, n, v)(k) appears among the fibers of p.

The two versions are equivalent for rational coefficients by (6.14).
The following variant is much easier to prove (4.60) and is sufficient for

most applications.

6.8.3 (Weak boundedness theorem) Every irreducible component of SP(a, n, v)
is of finite type. �

6.8.4 (Hints to the proof for real coefficients) (Based on suggestions of C. Xu.)
Hacon et al. (2014) proves that there is a smooth k-scheme of finite type S
and a projective, log smooth morphism p : (Y, E + D)→ S such that, for every
(X,∆) ∈ SP(a, n, v)(k), there is a log resolution (X′, E′ + ∆′) → (X,∆) and an
s ∈ S such that (Ys, Es + Ds) ' (X′, E′ + ∆′). Therefore, if p : (Y, E + D) → S
has a simultaneous canonical model pc : (Yc,Dc) → S , then every (X,∆) ∈
SP(a, n, v)(k) appears among the fibers of pc, proving boundedness. If a ⊂ Q,
the latter is proved in Hacon et al. (2018).

In the irrational case, we argue as follows. Pick any (X,∆) and choose convex
rational approximations (X,∆ j) for j = 1, . . . , r as in (11.47), so that they have
the same dlt modifications (11.47.9).

Choose s ∈ S such that (Ys, Es + Ds) ' (X′, E′ + ∆′). Working in an étale
neighborhood of s, there is a bijection between the irreducible components of
D and the irreducible components of Ds, hence the irreducible components of
∆. Thus the ∆ j determine Q-divisors D j.

The aim is to show that applying Hacon et al. (2018) to any one of the
p : (Y, E + D j)→ S , we get pc : (Yc,Dc)→ S .

To see this, note that the fiber of p : (Y, E+D1)→ S over s is a log resolution
of (X,∆1). Thus Hacon et al. (2018) gives a simultaneous, minimal, Q-factorial
model pm : (Ym, Em + Dm

1 )→ S .
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By our choice, the fiber over s is also a Q-factorial, dlt model for the other
(X,∆ j). Since Ym is Q-factorial, the other pm : (Ym, Em + Dm

j ) → S are also
locally stable, possibly after shrinking S .

The contraction Ym
s → X now extends to a neighborhood of Ym

s , giving a
morphism pc : Yc → S such that, pc : (Yc,Dc

j)→ S is stable for every j, again
possibly after shrinking S . Thus all the KYc/S + Dc

j are Q-Cartier.
Since ∆ is a convex linear combination of the ∆ j, KYc/S + ∆c is R-Cartier,

hence pc : (Yc,∆c)→ S is stable by (11.4.4), as needed.
This takes care of an open neighborhood of s ∈ S ; we finish by Noetherian

induction. �

Step 6.9 (Projectivity) Once we know that the connected (or irreducible)
components are proper, we would like to show that they are projective. In
cases when GIT works, it gives (quasi)projectivity right away, but the general
quotient theorems of Kollár (1997) and Keel and Mori (1997) do not give pro-
jectivity; in fact there are many quotients that are not quasi-projective Kollár
(2006).

So we need to find some ample line bundles on our moduli spaces. Let
f : X → S be a stable morphism. The only divisorial sheaves that we can
always write down on X are ω[m]

X/S ; these give the sheaves det f∗ω
[m]
X/S on S . It

is not hard to work out that these are actually line bundles, so let us hope that
some of these are ample.

It was Iitaka who realized that the sheaves f∗ω
[m]
X/S should always have semi-

positivity properties, at least in characteristic 0, Iitaka (1972). These properties
were established and applied to prove Iitaka’s conjectures by many authors;
see Mori (1987) for a survey. These methods were used to prove projectivity
statements for the moduli of stable surfaces in Kollár (1990). Extending these
results to higher dimensions turned out to be quite difficult. It was done by
Fujino (2018) for stable varieties and by Kovács and Patakfalvi (2017) for sta-
ble pairs. The situation is more complicated in positive characteristic, but the
surface case was settled by Patakfalvi (2014, 2017).

Conclusion 6.9.1 In all cases, the outcome is that every proper subset of the
moduli space is projective. Thus we consider the projectivity question solved.

Let us now summarize the properties that we would like to see.

6.10 (Good moduli theories) A moduli theory M is given by specifying the
objects over fields and the families. We are mainly studying those cases whose
objects are various subsets of all stable pairs.
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For example, the most classical example is M = Curves, whose objects are
stable curves and whose families are all flat, proper morphisms with stable
curves as fibers.

In Chapter 4, we established the optimal definitions for families of stable
pairs over reduced base spaces and proved many properties. However, unlike
for curves, there seem to be several natural, but nonequivalent, moduli theories
of stable pairs over nonreduced base schemes.

We say that M is a good moduli theory if the following hold:
(6.10.1) M is separated (1.20). Since this depends only on families over

DVRs, this always holds for us by (2.50).
(6.10.2) M is valuative-proper (1.20). The positive answer is given by (2.51),

but we need to check that the central fiber also satisfies the additional
assumptions that we have in M.

(6.10.3) Embedded moduli spaces exist (6.3.3–4). Having a flat divisorial part
makes this much simpler; see (6.12–6.13) for details.

(6.10.4) Representability as in (6.4).
(6.10.5) Boundedness in the weaker form (6.8.3). Together with valuative-

properness, this means that the irreducible components of the correspond-
ing moduli spaces are proper.

For the main results of this chapter we work with the following set-up, which
is a slight generalization of (3.28) and (4.2).

6.11 (Basic set-up for Chapter 6) We consider flat families of demi-normal
schemes with flat families of Mumford divisors. That is, our objects are proper
morphisms f : X → S of pure relative dimension n and subschemes {Di ⊂

X : i ∈ I} satisfying the following conditions:
(6.11.1) f is flat with demi-normal (11.36) fibers,
(6.11.2) the Di are relative Mumford divisors (4.68), and
(6.11.3) the Di → S are flat with divisorial subschemes (4.16) as fibers.

Next, fix distinct, positive real numbers {ai : i ∈ I}. Then f :
(
X,

∑
aiDi

)
→ S

is family of pairs as in (5.2).
We already treated stable families over reduced bases in Chapter 4, so

assume that f :
(
X,

∑
aiDi

)
→ S is stable or locally stable over red S . The

main question we aim to address is the following.

Question 6.11.4 If S is nonreduced, what additional restrictions should be
imposed in order to get a stable (resp. locally stable) family over S ?
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Comments 6.11.5 There may be several different good answers to this question.
These in turn give different moduli spaces, though all of them have the same
underlying reduced subspace.

Also, as we noted in (2.41–2.44), requiring the Di to be flat over S means
that we do not even get all stable families over smooth curves when ai <

1
2 .

So, while our answers cover many important special cases, substantially new
ideas will be needed to get the full theory.

6.12 (Advantages of flat divisorial parts) The cases considered in this chapter
have four major technical advantages. The first three come from using the
flatness option for the divisorial part in (6.3.4).
(6.12.1) One can define the families using only flatness; thus we avoid the

notion of K-flatness, which is defined and studied in Chapter 7.
(6.12.2) Hilbert schemes give a quick way to write down the universal family

of Mumford divisors.
(6.12.3) The pluricanonical sheaves commute with base change, as in (2.79)

and (4.33). This is not crucial, but it helps us avoid some artificial choices.
The last one may be an accidental consequence of our choices.
(6.12.4) There is a natural way of writing the boundary as a linear combination

of Z-divisors, thus we avoid the notion of marking, to be introduced in
Section 8.5.

The key advantage turns out to be (6.12.2), which takes care of Step 6.3.4.
So let us discuss it in detail.

6.13 (Universal family of flat Mumford divisors) Let g : X → S be a flat,
projective morphism. Consider the relative Hilbert scheme Hilb(X/S ). It
parametrizes flat families of closed subschemes of X → S . Thus it has a largest
open subscheme that parametrizes subschemes Bs ⊂ Xs of pure codimension
1, without embedded points, such that Xs is regular at the generic points of Bs.
This is the universal family of flat, Mumford divisors on X/S , denoted by

MDiv(X/S )→ S .

When we wish to parametrize r such divisors, the universal family is given by
the r-fold fiber product

MDiv(X/S ) ×S · · · ×S MDiv(X/S ),

which we abbreviate as ×r
S MDiv(X/S ).
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We want to apply this to the Hilbert scheme of n-dimensional subschemes
of PN , with its universal family

u : Univn(PN
S )→ Hilbn(PN

S ).

Although not strictly necessary, it is convenient to pass to the largest open
subscheme Hilb◦(PN

S ) ⊂ Hilb(PN
S ) over which the fibers of u are demi-normal

and of pure dimension n. Thus we have

u◦ : Univ◦n(PN
S )→ Hilb◦n(PN

S ). (6.13.1)

The universal family of flat, Mumford divisors is

MDiv
(
Univ◦n(PN

S )/Hilb◦n(PN
S )

)
→ Hilb◦n(PN

S ). (6.13.2)

If we need r such divisors, the universal family we want is given by the r-fold
fiber product

×r
Hilb◦n(PN

S ) MDiv
(
Univ◦n(PN

S )/Hilb◦n(PN
S )

)
→ Hilb◦n(PN

S ). (6.13.3)

As in (6.3.3), we can now use (4.43) to show that the functor of stable pairs is
representable by a monomorphism. (9.42) takes care of the condition of being
embedded by a given multiple of KX + ∆.

The schemes in (6.13.3) have infinitely many irreducible components, but
once we bound the degrees of the underlying varieties and of the divisors, we
get a quasi-projective parameter space.

The following was used in (6.8).

Lemma 6.14 Fix n, v, a rational vector a and the characteristic p ≥ 0. For
SP(a, n, v), the following are equivalent.
(6.14.1) There is an m = m(a, n, v) such that m(KX +∆) is very ample for every

(X,∆) ∈ SP(a, n, v)(k) where char k = p.
(6.14.2) There are N = N(a, n, v) and D = D(a, n, v) such that every (X,∆) ∈
SP(a, n, v)(k) is isomorphic to an embedded pair (X,∆) in PN satisfying
deg X ≤ D and deg ∆ ≤ D.

(6.14.3) Then there is a Q-scheme (resp. Fp-scheme) of finite type S and a
stable morphism π : (XS ,∆S ) → S such that every (X,∆) ∈ SP(a, n, v)(k)
is obtained from π be base change.

Proof Assume (1). Then dim |mKX + m∆| ≤mnv + n =: N by Matsusaka’s
inequality (11.52.3). Hence all pairs inSP(a, n, v) are isomorphic to an embed-
ded pair (X,∆) in PN such that deg X = mnv. We also know that deg(KX + ∆) =
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mn−1v. A lower bound for deg KX can be obtained by looking at a general curve
section. This gives an upper bound for deg ∆.

(2)⇒ (3) was treated in (6.13).
Finally assume (3) and let g ∈ S be a generic point. By assumption there is

an mg such that mg(KXg + ∆g) is very ample. Then the same holds over an open
neighborhood g ∈ S ◦ ⊂ S . We finish by Noetherian induction. �

In the next three sections, we give various stability notions and then check
that they all give a good moduli theory as in (6.10).

6.2 Kollár–Shepherd-Barron Stability

This notion of stability is obtained by imposing the strongest possible
properties that are satisfied by one-parameter stable families. For surfaces, this
was accomplished in Kollár and Shepherd-Barron (1988). There were two rea-
sons why the original paper dealt only with surfaces. First, the existence of
stable limits relies on the minimal model program, which was only available
for families of surfaces at that time. It was, however, clear that this part should
work in all dimensions. Second, the proof of the representability (6.18) relied
on detailed properties of lc singularities of surfaces. The theory of hulls and
husks, to be discussed in Chapter 9, was developed to prove representability.

We discuss three versions. First, the classical setting of stable varieties
without boundary divisors, then a generalization where we allow standard
coefficients, and finally arbitrary coefficients in ( 1

2 , 1].

Kollár–Shepherd-Barron Stability without Boundary

6.15 (Stable objects) The stable objects are geometrically reduced, proper k-
schemes X with slc singularities such that KX is ample.

6.16 (Stable families) A family f : X → S is KSB-stable if
(6.16.1) f is flat with slc fibers,
(6.16.2) ω[m]

X/S is a flat family of divisorial sheaves (3.25) for m ∈ Z,

(6.16.3) f is proper and ω[M]
X/S is an f -ample line bundle for some M > 0.

The first two of these conditions define locally KSB-stable families.

6.17 (Explanation) This definition restates (3.40). It imposes the strongest
restrictions on stable families, thus it gives the smallest scheme structure on
the moduli space of stable varieties.
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We see in Section 6.3 that assumption (6.16.2) can be weakened, leading
to a moduli space with the same underlying reduced space, but with a larger
nilpotent structure. The difference between the two versions is explored in
Section 6.6.

Theorem 6.18 KSB-stability, as in (6.15–6.16) is a good moduli theory (6.10)

Proof As we already noted, only the conditions (6.10.2–4) need checking. For
valuative-properness, the stable extension exists by (2.51), and (2.79.2) shows
that it satisfies (6.10.3). The existence of embedded moduli spaces is a trivial
special case of (6.13). Representability is a restatement of (3.3).

The coarse moduli space exists by (6.6). �

Let us also note another good property of this case.

Proposition 6.19 For KSB-stable families as in (6.15–6.16), the Hilbert
function χ

(
X, ω[m]

X
)

and the plurigenera h0(X, ω[m]
X

)
are deformation invariant.

Proof For the Hilbert function, this follows from the assumption (6.16.2).
If m ≥ 2 then the higher cohomologies of ω[m]

X vanish by (11.34). For m = 1
we use (2.69). �

Kollár–Shepherd-Barron stability with standard coefficients

Definition 6.20 Let ∆ be an effective R-divisor such that coeff ∆ ⊂ ( 1
2 , 1], that

is, 1
2 < coeffD ∆ ≤ 1 for every irreducible D ⊂ Supp ∆. There is a unique way

of writing ∆ =
∑

i aiDi where the Di are effective Z-divisors, ai >
1
2 for every i

and ai , a j for i , j. We call this the reduced normal form of ∆.

6.21 (Stable objects) We parametrize pairs
(
X,∆ =

∑
i aiDi

)
in reduced normal

form such that
(6.21.1)

(
X,∆

)
is slc,

(6.21.2) ai ∈ {1 − 1
3 , 1 −

1
4 , . . . , 1} (diminished standard coefficient set),

(6.21.3) X is projective and KX + ∆ is ample.

6.22 (Stable families) A family f :
(
X,∆ =

∑
i aiDi

)
→ S is KSB-stable if

(6.22.1) f :
(
X,∆

)
→ S is a flat family of pairs as in (6.11),

(6.22.2) the fibers
(
Xs,∆s

)
satisfy (6.21.1–2),

(6.22.3) the ω[m]
X/S

(
bm∆c − B

)
are flat families of divisorial sheaves (3.25) for

every m ∈ Z and for every B =
∑

j∈J D j where a j = 1 for j ∈ J, and
(6.22.4) f is proper and ω[M]

X/S (M∆) is an f -ample line bundle for some M > 0.
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The first three of these conditions define locally KSB-stable families.

6.23 (Explanation) These conditions are rather straightforward generaliza-
tions of (6.16.1–3), but why the restriction on the coefficients?

It follows from (2.79.5) and (4.33) that the B = 0 parts of condition (6.22.3)
are satisfied if the coefficients of ∆ are all 1 − 1

m and S is reduced. For the
B , 0 cases we use (2.79.8) and (4.33). Note that the conditions on B imply
that B ≤ b∆c. If S is unibranch, then we could have required (6.22.3) to hold
for every B ≤ b∆c. However, B has to be a generically Cartier divisor; this is
assured if B is a sum of some of the Di. This is the reason of the somewhat
awkward formulation of (6.22.3).

We proved in (2.82) that, if the coefficients are > 1
2 , then the scheme-

theoretic specializations of the boundary divisors are reduced and the different
(Di)s have no common irreducible components. In particular, bm∆cs = bm∆sc

for every s ∈ S . That is, valuative-properness holds. Imposing both of these
restrictions gives the coefficient set {1 − 1

3 , 1 −
1
4 , . . . , 1}.

Pairs satisfying 1
2 < ai ≤ 1 are studied in (6.26–6.27).

Theorem 6.24 KSB-stability with standard coefficients, as defined in (6.21–
6.22) is a good moduli theory (6.10).

Proof As before, only (6.10.2–4) need checking. We already noted that
valuative-properness holds. The existence of embedded moduli spaces follows
from (6.13). For representability, the proof of (3.3) – given in (3.42) – carries
over with minor changes.

We apply (3.31) with Ni := ω[i]
X/S

(
bi∆c

)
for 1 ≤ i < M and L1 := ω[M]

X/S . We
get S NL → S such that all the ω[m]

XNL/S NL

(
bm∆NLc

)
are flat families of divisorial

sheaves and ω[M]
XNL/S NL

(
bM∆NLc

)
is invertible.

Then (4.45) shows that S KSB is an open subscheme of S NL. �

Proposition 6.25 (Kollár, 2018a, Cor.3) For KSB-stable families with stand-
ard coefficients as in (6.21–6.22), the Hilbert function χ

(
X, ω[m]

X (bm∆c)
)

and
the plurigenera h0(X, ω[m]

X (bm∆c)
)

are deformation invariant.

Proof For the Hilbert function, this follows from (6.22.3). For the plurigenera,
write mKX + bm∆c = KX +

(
bm∆c − (m − 1)∆

)
+ (m − 1)(KX + ∆). Since the

coefficients are standard, 0 ≤ bm∆c − (m − 1)∆ ≤ ∆, hence (11.34) applies, so
the higher cohomologies vanish for m ≥ 2. For m = 1 we use (2.69). �
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Kollár–Shepherd-Barron stability with major coefficients

6.26 (Stable objects) We parametrize pairs
(
X,∆ =

∑
i aiDi

)
in reduced normal

form (6.20) such that
(6.26.1)

(
X,∆

)
is slc,

(6.26.2) ai ∈ ( 1
2 , 1],

(6.26.3) X is projective and KX + ∆ is ample.

6.27 (Stable families) A family f :
(
X,∆ =

∑
i aiDi

)
→ S is KSB-stable if

(6.27.1) f :
(
X,∆

)
→ S is a flat family of pairs as in (6.11),

(6.27.2) the fibers
(
Xs,∆s

)
satisfy (6.26.1–2),

(6.27.3) the ω[m]
X/S

(
bm∆c − B

)
are flat families of divisorial sheaves (3.25) for

every m ∈ Z and for every B =
∑

j∈J D j where a j = 1 for j ∈ J, and
(6.27.4) f is proper and KX/S + ∆ is an f -ample R-divisor.
The first three of these conditions define locally KSB-stable families.

For technical reasons we introduce a weakening of (3):
(6.27.3’) The ω[m]

X/S
(
bm∆c

)
are flat families of divisorial sheaves over S for m ∈

M(a1, . . . , ar, n) ⊂ Z; a set of positive density defined in (11.49).

6.28 (Explanation) The restriction that the coefficients be in ( 1
2 , 1] is dictated

by (2.82). Example (2.41) shows that flatness of the divisorial part fails with
coefficient = 1

2 . The requirement (6.27.3) is dictated by (2.83). The choice of
B is discussed in (6.23).

We conjecture that (6.27.3) is always the right assumption. However, (2.83)
is known only if the general fiber is normal, so we cannot guarantee that
(6.27.3) holds for all families of relative dimension ≥ 3.

Theorem 6.29 KSB-stability with major coefficients, as defined in (6.26–6.27)
is a good moduli theory (6.10), satisfying (6.27.3’).

Furthermore, (6.27.3) is satisfied in relative dimension 2 and on those
irreducible components that generically parametrize normal varieties.

Proof The proof closely follows (6.24). We proved in (2.82) that, if the
coefficients are > 1

2 , then the scheme-theoretic specializations of the bound-
ary divisors are reduced, so assuming that the Di are flat divisorial sheaves
is correct. Following the proofs in (3.42) and (6.24), we can guarantee the
requirements (6.27.1–2) and (6.27.4).

The difficulty is with proving that (6.27.3) holds. Following Kollár (2018a),
we outlined a proof in (2.83) when the general fibers are normal. Kollár
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(2018b) treats all families of surfaces. Thus (6.29) holds for surfaces and for
those irreducible components that generically parametrize normal varieties.

For the version (6.27.3’) we use (11.50).
The construction of the moduli space works as before if the ai are rational.

We leave the irrational case to the general theory in Chapter 8; see (8.15). �

Complement 6.29.1 The Hilbert function χ
(
X, ω[m]

X (bm∆c)
)

is deformation
invariant if (6.27.3) holds. Unlike in the earlier cases, the plurigenera need
not be deformation invariant; see (Kollár, 2018a, 40–43).

6.3 Strict Viehweg Stability

6.30 (Stable objects) The same as in (6.15): reduced, proper k-schemes X with
slc singularities such that KX is ample.

6.31 (Stable families) A family f : X → S is V+-stable if the following hold:
(6.31.1) f is flat with slc fibers.
(6.31.2) For every m ∈ Z and x ∈ X, ω[m]

X/S is locally free at x iff ω[m]
Xs

is locally
free at x, where s = f (x).

(6.31.3) f is proper and ω[M]
X/S is an f -ample line bundle for some M > 0.

The first two of these conditions define locally V+-stable families.

6.32 (Explanation) The original version in Viehweg (1995) assumes (6.31.2)
only for some m > 0. By (4.37) the latter is equivalent to V+-stability in
characteristic 0, but not in positive characteristic, see Section 8.8.

Already for families of surfaces with quotient singularities this definition
gives a large nilpotent structure on the moduli space of stable varieties, even
when KSB-stability gives a smooth moduli space, see Section 6.6.

Strict Viehweg Stability with Major Coefficients

6.33 (Stable objects) We parametrize pairs
(
X,∆ =

∑
i aiDi

)
in reduced normal

form such that
(6.33.1)

(
X,∆

)
is slc,

(6.33.2) ai ∈ ( 1
2 , 1] ∩ Q for every i,

(6.33.3) X is projective and KX + ∆ is ample.
The first two of these conditions define locally stable pairs.

6.34 (Stable families) A family f :
(
X,∆ =

∑
i aiDi

)
→ S is V+-stable if the

following hold:
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(6.34.1) f : X → S is flat and the fibers of f |Di : Di → S are reduced
subschemes of pure codimension 1 for every i.

(6.34.2) The fibers
(
Xs,∆s

)
are stable as in (6.33).

(6.34.3) ω[m]
X/S (m∆) is locally free along Xs iff ω[m]

Xs
(m∆s) is locally free.

(6.34.4) f is proper and ω[M]
X/S (M∆) is an f -ample line bundle for some M > 0.

The first three of these conditions define locally V+-stable families.

6.35 (Explanation) These conditions are rather straightforward generaliza-
tions of (6.31) and (6.27).

Theorem 6.36 V+-stability with major coefficients, as defined in (6.33–6.34)
is a good moduli theory (6.10).

Proof The arguments given in (6.29) work since we no longer require the
condition (6.27.3) that gave us trouble there.

Representability is actually simpler, since we work only with the locally free
ω[M]

X/S (M∆) and ignore the other ω[m]
X/S

(
bm∆c

)
. �

6.4 Alexeev Stability

6.37 (Stable objects) We parametrize pairs
(
X,∆ =

∑
i aiDi

)
in reduced normal

form (6.20) such that
(6.37.1)

(
X,∆

)
is slc,

(6.37.2) 1, a1, . . . , ar are Q-linearly independent,
(6.37.3) X is projective and KX + ∆ is ample.

6.38 (Stable families) A family f :
(
X,∆ =

∑
i aiDi

)
→ S is A-stable if the

following hold:
(6.38.1) f :

(
X,∆

)
→ S is a flat family of pairs as in (6.11).

(6.38.2) The fibers
(
Xs,∆s

)
are stable as in (6.37).

(6.38.3) The ω[m0]
X/S

(∑
miDi

)
are flat families of divisorial sheaves (3.25) over S

for every mi ∈ Z.
(6.38.4) f is proper and KX/S + ∆ is an f -ample R-divisor.

The first three of these conditions define locally A-stable families.

6.39 (Explanation) The two new features are the Q-linear independence in
(6.37) and (6.38.3).
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Let us start with Q-linear independence. As a simple example, let X be a
smooth, projective variety and

∑
Di an snc divisor with index set {i ∈ I}. Then

(X,
∑

aiDi) is an lc pair for every ai ∈ [0, 1]. So we can ask how the answers to
various questions – for example the ampleness of KX +

∑
aiDi, or the steps of

the MMP – depend on the ai.
In many cases, the answer is that [0, 1]I admits a rational chamber decom-

position such that the answers depend only on the chamber we are in, not the
particular choice of the {ai : i ∈ I} inside the chamber. There is reason to expect
that if a point {a′i : i ∈ I} lies in an open chamber, then KX +

∑
a′i Di exhibits

generic – hence simplest – behavior.
Since the chambers are polyhedra with rational vertices, a point {a′i : i ∈ I}

whose coordinates are Q-linearly independent, must lie in an open chamber.
Thus assumption (6.37.2) is a convenient way to guarantee that we encounter
the generic behavior.

By (6.38.4), KX/S +
∑

i aiDi is R-Cartier. By (11.43), the Q-linear inde-
pendence assumption implies that KX/S and the Di are Q-Cartier. Thus all the
m0KX/S +

∑
miDi areQ-Cartier Z-divisors. Therefore all the sheaves in (6.38.3)

should be flat over S with S 2 fibers by (2.79.1). This gives a moduli space with
many flat universal sheaves, and, as we see next, it also helps with the proof of
existence.

Finally note that, since the Di are not assumed irreducible, bm
∑

i aiDic may
not be a linear combination of the Di, so we do not assume anything about the
sheaves ω[m]

X/S
(
bm∆c

)
. If the ai <

1
2 , then these frequently do not have S 2 fibers

(2.41–2.44). Although (11.50) shows that infinitely many of them do, it is not
clear how to predict which ones.

Theorem 6.40 A-stability, as in (6.37–6.38) is a good moduli theory (6.10).

Proof As before, separatedness and valuative-properness holds. The idea of
the proof of the existence of embedded moduli spaces is the following. The
chamber structure mentioned in (6.39) suggests that, if we pick a rational
point (a′1, . . . , a

′
r) in the interior of the chamber, then the pairs (X,

∑
aiDi) and

(X,
∑

a′i Di) have the same moduli theory. We can thus work with the rational-
coefficient pairs (X,

∑
a′i Di) as in (6.13). This is basically what we do, but the

details are more complicated. See (8.21) for a full treatment.
Representability needs a somewhat different proof. The set of slc fibers is

constructible by (4.44), hence there are Mi > 0 such that M0KXs and the
MiDi|Xs are Cartier whenever (Xs,∆s) is slc.

We apply (3.31) where the set {N} consists of the sheaves ω[m0]
X/S

(∑
miDi

)
for

0 ≤ mi ≤ Mi and the set {L} of the sheaves ω[m0]
X/S ,OX(M1D1), . . . ,OX(MrDr).
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We get S NL → S such that the ω[m0]
XNL/S NL

(∑
miDNL

i
)

are flat families of divisorial

sheaves for all mi ∈ Z and ω[M0]
XNL/S NL ,OXNL (M1DNL

1 ), . . . ,OXNL (MrDNL
r ) are all

invertible. Then (4.45) shows that S A is an open subscheme of S NL. �

6.5 First Order Deformations

In this section, we study first order infinitesimal deformations of normal vari-
eties. We describe the deformations of the smooth locus and then try to
understand when a deformation of the smooth locus extends to a deformation
of the whole variety. The final aim is to get an explicit obstruction theory for
lifting sections of powers of the dualizing sheaf. This turns out to be given by
the classical notion of divergence.

6.41 (First order thickening) Let k be a field and R a k-algebra. Consider the
algebra R[ε] where ε is a new variable satisfying ε2 = 0. It is flat over k[ε] and
R[ε] ⊗k[ε] k ' R. We think of R[ε] as the trivial first order deformation of R.

Let v : R→ R be a k-linear derivation. Then

αv : r1 + εr2 7→ r1 + ε
(
v(r1) + r2

)
(6.41.1)

defines an automorphism of R[ε] that is trivial modulo (ε). Conversely, every
automorphism of R[ε] that is trivial modulo (ε) arises this way. (The product
(or Leibniz) rule for v is equivalent to the multiplicativity of αv.)

Let X be a k-scheme. The trivial first order deformation of X is

X[ε] := X ×k Speck k[ε]. (6.41.2)

As in (6.41.1), every derivation v : OX → OX defines an automorphism αv of
X[ε] that is trivial modulo (ε). This gives an exact sequence

0→ Hom(Ω1
X ,OX)→ Aut(X[ε])→ Aut(X)→ 1. (6.41.3)

If X is smooth, or at least normal, then Hom(Ω1
X ,OX) is the tangent sheaf TX

of X, hence we can rewrite the sequence as

0→ H0(X,TX)
α
→ Aut(X[ε])→ Aut(X)→ 1. (6.41.4)

Aside On a differentiable manifold M one can identify the Lie algebra of all
vector fields with the Lie algebra of the automorphism group. If X is a smooth
variety, then this identification works if X is proper, but not otherwise. For
instance, an affine curve C of genus ≥ 1 has only finitely many automor-
phisms, but H0(C,TC) is infinite dimensional. Infinitesimal thickenings restore
the connection between vector fields and automorphisms.
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6.42 (Locally trivial first order deformations) Let k be a field and X a
k-scheme. A deformation of X over A := Speck k[ε] is a flat A-scheme X′

together with an isomorphism X′ ×A Spec k ' X. The set of isomorphism
classes of first order deformations is denoted by T 1(X). It is easy to see that
T 1(X) is naturally a k-vector space whose zero is the trivial deformation X[ε],
but this is not very important for us now. See Artin (1976) or Hartshorne (2010)
for detailed discussions.

We say that X′ is locally trivial if there is an affine cover X = ∪iXi such that
each X′i is a trivial deformation of Xi. We aim to classify all locally trivial first
order deformations of arbitrary k-schemes X, but our main interest is in cases
when X is smooth and quasi-projective.

Let X = ∪iXi be an affine cover. This gives an affine cover X′ = ∪iX′i
and we assume that each X′i is a trivial deformation of Xi. Fix trivializations
φi : X′i ' Xi[ε]. Over X′i j := X′i ∩ X′j we have two trivializations, these differ by
an automorphism

αi j := φ−1
j ◦ φi : X′i j → X′i j, (6.42.1)

which is the identity on Xi j. By (6.41.1), the automorphisms αi j correspond
to vi j ∈ Hom

(
Ω1

Xi j
,OXi j

)
and these form a 1-cocycle D := {vi j}. Changing the

trivializations changes the cocyle by a coboundary. Thus we get a well defined

D = D(X′) ∈ H1(X,Hom(Ω1
X ,OX)

)
. (6.42.2)

The construction can be reversed. It is left to the reader to check that D(X′)
is independent of the choices we made. The final outcome is the following.

Claim 6.42.3 Let X be a k-scheme. There is a one-to-one correspondence,
denoted by D 7→ XD, between

(a) elements of H1(X,Hom(Ω1
X ,OX)

)
, and

(b) locally trivial deformations of X over Speck k[ε], up-to isomorphism.
Furthermore, if X is normal then H1(X,Hom(Ω1

X ,OX)
)

= H1(X,TX). �

Next we check that every first order deformation of a smooth variety Y is
locally trivial. To see this, we may assume that Y is affine. Then Y ′ is also affine
and we can fix a vector space isomorphism k[Y ′] ' k[Y] ⊗ k[ε]. Pick a point
p ∈ Y , local coordinates y1, . . . , yn. Then k(Y) is separable over k( y1, . . . , yn).
Choose arbitrary lifts y′1, . . . , y

′
n ∈ k[Y ′]. Any other z ∈ k[Y] satisfies a monic,

separable equation F(z, y) = 0. We claim that z has a unique lift z′ ∈ k(Y ′) such
that F(z′, y′) = 0. To see this pick any lift z∗. Then F

(
z∗, y′

)
= εG(z) for some

G(z) ∈ k[Y]. We are looking for z′ in the form z′ = z∗+εg where g ∈ k[Y]. Since
F
(
z∗ + εg, y′

)
= εG(z) + εg · ∂F(z, y)/∂z, we see that g = −G(z)

(
∂F(z, y)/∂z

)−1
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is the unique solution. We do this for a finite set of generators {zi} of k[Y] to
get a trivialization in a neighborhood where all the ∂Fi(z, y)/∂z are invertible.

Combining with (6.42.3), this shows that every deformation of a smooth,
affine variety over k[ε] is trivial. (See Hartshorne (1977, exc.II.8.6) for a
slightly different proof.)

6.43 (Arbitrary first order deformations) Let k be a field and X a normal k-
variety. Let U ⊂ X be the smooth locus, Z ⊂ X the singular locus, and j : U ↪→

X the natural injection.
Let X′ → Speck k[ε] be a flat deformation of X. By restriction, it induces

a flat deformation U′ of U. Note that U′ uniquely determines X′. Indeed,
depthZ OX ≥ 2 since X is normal, hence depthZ OX′ ≥ 2 since OX′ is an exten-
sion of two copies of OX . Therefore OX′ = j∗OU′ by (10.6). Thus we have an
injection T 1(X) ↪→ T 1(U) = H1(U,TU).

Following Schlessinger (1971), our plan is to study T 1(X) by first describ-
ing T 1(U) and then understanding which D ∈ H1(U,TU) correspond to a
deformation of X; see also von Essen (1990). The second step is in (6.46).

Definition 6.44 Let X be a k-scheme. Given v ∈ Hom(Ω1
X ,OX), differentiation

by v is defined as the composite

v( ) : OX
d
→ Ω1

X
v
→ OX . (6.44.1)

Let x1, . . . , xn be (analytic or étale) local coordinates at a smooth point of X
and write v =

∑
i vi

∂
∂xi

. Then the maps are

v : f 7→
∑

i
∂ f
∂xi

dxi 7→
∑

i vi
∂ f
∂xi
.

Thus if X is smooth and v is identified with a section of TX , then (6.44.1) agrees
with the usual definition.

Next let D ∈ H1(X,Hom(Ω1
X ,OX)

)
and choose a representative 1-cocyle

D = {vi j} using an affine cover X = ∪Xi. For any s ∈ H0(X,OX) the derivatives
{vi j

(
s|Xi j

)
} form a 1-cocycle with values in OX . This defines D(s) ∈ H1(X,OX).

We think of it either as a cohomological differentiation map

D : H0(X,OX)→ H1(X,OX), (6.44.2)

or as a k-bilinear map

H1(X,Hom(Ω1
X ,OX)

)
× H0(X,OX)→ H1(X,OX). (6.44.3)

If X is normal, then we can rewrite this as

H1(X,TX) × H0(X,OX)→ H1(X,OX). (6.44.4)
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Let XD be the deformation of X corresponding to D. Its structure sheaf sits in
an exact sequence

0→ εOX → OXD → OX → 0. (6.44.5)

Taking cohomology, we see that D in (6.44.2) is the connecting map

H0(XD,OXD

)
→ H0(X,OX)

D
→ H1(X,OX). (6.44.6)

Warning 6.44.7 Since the constant 1X ∈ H0(X,OX) always lifts, D(1X) = 0.
Thus D is an H0(X,OX)-module homomorphism iff it is identically 0.

We can summarize the above considerations as follows.

Lemma 6.45 Let X be a k-scheme, D ∈ H1(X,Hom(Ω1
X ,OX)

)
and XD the

corresponding deformation of X. Then a global section s ∈ H0(X,OX) lifts to
sD ∈ H0(XD,OXD ) iff D(s) ∈ H1(X,OX) is 0. �

Corollary 6.46 Let X be a normal, affine variety and U ⊂ X its smooth locus.
Let UD be the deformation of U corresponding to D ∈ H1(U,TU). Then
(6.46.1) UD extends to a flat deformation XD of X iff D (as in (6.44.2)) is

identically 0.
(6.46.2) T 1(X) is the left kernel of H1(U,TU) × H0(U,OU)→ H1(U,OU).

Proof Assume that UD extends to a flat deformation XD of X. Since X is affine,
so is XD and so H0(XD,OXD ) → H0(X,OX) is surjective. Thus D is identically
0 by (6.45).

Conversely, if D is identically 0, then H0(UD,OUD ) → H0(U,OU) is sur-
jective and H0(U,OU) = H0(X,OX) since X is normal. We can then take
XD := Speck H0(UD,OUD ). This proves the first claim and the second is a
reformulation of it. �

Remark 6.47 If X is not affine, then D ∈ H1(U,TU) gives a k-linear map
D : OX = j∗OU → R1 j∗OU ' H 2

Z(OX) where Z := X \ U is the singular
locus. Then UD extends to a flat deformation XD of X iff D : OX → H 2

Z(OX)
is identically 0.

6.48 (Lie derivative) Let M be a smooth, real manifold and v a vector field on
M. By integrating v we get a 1-parameter family of diffeomorphisms φt of M.
The Lie derivative of a covariant tensor field S is defined as

LvS := d
dt
(
φ∗t S

)
t=0. (6.48.1)
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In local coordinates {yi}, write v =
∑

i vi
∂
∂yi

. The Lie derivatives of a function s
and of a 1-form dy j are given by the formulas

Lvs = v(s) =
∑

ivi
∂s
∂yi

and Lv(dy j) = dv j. (6.48.2)

Since functions and 1-forms generate the algebra of covariant tensors, the Lie
derivative is uniquely determined by the formulas (6.48.2). One can extend the
definition to all tensors by duality.

We can transplant this definition to algebraic geometry as follows.
Let Y be a smooth variety over a field k and v ∈ H0(Y,TY ) a vector field. By

(6.41.4) v can be identified with an automorphism αv of Y[ε]. We write ΩY for
the module of derivations (frequently denoted by Ω1

Y ). The covariant tensors
are sections of the algebra

∑
m≥0 Ω⊗m

Y .
Let S ∈ H0(Y,∑m≥0 Ω⊗m

Y
)

be a covariant tensor on Y . It has a trivial extension
to Y[ε]; denote it by S [ε]. Thus α∗v

(
S [ε]

)
is a global section of

∑
m≥0 Ω⊗m

Y[ε].
Since αv is the identity on Y , α∗v

(
S [ε]

)
− S [ε] is divisible by ε and we can

define the Lie derivative of S by the formula

α∗v
(
S [ε]

)
= S [ε] + εLvS . (6.48.3)

Expanding the identity α∗v
(
S 1[ε] ⊗ S 2[ε]

)
= α∗v

(
S 1[ε]

)
⊗ α∗v

(
S 2[ε]

)
shows that

the Lie derivative is a k-linear derivation of the tensor algebra

Lv : ⊕m≥0 Ω⊗m
Y → ⊕m≥0 Ω⊗m

Y . (6.48.4)

The Lie derivative preserves natural quotient bundles of Ω⊗m
Y . Thus we get

similar maps Lv for symmetric and skew-symmetric tensors. Our main interest
is in powers of ωY . The corresponding map

Lv : ωm
Y → ωm

Y (6.48.5)

is obtained using the identification Ω⊗n
Y � Ωn

Y = ωY where n = dim Y .
From (6.41.1), we see that

α∗v
(
s[ε]

)
= s[ε] + εv(s) and α∗v(dy j) = d

(
α∗v( y j)

)
= dy j + εdv j. (6.48.6)

Comparing with (6.48.2), we see that the algebraic definition coincides with
the differential geometry definition.

6.49 (Cartan formula) This is an identity which holds for exterior forms S

Lv(S ) = d
(
vyS ) + vydS , (6.49.1)

where y denotes contraction or inner product by a vector field v ∈ H0(Y,TY )
obtained as follows. We have the contraction map TY ⊗Ωm

Y → Ωm−1
Y , thus every

v ∈ H0(Y,TY ) gives the OY -linear map
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vy : Ωm
Y → Ωm−1

Y . (6.49.2)

In (analytic or étale) local coordinates y1, . . . , yn, write v =
∑

i vi
∂
∂yi

. Then

vy
(
dy1 ∧ · · · ∧ dym

)
=

∑
r(−1)r−1vr · dy1 ∧ · · · ∧ d̂yr ∧ · · · ∧ dym, (6.49.3)

where the hat indicates that we omit that term.
To prove (6.49.1), one first checks that S 7→ d

(
vyS ) + vydS is also a der-

ivation. Thus it is sufficient to verify (6.49.1) for a generating set of exterior
forms. For functions and for dy j we recover the identities (6.48.2).

6.50 As in (6.44), let Y be a smooth k-variety. Pick D ∈ H1(Y,TY ) and choose
a representative 1-cocyle D = {vi j} using an affine cover Y = ∪Yi. For any
S ∈ H0(Y,Ω⊗m

Y
)

the Lie derivatives {Lvi j

(
S |Yi j

)
} form a 1-cocycle with values in

Ω⊗m
Y . This defines

LD(S ) ∈ H1(Y,Ω⊗m
Y

)
, (6.50.1)

which we view as a cohomological differentiation map

LD : ⊕H0(Y,Ω⊗m
Y

)
→ ⊕H1(Y,Ω⊗m

Y
)
. (6.50.2)

As we noted in (6.48), the map LD respects natural quotient bundles of Ω⊗m
Y .

Thus we get similar maps for symmetric and skew-symmetric tensors and for
powers of ωY

LD : ⊕H0(Y, ωm
Y
)
→ ⊕H1(Y, ωm

Y
)
. (6.50.3)

For m = 0, the map LD agrees with the map D defined in (6.44.2).
As in (6.44.7), LD is a k-linear differentiation which is usually not H0(Y,OY )-

linear. However, if D : H0(Y,OY ) → H1(Y,OY ) is 0, then LD is H0(Y,OY )-
linear; this holds both for (6.50.2) and (6.50.3).

Arguing as in (6.45), we obtain the following lifting criterion.

Lemma 6.51 Let Y be a smooth k-variety and YD a first order deformation of
Y. Then S ∈ H0(Y,Ω⊗m

Y
)

lifts to S D ∈ H0(YD,Ω
⊗m
YD

)
iff LD(S ) ∈ H1(Y,Ω⊗m

Y
)

is
0. The same holds for all natural quotient bundles of Ω⊗m

Y . �

Next we consider what the previous method gives for ωY and its powers.
On M := Rn with coordinates yi, the divergence of a vector field v =

∑
vi

∂
∂yi

is ∇·v :=
∑ ∂vi

∂yi
. Note that the yi give an n-form σ = dy1∧· · ·∧dyn, which gives

isomorphisms TM ' Hom(Ωn
M ,Ω

n−1
M ) ' Ωn−1

M . This identifies the divergence
with exterior derivation d : Ωn−1

M → Ωn
M .
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6.52 (Divergence) More generally, let Y be a smooth k-variety, σ ∈ H0(Y, ωm
Y )

and v ∈ H0(Y,TY ). Then σ and Lvσ (6.48.5) are both sections of the line bundle
ωm

Y , hence their quotient is a rational function, called the divergence of v with
respect to σ,

∇σv :=
Lvσ

σ
. (6.52.1)

(Most books seem to use this terminology only when σ is a nowhere 0 section
of ωY , and σ is frequently suppressed in the notation.)

In order to compute this, start with a section σ of ωY . Since dσ = 0, Cartan’s
formula (6.49) shows that Lv : ωY → ωY is the composite map

Lv : ωY = Ωn
Y

vy
−→ Ωn−1

Y
d
→ Ωn

Y = ωY . (6.52.2)

In local coordinates y1, . . . , yn, assume that σ = dy1∧· · ·∧dyn and v =
∑

i vi
∂
∂yi

.
Contraction by v sends σ to∑

i (−1)i−1vi dy1 ∧ · · · ∧ d̂yi ∧ · · · ∧ dyn. (6.52.3)

Exterior differentiation now gives that

Lvσ = d(vyσ) =
∑

i
∂vi
∂yi
· σ, (6.52.4)

which is the usual formula for the divergence. Thus, if σ is a nowhere 0 section
of ωm

Y , then we get the divergence as a k-linear map ∇σ : TY → OY . Thus it
induces a map on cohomologies; we are especially interested in

∇σ : H1(Y,TY )→ H1(Y,OY ). (6.52.5)

For powers of ωY , we get the next formula.

Lemma 6.53 Let Y be a smooth k-variety of dimension n. Let v ∈ H0(Y,TY )
be a vector field, s ∈ H0(Y,OY ) a function, and σ ∈ H0(Y, ωY ) an n-form. Then

∇(sσm)v =
v(s)

s + m∇σv. (6.53.1)

Proof This is really just the assertion that the Lie derivative is a derivation,
but it is instructive to do the local computations.

The claimed identities are local, so we use local coordinates y1, . . . , yn and
assume that σ = dy1 ∧ · · · ∧ dyn. Write v =

∑
i vi

∂
∂yi

. We need to compute how
the isomorphism αv acts on sσm. It sends yi to yi + εv( yi) = yi + εvi, thus

α∗v(dyi) =
(
1 + ε ∂vi

∂yi

)
dyi + ε

(∑
j,i

∂vi
∂y j

dy j
)
. (6.53.2)
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Next we wedge these together. Any two epsilon terms wedge to 0 since ε2 = 0.
Thus ε

(∑
j,i

∂vi
∂y j

dy j
)

gets killed unless it is wedged with all the other dy j, but
the result is then 0 in the exterior algebra. The only term that survives is∏

i
(
1 + ε ∂vi

∂yi

)
· dy1 ∧ · · · ∧ dyn =

(
1 + ε

∑
i
∂vi
∂yi

)
· dy1 ∧ · · · ∧ dyn

=
(
1 + ε∇yv

)
· dy1 ∧ · · · ∧ dyn.

(6.53.3)

Thus we get that sσm is mapped to(
s + εv(s)

)(
1 + mε∇yv

)
· σm =

(
s + εv(s) + mεs∇yv

)
· σm

= sσm + ε ·
( v(s)

s + m∇yv
)
· sσm. �

Notation 6.54 Let X be a normal, affine k-variety and XD a flat deformation of
X over k[ε] corresponding to D ∈ T 1(X). Let U ⊂ X be the smooth locus. By
(6.43), we can think of D as a cohomology class D ∈ H1(U,TU). By (6.44.2),
D induces a map

D : H0(U,OU)→ H1(U,OU) (6.54.1)

which is identically 0 by (6.46.2). There is a natural exact sequence

0→ ε · ωm
U → ωm

UD
→ ωm

U → 0. (6.54.2)

Taking cohomologies gives an exact sequence

H0(UD, ω
m
UD

)
→ H0(U, ωm

U
) δm
→ H1(U, ωm

U
)
. (6.54.3)

As we noted in (6.50), δm is H0(U,OU)-linear since D in (6.54.1) is 0.

It was observed in Stevens (1988) that, for cyclic quotients, the deformation
obstruction equals the divergence. The next result shows that this is a general
phenomenon.

Theorem 6.55 Let X, U ⊂ X, D = {vi j} ∈ H1(U,TU) and XD be as in (6.54).
Assume that ωm

U has a nowhere 0 section σm for some m > 0 such that char k -
m. As in (6.52.5), we get ∇σm D :=

{
∇σm (vi j)

}
∈ H1(U,OU). Then

(6.55.1) ∇D := 1
m∇σm D ∈ H1(U,OU) is independent of m and σm.

(6.55.2) The boundary map δm : H0(U, ωm
U
)
→H1(U, ωm

U
)

defined in (6.54.3) is
multiplication by m∇D.

(6.55.3) ωm
UD

is free⇔ ∇D = 0 in H1(U,OU).

Proof Choose affine charts {Ui} on U such that D = {vi j} and σm|Ui j = si jσ
m
i j

for some σi j ∈ H0(Ui j, ωUi j ). Any other section of ωm
U can be written as gσm

where g ∈ H0(U,OU). Using (6.53), we obtain that
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∇σm D =
{
∇σm (vi j)

}
=

{
vi j(si j)

si j
+ m∇σi j (vi j)

}
. (6.55.4)

Similarly, we get that

∇gσm D =

{
vi j(gsi j)

gsi j
+ m∇σi j (vi j)

}
. (6.55.5)

Since
vi j(gsi j)

gsi j
=

vi j(g)
g

+
vi j(si j)

si j
, (6.55.6)

subtracting (6.55.4) from (6.55.5) yields

∇gσm D − ∇σm D = 1
g D(g) ∈ H1(U,OU). (6.55.7)

As we noted in (6.54), D(g) = 0 in H1(U,OU). Thus∇gσm D = ∇σm D (as classes
in H1(U,OU)). Independence of the choice of m is shown by the formula

∇(σr
m)D =

vi j(sr
i j)

sr
i j

+ rm∇σi j (vi j)

 = r ·
{

vi j(si j)
si j

+ m∇σi j (vi j)
}
. (6.55.8)

Thus ∇D is well defined and this proves (1–2).
Finally, ωm

UD
is free iff σm lifts to a section of ωm

XD
, and ∇D ·σm is the lifting

obstruction. This implies (3). �

Remark 6.56 Let x ∈ X be an isolated normal singularity and U := X \ {x}.
Then H1(U,OU) = H2

x(X,OX) and H1(U,TU) = H2
x(X,TX). Thus if ωm

U ' OU

for some m > 0 then the divergence in (6.52.5) becomes a map

∇ : T 1(X)→ H2
x(X,OX).

If depthx OX ≥ 3, then H2
x(X,OX) = 0 by Grothendieck’s vanishing theorem

(10.29.5), thus in this case the divergence vanishes and sections of ωm
U lift to

all first order deformations. This, however, already follows from (6.54.3) since
H1(U, ωm

U) = H1(U,OU) = H2
x(X,OX) = 0.

If X is lc and ωX is locally free, then sections of ωX lift to any deforma-
tion by Kollár and Kovács (2020); see also (2.67). By (6.55), this implies that
∇ : T 1(X)→ H1(U,OU) is the zero map.

This should either have a direct proof or some interesting consequences.

Next we give explicit forms of the maps in the general theory for X := A2

and U := A2 \ {(0, 0)}. At first this seems quite foolish to do since we
already know that a smooth affine variety has only trivial infinitesimal defor-
mations. However, we will be able to use these computations to get very
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detailed information about deformations of two-dimensional cyclic quotient
singularities.

Notation 6.57 Let k be a field, X = A2
xy and U := X \ {(0, 0)}. Using the affine

charts U0 := U \ (x = 0), U1 := U \ ( y = 0) and U01 := U \ (xy = 0), we
compute that

H1(U,OU) =
〈

1
xiy j : i, j ≥ 1

〉
(6.57.1)

and also that

H1(U,TU) =
〈

1
xiy j ·

∂
∂x ,

1
xiy j ·

∂
∂y : i, j ≥ 1

〉
.

Note that H1(U,OU) is naturally a quotient of

H0(U01,OU01

)
= k

[
x−iy− j : i, j ∈ Z

]
;

but the basis in (6.57.1) depends on the choice of coordinates x, y. Similarly,
H1(U,TU) is naturally a quotient of H0(U01,TU01

)
.

It is very convenient computationally that the diagonal subgroup G2
m ⊂GL2

acts on these cohomology groups and subsequent constructions are G2
m-

equivariant. In order to keep track of this action, it is better to use the
G2

m-invariant differential operators

∂x := x ∂
∂x and ∂y := y ∂

∂y . (6.57.2)

Thus ∂x(xrys) = rxrys, ∂y(xrys) = sxrys and

H1(U,TU) =
〈
∂x

xiy j : i ≥ 2, j ≥ 1
〉⊕〈

∂y

xiy j : i ≥ 1, j ≥ 2
〉
. (6.57.3)

The G2
m-eigenspaces in H1(U,TU) are usually two-dimensional〈

∂x
xiy j ,

∂y

xiy j

〉
for i, j ≥ 2. (6.57.4.a)

The one-dimensional eigenspaces are〈
∂x
xiy

〉
and

〈
∂y

xy j

〉
for i, j ≥ 2. (6.57.4.b)

The pairing H1(U,TU) × H0(U,OU) → H1(U,OU) defined in (6.44.3) is
especially transparent using the bases (6.57.1–4), since

a∂x−b∂y

xiy j

(
xrys) = (ar − bs) · xr−iys− j, (6.57.5)

where a, b ∈ k and i, j ≥ 1. This is identically 0 as an element of H0(U01,OU01 )
iff ar − bs = 0. It is more important to know when this is 0 as an element of
H1(U,OU). The latter holds iff
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(6.a) either ar − bs = 0, or
(6.b) r ≥ i, or s ≥ j.
This easily implies that the left kernel of H1(U,TU)×H0(U,OU)→ H1(U,OU)
is trivial, hence T 1(A2) = 0 by (6.46.2); but this we already knew.

Combining (6.51) and (6.53) gives the following.

Lemma 6.58 Using the notation of (6.57), let D ∈ H1(U,TU) and UD the
corresponding deformation. Then f (dx ∧ dy)m lifts to a section of ωm

UD
iff

D( f ) + m f∇D ∈ H1(U,OU) vanishes. �

We are thus interested in computing the kernels of the operators

(D, f ) 7→ D( f ) + m f∇D.

We start by describing the kernel of ∇.

6.59 (Computing the divergence) Set D := (a∂x − b∂y)x−iy− j. By explicit
computation,

∇
( a∂x−b∂y

xiy j

)
= −

a(i−1)−b( j−1)
xiy j . (6.59.1)

Thus ∇D is identically 0 iff a(i − 1) − b( j − 1) = 0. If D is a nonzero element
of H1(U,TU) then i, j > 0 and then ∇D is 0 as an element of H1(U,OU) iff it is
identically 0.

If (i, j) = (1, 1), then ∇D = 0, but then D vanishes in H1(U,TU). If ∇D = 0
and i = 1, j > 1 then b = 0 and again D vanishes in H1(U,TU). Thus we
conclude that

ker
[
H1(U,TU)

∇
→ H1(U,OU)

]
=

〈 ( j−1)∂x−(i−1)∂y

xiy j : i, j ≥ 2
〉
. (6.59.2)

Corollary 6.60 Let D ∈ H1(U,TU). Then D(xy),∇D ∈ H1(U,OU) are both 0
iff D is contained in the subspace

KVW :=
〈
∂x−∂y

(xy)i : i ≥ 2
〉
⊂ H1(U,TU).

Proof Corresponding to the two cases in (6.57.6.a–b), the kernel of the map
D 7→ D(xy) ∈ H1(U,OU) is a direct sum of two subspaces

K1 :=
〈
∂x−∂y

xiy j : i, j ≥ 2
〉

and K2 :=
〈
∂y

xy j ,
∂x
xiy : i, j ≥ 2

〉
. (6.60.1)

Combining this with (6.59.2) gives the claim. �
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6.6 Deformations of Cyclic Quotient Singularities

We use the methods of the previous section to understand first order defor-
mations of cyclic quotient singularities. It is based on Altmann and Kollár
(2019), which uses toric geometry. For cyclic quotients the two approaches are
equivalent, but they suggest different generalizations.

Notation 6.61 X is a pure dimensional, S 2 scheme over a field k such that ωX

is locally free outside a closed subset Z ⊂ X of codimension ≥ 2 and ω[m]
X is

locally free for some m > 0. The smallest such m > 0 is called the index of ωX .
Both of these conditions are satisfied by schemes with slc singularities.

Let (0,T ) be a local scheme such that k(0) ' k and p : XT → T a flat
deformation of X ' X0. As in (2.5), for every r ∈ Z we have maps

R[r] : ω[r]
XT /T
|X0 → ω[r]

X0
. (6.61.1)

These maps are isomorphisms over X\Z and we are interested in understanding
those cases when R[r] is an isomorphisms over X.

By (9.17), if T is Artinian, then R[r] is an isomorphism⇔ R[r] is surjective
⇔ ω[r]

XT /T
is flat over T .

Definition 6.62 Let p : XT → T be a flat deformation as in (6.61).

(6.62.1) We call p : XT → T a KSB-deformation if R[r] is an isomorphism for
every r. It is enough to check these for r = 1, . . . , index(ωX). (These are also
called qG-deformations. The letter are short for “quotient of Gorenstein,” but
this is misleading if dim X ≥ 3.) These appear on KSB-stable families (6.16).

(6.62.2) We call p : XT → T a Viehweg-type deformation (or V-deformation) if
R[r] is an isomorphism for every r divisible by index(ωX). It is enough to check
this for r = index(ωX). These appear on V+-stable families (6.31).

(6.62.3) We call p : XT → T a Wahl-type deformation (or W-deformation) if
R[r] is an isomorphism for r = −1. These deformations were considered in
Wahl (1980, 1981) and called ω∗-constant deformations there.

(6.62.4) We call p : XT → T a VW-deformation if it is both a V-deformation
and a W-deformation.

It is clear that every KSB-deformation is also a VW-deformation. Under-
standing the precise relationship between these four classes has been a
long-standing open problem, especially for quotient singularities of surfaces.
For reduced base spaces we have the following, which is a combination of
(4.33) and (3.1).
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Theorem 6.63 A flat deformation of an slc variety over a reduced, local
scheme of characteristic 0 is a V-deformation iff it is a KSB-deformation.

This raised the possibility that every V-deformation of an slc singularity is
also a KSB-deformation over arbitrary base schemes. It would be enough to
check this for Artinian bases. Here we focus on first order deformations and
prove that these two classes are quite different from each other.

Definition 6.64 Let X be a scheme satisfying the assumptions of (6.61). Let
T 1(X) be the set of isomorphism classes of deformations of X over k[ε]. This is
a (possibly infinite dimensional) k-vector space. Let T 1

KS B(X) ⊂ T 1(X) denote
the space of first order KSB-deformations, T 1

V (X) the space of first order V-
deformations, T 1

W (X) the space of first order W-deformations and T 1
VW (X) the

space of first order VW-deformations. We have obvious inclusions

T 1
KS B(X) ⊂ T 1

VW (X) ⊂ T 1
V (X),T 1

W (X) ⊂ T 1(X),

but the relationship between T 1
V (X) and T 1

W (X) is not clear.
These T 1

∗ (X) are the tangent spaces to the corresponding miniversal defor-
mation spaces; we denote these by DefKS B(X),DefV (X) and so on. See
Artin (1976) or Looijenga (1984) for precise definitions and introductions, or
(2.25–2.29) for details on surface quotient singularities.

6.65 (Cyclic quotient singularities) Let 1
n (1, q) denote the cyclic group action

g : (x, y) 7→ (ηx, ηqy), where η is a primitive nth root of unity. We always
assume that char k - n and (n, q) = 1; then the action is free outside the origin
on A2 = Spec k[x, y]. The ring of invariants is

Rnq := k[x, y]G = k
[
xiy j : i, j ≥ 0, i + q j ≡ 0 mod n

]
, (6.65.1)

and the corresponding quotient singularity is

S n,q := A2/ 1
n (1, q) = Speck Rnq. (6.65.2)

While we work with this affine model, all the results apply to its localization,
Henselisation, or completion at the origin.

We can also choose η′ = ηq as our primitive nth root of unity. This shows
the isomorphism S n,q ' S n,q′ if qq′ ≡ 1 mod n.

Various ways of studying such singularities go back a long time. The first
relevant work might be Jung (1908). See also Brieskorn (1967/1968).

In (6.70), we give an algorithm that yields an explicit, minimal generating
set of Rnq. The number of generators is the embedding dimension.

For us, the embedding dimension is the most natural invariant, but
traditionally the multiplicity is considered the basic one. For cyclic quotients,
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more generally, for rational surface singularities, these are related by the
formula

embdim
(
S n,q

)
= mult

(
S n,q

)
+ 1. (6.65.3)

We completely describe first order KSB-, V- and W-deformations of cyclic
quotient singularities. The main conclusion is that KSB-deformations and
V-deformations are quite different over Artinian bases; see (6.82).

The An−1-singularity A2/ 1
n (1, n − 1) has embedding dimension 3, and all of

its deformations are KSB. In the other cases, we have the following.

Theorem 6.66 Let S n,q := A2/ 1
n (1, q) be as in (6.65) with q , n − 1. Then

dim T 1
V
(
S n,q

)
− dim T 1

VW
(
S n,q

)
= embdim

(
S n,q

)
− 4 or embdim

(
S n,q

)
− 5.

In particular, if embdim
(
S n,q

)
≥ 6 then S n,q has V-deformations that are not

VW-deformations, hence also not KSB-deformations.

Complement 6.66.1 In (6.85) we list all S n,q for which every V-deformation is
a KSB-deformation.

By contrast, KSB-deformations and VW-deformations are quite close to
each other, as shown by the next result, proved in (6.84).

Theorem 6.67 Let S n,q := A2/ 1
n (1, q) be as in (6.65).

(6.67.1) If (n, q + 1) = 1, then DefKS B
(
S n,q

)
= DefVW

(
S n,q

)
= {0}.

(6.67.2) If S n,q admits a KSB-smoothing, then DefKS B
(
S n,q

)
= DefVW

(
S n,q

)
.

(6.67.3) In general, dim T 1
KS B

(
S n,q

)
≤ dim T 1

VW
(
S n,q

)
≤ dim T 1

KS B
(
S n,q

)
+ 1.

Next we discuss what the general theory of the previous section says about
deformations of two-dimensional quotient singularities.

6.68 (Deformation of quotients) Let k be a field, X an affine k-scheme that is
S 2, x ∈ X a closed point and U := X \ {x}. Let G be a finite group acting on
X such that x is a G-fixed point and the action is free on U. The quotient map
πU : U → U/G is finite and étale. This extends to a finite map πX : X → X/G
which is ramified at x.

OU/G is identified with the G-invariant subsheaf (π∗OU)G and similarlyωU/G

is identified with (π∗ωU)G. (For the latter we need that the action is free). Thus

H0(U/G,OU/G) = H0(U,OU)G = H0(X,OX)G, and

H0(U/G, ω[m]
U/G) = H0(U, ω[m]

U )G = H0(X, ω[m]
X )G.

(6.68.1)
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If char k - |G| then the G-invariant subsheaf is a direct summand, hence by
taking cohomologies we similarly see that

H1(U/G,OU/G) = H1(U,OU)G and H1(U/G,TU/G) = H1(U,TU)G.

If D ∈ H1(U,TU) is G-invariant, then UD descends to a deformation (U/G)D of
U/G; these give all first order deformations. If H0(U/G,OU/G) is flat over k[ε],
then its spectrum gives a flat deformation of X/G and every flat deformation
that is locally trivial on U/G arises this way.

Thus, using (6.46) we get the following fundamental observation.

Theorem 6.69 Schlessinger (1971) Let k be a field, X a smooth, affine k-
variety, x ∈ X a closed point and U := X \ {x}. Let G be a finite group acting
on X such that x is a G-fixed point, the action is free on U and char k - |G|.
Then T 1(X/G) is the left kernel of the pairing

H1(U,TU)G × H0(U,OU)G → H1(U,OU)G (6.69.1)

defined in (6.44). More generally, if X is normal, the left kernel corresponds to
those flat deformations of X/G that are locally trivial on U/G. �

Next we compute the terms in (6.69.1) for cyclic quotient singularities.

Notation 6.70 Our aim is to describe the generators of Rn,q as in (6.65.1). We
assume that char k - n and (n, q) = 1.

Most of the following formulas can be found in Riemenschneider (1974);
see Stevens (2013) for an introduction and many examples.

The group action preserves the monomials, hence Rnq has a generating set
consisting of monomials. A nonminimal generating set can be constructed as
follows. For any 0 < j < n let 0 < γ j < n be the unique integer such that
γ j + q j ≡ 0 mod n. Then

xn, xγ1 y, xγ2 y2, . . . , xγn−1 yn−1, yn

is a generating set of Rnq. We know that γ1 = n − q and γn−1 = q. This is
a minimal generating set of Rnq as a k[xn, yn]-module, but usually not as a k-
algebra. Indeed, xγi yi divides xγ j y j if γi < γ j and i < j. In any concrete case
one can use this observation to get a minimal set of algebra generators.

We label the monomials of the minimal algebra generators as Mi = xai ybi ,
ordered by increasing y-powers

M0 = xn,M1 = xn−qy = xa1 yb1 ,M2 = xa2 yb2 , . . . ,Mr = yn. (6.70.1)

At the same time, the ai form a decreasing sequence. Indeed, if bi < b j and
ai ≤ a j, then Mi divides M j so the sequence would not be minimal.
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From (6.71.2), we obtain that there are relations of the form

Mci
i = Mi−1Mi+1 for i = 1, . . . , r − 1. (6.70.2)

This tells us that the ai and the ci are recursively defined by

a0 = n, a1 = n − q, ci = dai−1/aie, ai+1 = ciai − ai−1. (6.70.3)

Similarly, b0 = 0, b1 = 1 and bi+1 = cibi − bi−1. These imply that (ai, ai+1) =

(bi, bi+1) = 1 for every i and that the ci ≥ 2 are computed by the modified
continued fraction expansion

n
n − q

= c1 −
1

c2 −
1

c3 − · · ·

. (6.70.4)

The following observations about the ai, bi, ci are quite useful. The first two
follow from the original construction of the Mi, the third from (6.70.5) and the
last one is equivalent to (6.71.3).

ai−1 = min{α > 0: ∃xαyβ ∈ Rnq such that β < bi} for i > 0.
bi+1 = min{β > 0: ∃xαyβ ∈ Rnq such that α < ai} for i < r.
ci − 1 = b ai−1

ai
c = b bi+1

bi
c for 0 < i < r.

aibi+1 − ai+1bi = n for 0 ≤ i < r.
Note that r + 1 is the embedding dimension of S nq and r is its multiplicity.

Thus r = 2 iff M1 = Mr−1 = xy and hence we have the An−1-singularity
A2/ 1

n (1,−1). These are exceptional for many of the subsequent formulas, so
we assume from now on that r ≥ 3.

6.71 (Cones and semigroups) Let v0, v1 ∈ Z
2 be primitive vectors and C :=

R≥0v0 + R≥0v1 ⊂ R
2 the closed cone spanned by them. Let C̄(Z) be the closed,

convex hull of
(
Z2∩C

)
\{(0, 0)} and N(C) the part of the boundary of C̄(Z) that

connects v0 and v1. Let m0 = v0,m1, . . . ,mr−1,mr = v1 be the integral points in
N(C) as we move from v0 to v1. We leave it to the reader to prove that
(6.71.1) the mi generate the semigroup Z2 ∩C,
(6.71.2) there are c1, . . . , cr−1 ≥ 2 such that cimi = mi−1 + mi+1, and
(6.71.3) the triangles with vertices {(0, 0),mi,mi+1} all have the same area.
Thus R(C), the semigroup algebra of Z2 ∩C, is generated by m0, . . . ,ms.

For 1 ≤ q < n and (n, q) = 1, consider the cone Cnq spanned by v0 = (1, 0)
and v1 = (q, n). Then

Z2 ∩Cnq =
〈 i

n v0 +
j
n v1 : i, j ≥ 0, i + q j ≡ 0 mod n

〉
.
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Thus we see that the semigroup algebra R(Cnq) is isomorphic to the algebra of
invariants Rnq defined in (6.65). (It is not hard to see that, up to the action of
SL(2,Z), every rational cone in R2 is of the form Cnq.)

6.72 (Computing T 1(S nq)) Continuing with the notation of (6.68–6.70), we
see that D ∈ H1(U,TU)G is in T 1(S nq) iff D(Mi) = 0 ∈ H1(U,OU) for every i.

Since the pairing (6.69.1) is G2
m-equivariant, it is sufficient to consider one

eigenspace at a time. As in (6.57.4.a–b), the eigenspaces in H1(U,TU)G are
usually two-dimensional and of the form〈

∂x
M ,

∂y

M

〉
, (6.72.1)

where M is a monomial in the Mi-s involving both x, y. The exceptions are
one-dimensional subspaces. For every s ≥ 0 we have two of them〈

∂x
Ms

0 M1

〉
and

〈
∂y

Mr−1 Ms
r

〉
. (6.72.2)

Thus we can write D = (α∂x − β∂y)/M. Note that

D(xayb) = (αa − βb) xayb

M , (6.72.3)

hence if a< ordx M and b< ordy M, then this is 0 in H1(U,OU) iff β/α= a/b.
Thus if M is divisible by at least two different monomials Mi,M j for 0 < i, j <
r then D(Mi) = 0 and D(M j) = 0 imply that we need to satisfy both of the
equations β/α = ai/bi and β/α = a j/b j, a contradiction. We get a similar
contradiction for the eigenspaces (6.72.2) if s > 0. We are left with the cases
when M = Ms

i for some 0 < i < r. If s ≥ 2 then D(Mi) = 0 implies that
D = (bi∂x − ai∂y)/Ms

i . Then bia j − aib j , 0 for j , i hence D(M j) = (bia j −

aib j)(M j/Ms
i ) vanishes in H1(U,OU) iff sai ≤ a j or sbi ≤ b j. If j < i then

b j < bi, hence sai ≤ a j must hold. Since the a j form a decreasing sequence,
we need sai ≤ ai−1. Similarly, sb j ≤ b j+1. By (6.70.5.c), these are equivalent
to s ≤ ci − 1. We have thus proved the following result of Riemenschneider
(1974) and Pinkham (1977).

Proposition 6.73 Let Mi = xai ybi for i = 0, . . . , r be the generators of Rnq as
in (6.70.1). Then T 1(S nq) ⊂ H1(U,TU) has a basis consisting of{

∂x
M1
,

∂y

Mr−1

}
and

{
∂x
Mi
,
∂y

Mi
: 2 ≤ i ≤ r − 2

}
, (6.73.1)

plus the possibly empty set{
bi∂x−ai∂y

Ms
i

: 1 ≤ i ≤ r − 1, 2 ≤ s ≤ ci − 1
}

(6.73.2)

where ci = d ai−1
ai
e = d bi+1

bi
e is defined in (6.70.2).
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6.74 (Powers of ω) Fix any m ∈Z. Then H0(U, ωm
U) has a basis consisting of

M(dx∧dy)m where M is any monomial. Thus H0(S nq, ω
[m]
S nq

)
= H0(U/G, ωm

U/G
)

has a basis consisting of{
xayb(dx ∧ dy)m : a + qb ≡ −m(1 + q) mod n

}
. (6.74.1)

For D ∈ T 1(S nq) let S D denote the corresponding deformation. By (6.58)
xayb(dx ∧ dy)m f lifts to a section of ω[m]

S D
iff

D(xayb) + mxayb∇D = 0 ∈ H1(U,OU). (6.74.2)

It is enough to check (6.74.2) for a minimal generating set of H0(S nq, ω
[m]
S nq

)
as

an Rnq-module. In any given case, this can be worked out by hand, but there
are two instances where the answer is simple.
(6.74.3) If n | (q + 1)m then H0(S nq, ω

m
S nq

)
is cyclic with generator (dx ∧ dy)m.

(6.74.4) If m = −1 then xy(dx∧dy)−1 is G-invariant and every xayb(dx∧dy)−1 is
a multiple of it, save for powers of x or y. Thus ω−1

S nq
has 3 generating sections:

xy
dx∧dy ,

xq+1

dx∧dy ,
yq′+1

dx∧dy .

6.75 (V-deformations) If n | (q+1)m, then (dx∧dy)m is a generator by (6.74.3),
thus the condition (6.74.2) is equivalent to ∇D = 0.

Therefore T 1
V (S nq) equals the intersection of T 1(S nq) with the kernel of ∇.

The former was computed in (6.73), the latter in (6.59.2). Thus we see that a
basis of T 1

V (S nq) is { (bi−1)∂x−(ai−1)∂y

Mi
: 2 ≤ i ≤ r − 2

}
(6.75.1.a)

and, if Mi is a power of xy for some i, then we have to add{
∂x−∂y

Ms
i

: 2 ≤ s ≤ ci − 1
}
. (6.75.1.b)

6.76 (W-deformations) By (6.74.4), ω−1
X/G has three generating sections. Thus,

by (6.74.2), D corresponds to a W-deformation iff D(xy) − xy∇D = 0,
D(xq+1) − xq+1∇D = 0, and D( yq′+1) − yq′+1∇D = 0.

The first of these conditions is especially strong. We do not compute it here,
rather go directly to the next case where the answer is simpler.

6.77 (VW-deformations) Combining (6.75) and (6.76) we get the description
of VW-deformations. These satisfy the conditions
(6.77.1) D(xy) = 0, D(xq+1) = 0 and D( yq′+1) = 0.
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We computed the subspace KVW where then first two hold in (6.60). It is
spanned by the derivations (∂x−∂y)(xy)−i for i ≥ 2. Comparing this with (6.73)
we get the following.

Claim 6.77.2 If T 1
VW (S nq) , 0, then Rnq has a minimal generator of the form

Mi = (xy)a. �

In order to put this into a cleaner form, assume that (xy)s is the smallest G-
invariant power of xy. Note that (xy)n = M0Mr is G-invariant, but it is not one
of the Mi. We have s(q + 1) ≡ 0 mod n, thus if s < n then b := (n, q + 1) > 1.
We have thus shown the following.

Claim 6.77.3 Assume that (n, q + 1) = 1. Then T 1
KS B(S nq) = T 1

VW (S nq) = 0 and
dim T 1

V (S nq) = r − 3. �

Claim 6.77.4 Assume that Mi = (xy)a for some i (so ai = bi = a). Then the
space of VW-deformations is spanned by{

∂x−∂y

Ms
i

: 1 ≤ s ≤ min
{
ci − 1, q+1

a , q′+1
a

}}
.

Proof The first restriction on s we get from (6.73.2). Then D(xq+1) = 0 is
equivalent to sa ≤ q + 1 and D( yq′+1) = 0 is equivalent to sa ≤ q′ + 1. These
give the last 2 restrictions. �

We thus need to compare the two upper bounds occurring in (6.75.1.b) and
(6.77.4). The key is the following general estimate.

Lemma 6.78 Using the notation of (6.70) we have

n
aibi
≤

ai−1
ai
, bi+1

bi
< n

aibi
+ 1.

Proof Note that n = aibi+1 − ai+1bi by (6.70.5.d). Dividing by aibi we get that

n
aibi

= bi+1
bi
−

ai+1
ai
.

Since the ai form a decreasing sequence, ai+1
ai
< 1. �

The final estimate connecting (6.75.1.b) and (6.77.4) is easier to state using
a different system of indexing the singularities.

Notation 6.79 Set b = (n, q+1) and write n = ab, q+1 = bc where (a, c) = 1.
The inverse (modulo ab) of bc − 1 is written as bc′ − 1. We thus have the
singularity

S abc := S nq = A2/ 1
ab (1, bc − 1) ' A2/ 1

ab (1, bc′ − 1). (6.79.1)
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Note that (xy)a is the smallest G-invariant power of xy, but it need not be among
the generators Mi; see (6.81).

Corollary 6.80 Assume in addition that Mi = (xy)a for some i. Then

b b
a c ≤ min

{
ci − 1, q+1

a , q′+1
a

}
≤ ci − 1 ≤ b b

a c + 1. (6.80.1)

Proof First, we claim that

b
a ≤ min

{
ai−1
ai
, bi+1

bi
, q+1

a , q′+1
a

}
≤ min

{
ai−1
ai
, bi+1

bi

}
< b

a + 1. (6.80.2)

To see this, note that q = bc − 1, q′ = bc′ − 1. Thus b ≤ q + 1, q′ + 1, so it is
enough to show that

b
a ≤ min

{
ai−1
ai
, bi+1

bi

}
< b

a + 1.

Since n = ab and a = ai = bi, the latter is equivalent to (6.78). Taking the
round-down gives (1) using (6.70.5.c). �

Example 6.81 Assume that xαyβ is G-invariant. From α + β(bc − 1) ≡ 0
mod ab, we see that α ≡ β mod b. Thus if 0 < α, β ≤ 2b then either α = β or
α = β ± b.

It turns out that if a ≤ b then we can write down these invariants explicitly.
Corresponding to the first case we have (xy)a (and its square). In order to get the
other cases, let 0 < e < a (resp. 0 < e′ < a) be the unique solution of ec ≡ −1
mod a (resp. e′c′ ≡ −1 mod a). Then (b + e) + e(bc − 1) = b(ec + 1) ≡ 0
mod ab and e′(bc′ − 1) + (b + e′) = b(e′c′ + 1) ≡ 0 mod ab. Thus we get the
minimal generators

Mi−1 = xb+eye, Mi = xaya, Mi+1 = xe′yb+e′ .

This gives that ci − 1 = b b+e
a c = b b+e′

a c.
Fixing a, b we can choose any 0 < e < a such that (a, e) = 1 and then solve

for c. Thus we see that if b ≡ 0 mod a then b b
a c = ci − 1 for every e and if

b ≡ −1 mod a then b b
a c = ci − 2 for every e, but otherwise both are possible

for suitable choice of e.
We see in (6.83) that the condition a ≤ b holds iff S abc has a nontrivial

KSB-deformation, so this is a natural class to consider.

6.82 (Proof of 6.66) Comparing (6.75) and (6.77) we see that the deriva-
tions listed in (6.75.1) give V-deformations, but not W-deformations. The only
possible exception occurs if Mi = (xy)a for some i. Thus we have two cases.

If Mi = (xy)a does not occur, then dim T 1
V (S nq) = dim T 1

VW (S nq) + r − 3.
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If Mi = (xy)a for some i, then (6.75.1) gives r − 4 basis vectors that
give V-deformations, but not W-deformations. By (6.80), there is at most
one derivation as in (6.75.2) that gives a V-deformation that is not a W-
deformation. �

6.83 (KSB-deformations) From (6.58) and (6.70.2) we see that D corresponds
to a KSB-deformation iff D(xiy j) + mxiy j∇D = 0 whenever i + j(bc−1)≡ −mbc
mod ab.

First, we use this for (dx ∧ dy)ab to conclude that ∇D = 0. Second, we note
that since (a, c) = 1, the congruence i + j(bc − 1) ≡ −mbc mod ab holds for
some m iff i ≡ j mod b. The ring of such monomials is generated by xb, xy, yb.
Thus D gives a first order KSB-deformation iff
(6.83.1) ∇D = 0, D(xy) = 0, D(xb) = 0 and D( yb) = 0.
We thus get that T 1

KS B(S abc) is spanned by the derivations{
∂x−∂y

(xy)as : 1 ≤ s ≤ bb/ac
}
. (6.83.2)

The corresponding deformations were written down in Wahl (1980, 2.7):

(uv − wb − t1wb−a − · · · − trwb−ra = 0)/ 1
a (1, bc − 1, c). (6.83.3)

To make this G2
m-equivariant, the G2

m-action on ti should be the same as on
(xy)ai. Thus (6.83.5) describes a smooth subscheme T of DefKS B(S abc) and
dim T = bb/ac. By (6.83.2), the tangent space of DefKS B(S abc) has dimension
bb/ac, so T = DefKS B(S abc) and DefKS B(S abc) is smooth.

In particular, there is a nontrivial 1-parameter KSB-deformation iff a ≤ b
and there is a KSB-smoothing iff a|b. Note that a ≤ b is equivalent to ab ≤ b2

and we have proved the following.

Claim 6.83.6 The singularity S nq has
(a) a KSB-smoothing iff n|(q + 1)2, and
(b) a nontrivial KSB-deformation iff n ≤ (n, q + 1)2. Furthermore,
(c) dim T 1

KS B(S nq) = bb/ac = b(n, q + 1)2/nc. �

If a|b then write b = ad. We get the singularities

Wadc := 1
a2d (1, adc − 1) ' (uv − wad = 0)/ 1

a (1,−1, c). (6.83.7)

In this case, b/a = ci − 1 hence the arguments give the following.

Claim 6.83.8 For the singularities Wadc = A2/ 1
a2d (1, adc − 1) every VW-

deformation is a KSB-deformation. �
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6.84 (Proof of 6.67) Note that (6.67.1) follows from (6.77.3) and (6.67.2) from
(6.83.8) for first order deformations. Since DefKS B

(
S n,q

)
is smooth by (2.29) or

by the explicit description (6.83.5), equality of the tangent spaces T 1
KS B

(
S n,q

)
=

T 1
VW

(
S n,q

)
implies that DefKS B

(
S n,q

)
= DefVW

(
S n,q

)
.

In order to prove (6.67.3) we consider two cases. If Rnq does not have a
minimal generator of the form Mi = (xy)a, then T 1

VW (S nq) = T 1
KS B(S nq) = {0}

by (6.77.4).
Otherwise, we have proved in (6.83) that

dim T 1
KS B

(
A2/ 1

ab (1, bc − 1)
)

= b b
a c

and (6.80) shows that

dim T 1
VW

(
A2/ 1

ab (1, bc − 1)
)

= min
{
ci − 1, q+1

a , q′+1
a

}
≤ b b

a c + 1. �

Examples 6.85 We work out (6.66.1), that is, list those cyclic quotients
singularities for which every V-deformation is a KSB-deformation.

6.85.1 (Double points) These are the An singularities; every deformation is a
KSB-deformation.

6.85.2 (Triple points) For cyclic quotient triple points the minimal generators
of its coordinate ring are xn, xn−qy, xyn−q′ , yn. Thus n

n−q has a two-step contin-
ued fraction expansion involving c1, c2. Setting c1 = e, c2 = d we have the
singularities A2/ 1

ed−1 (1, ed − d − 1), with invariants xed−1, xdy, xye, yed−1. By
(6.75) we have T 1

V = T 1
KS B = 0.

6.85.3 (Quadruple points) By (6.66) and (6.82), every cyclic quotient singular-
ity of multiplicity 4 has a V-deformation that is not a KSB-deformation, unless
M2 (6.70.1) is a power of xy. Thus in this case the minimal generators of its
coordinate ring are xn, xn−qy, xaya, xyn−q′ , yn.

The equation Mc2
2 = M1M3 now implies that q = q′. Thus n

n−q has a three-
step continued fraction expansion involving c1, c2, c3 = c1. By expanding it we
see that c1 = a. Setting c2 = d, the singularity isA2/ 1

a(ad−2)
(
1, (ad−2)(a−1)−1

)
,

and the ring of invariants is k[xa(ad−2), xad−1y, xaya, xyad−1, ya(ad−2)].
Thus b(ad − 2)/ac = d − 1 = c2 − 1 and hence, by (6.75) and (6.83), T 1

V =

T 1
KS B is spanned by

{
∂x−∂y

(xy)as : 1 ≤ s ≤ d − 1
}
. These singularities admit a KSB-

smoothing iff a = 2. Then, after replacing d−1 by d, the normal form becomes
A2/ 1

4d (1, 2d−1). Together with the An-series, these are the only cyclic quotient
singularities with a KSB-smoothing for which every V-deformation is a KSB-
deformation.

6.85.4 (Higher multiplicity points) By (6.66), every cyclic quotient singularity
of multiplicity ≥ 5 has V-deformations that are not KSB-deformations.
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