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ROMA KAČINSKAITĖ and KOHJI MATSUMOTO�

(Received 4 July 2016; accepted 22 July 2016; first published online 19 October 2016)

Abstract

Two results related to the mixed joint universality for a polynomial Euler product ϕ(s) and a periodic
Hurwitz zeta function ζ(s, α;B), when α is a transcendental parameter, are given. One is the mixed
joint functional independence and the other is a generalised universality, which includes several periodic
Hurwitz zeta functions.
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1. Introduction

In our paper [5], we have shown a certain mixed joint universality theorem, which is
valid for an Euler product of rather general form, and a periodic Hurwitz zeta function.

In the present note, we give two remarks related to the result in [5]. The first
remark is on the mixed joint functional independence. It is well known that functional
independence properties can be deduced from universality results. We will show that
such a functional independence is also valid in the present mixed joint situation.

The second remark is on a generalisation of the result in [5]. It is an important
problem to study how general the mixed joint universality property can be. We
will prove a generalised limit theorem and a generalised universality theorem, which
involve several periodic Hurwitz zeta functions, under a certain matrix condition.

2. Functional independence

The history of the problem on the functional independence of Dirichlet series goes
back to the famous lecture of Hilbert [2] in 1900. He mentioned that the Riemann zeta
function ζ(s) does not satisfy any nontrivial algebraic differential equation.
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Recall the definition of ζ(s). Let P be the set of all prime numbers and C the set of
all complex numbers. For s = σ + it ∈ C, ζ(s) is given by

ζ(s) =

∞∑
m=1

1
ms =

∏
p∈P

(
1 −

1
ps

)−1

for σ > 1, and can be analytically continued to the whole complex plane C except for
a simple pole at the point s = 1 with residue 1.

In 1973, Voronin [16] proved the following functional independence result for ζ(s).
Let N and N0 be the sets of positive integers and nonnegative integers, respectively.

Theorem 2.1 [16]. Let N ∈ N and n ∈ N0. The function ζ(s) does not satisfy any
differential equation

n∑
j=0

s jFj(ζ(s), ζ′(s), . . . , ζ(N−1)(s)) ≡ 0

for continuous functions Fj , j = 0, . . . , n, not all identically zero.

Later this result was generalised to other zeta and L-functions. For a survey, see the
monographs by Laurinčikas [6] and Steuding [15].

Nowadays in analytic number theory the investigation of statistical properties (and
also the functional independence) for a collection of various zeta functions, some
of which have an Euler product expansion while others do not, is a very interesting
problem since an important role is played by parameters in the definition of the
functions.

The first result in this direction is due to Mishou. In 2007, he proved [12,
Theorem 4] that the pair of zeta functions consisting of the Riemann zeta function
ζ(s) and the Hurwitz zeta function ζ(s, α) is functionally independent.

We recall that the Hurwitz zeta function ζ(s, α) with a fixed parameter α, 0 < α ≤ 1,
is defined by the Dirichlet series

ζ(s, α) =

∞∑
m=0

1
(m + α)s

for σ > 1, and can be continued to the whole complex plane except for a simple pole
at the point s = 1 with residue 1. In general, the function ζ(s, α) has no Euler product
over primes, except for the cases α = 1 and α = 1

2 , when ζ(s, α) is essentially reduced
to ζ(s). Then Mishou’s result is the following statement.

Theorem 2.2 [12]. Let α be transcendental. For N ∈ N, n ∈ N0, let Fj : C2N → C be a
continuous function for each j = 0, . . . , n. Suppose that

n∑
j=0

s j · Fj
(
ζ(s), ζ′(s), . . . , ζ(N−1)(s), ζ(s, α), ζ′(s, α), . . . , ζ(N−1)(s, α)

)
≡ 0.

Then Fj ≡ 0 for j = 0, . . . , n.
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This is the first ‘mixed joint’ functional independence theorem. Later this result
was generalised to the collection of a periodic zeta function and a periodic Hurwitz
zeta function by the first author and Laurinčikas in [4].

In this paper, we will prove a rather general result on the mixed joint functional
independence for a class of zeta functions, consisting of the so-called Matsumoto zeta
functions and periodic Hurwitz zeta functions.

Let B = {bm : m ∈ N0} be a periodic sequence of complex numbers (not all zero)
with minimal period k ∈ N, and let 0 < α ≤ 1. In 2006, Javtokas and Laurinčikas [3]
introduced the periodic Hurwitz zeta function ζ(s, α;B). For σ > 1, it is given by the
series

ζ(s, α;B) =

∞∑
m=0

bm

(m + α)s .

It is known that

ζ(s, α;B) =
1
ks

k−1∑
l=0

blζ
(
s,

l + α

k

)
, σ > 1.

Therefore, the function ζ(s, α;B) can be analytically continued to the whole complex
plane except for a possible simple pole at the point s = 1 with residue

b :=
1
k

k−1∑
l=0

bl.

If b = 0, the corresponding periodic Hurwitz zeta function is an entire function.
The functional independence of periodic Hurwitz zeta functions was proved by

Laurinčikas in [7, Theorem 1].
Now we recall the definition of the polynomial Euler products ϕ̃(s) or so-called

Matsumoto zeta functions.
For m ∈ N, let g(m) ∈ N and, for j ∈ N, 1 ≤ j ≤ g(m), let f ( j,m) ∈ N. Denote by

pm the mth prime number and let a( j)
m ∈ C. The zeta function ϕ̃ was introduced by the

second author in [11] and it is defined by the polynomial Euler product

ϕ̃(s) =

∞∏
m=1

g(m)∏
j=1

(
1 − a( j)

m p−s f ( j,m)
m

)−1
. (2.1)

Suppose that
g(m) ≤ C1 pαm and |a( j)

m | ≤ pβm (2.2)

with a positive constant C1 and nonnegative constants α and β. In view of (2.2), the
function ϕ̃(s) converges absolutely for σ > α + β + 1 (see the Appendix) and hence in
this region it can be expressed as the Dirichlet series

ϕ̃(s) =

∞∑
k=1

c̃k

ks (2.3)
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with coefficients c̃k. For brevity, denote the shifted version of the function ϕ̃(s) by

ϕ(s) = ϕ̃(s + α + β) =

∞∑
k=1

c̃k

ks+α+β
=

∞∑
k=1

ck

ks (2.4)

with ck = k−α−β c̃k. Then, for σ > 1, the series on the right-hand side of (2.4) converges
absolutely.

The aim of this paper is to obtain a mixed joint functional independence of the
collection of zeta functions consisting of the Matsumoto zeta function ϕ(s) belonging
to the Steuding subclass S̃ , defined below, and periodic Hurwitz zeta functions
ζ(s, α;B).

We say that the function ϕ(s) belongs to the class S̃ if the following conditions are
satisfied:

(i) there exists a Dirichlet series expansion

ϕ(s) =

∞∑
m=1

a(m)
ms

with a(m) = O(mε) for every ε > 0;
(ii) there exists σϕ < 1 such that ϕ(s) can be meromorphically continued to the half-

plane σ > σϕ;
(iii) there exists a constant c ≥ 0 such that

ϕ(σ + it) = O(|t|c+ε)

for every fixed σ > σϕ and ε > 0;
(iv) there exists an Euler product expansion over prime numbers, that is,

ϕ(s) =
∏
p∈P

l∏
j=1

(
1 −

a j(p)
ps

)−1
;

(v) there exists a constant κ > 0 such that

lim
x→∞

1
π(x)

∑
p≤x

|a(p)|2 = κ,

where π(x) denotes the number of primes p, p ≤ x.

This class was introduced by Steuding in [15], and is a subclass of the class of
Matsumoto zeta functions. For ϕ ∈ S̃ , let σ∗ be the infimum of all σ1 for which

1
2T

∫ T

−T
|ϕ(σ + it)|2 dt ∼

∞∑
m=1

|a(m)|2

m2σ

holds for any σ ≥ σ1. Then it is known that 1
2 ≤ σ

∗ < 1 (see [15, Theorem 2.4]).
We state the first main result of this paper in the following theorem.
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Theorem 2.3. Suppose that α is a transcendental number and the function ϕ(s) belongs
to the class S̃ . For N ∈ N, n ∈ N0, let the functions F j : C2N → C be continuous for
j = 0, 1, . . . , n. If

n∑
j=0

s j · F j
(
ϕ(s), ϕ′(s), . . . , ϕ(N−1)(s), ζ(s, α;B), ζ′(s, α;B), . . . , ζ(N−1)(s, α;B)

)
is identically zero, then F j ≡ 0 for j = 0, 1, . . . , n.

3. Proof of Theorem 2.3

For the proof of the mixed joint functional independence of the functions ϕ(s) and
ζ(s, α;B), we need two further propositions: the mixed joint universality theorem and
the so-called denseness lemma.

3.1. Mixed joint universality of the functions ϕ(s) and ζ(s, α;B). The proof of
Theorem 2.3 is based on the mixed joint universality theorem in the Voronin sense for
the functions ϕ(s) and ζ(s, α;B). It was obtained by the authors in [5, Theorem 2.2].
We will give the statement of this universality theorem as a lemma. Let R be the set of
real numbers and D(a, b) = {s ∈ C : a < σ < b} for any a < b. For any compact subset
K ⊂ C, denote by Hc(K) the set of all C-valued continuous functions defined on K,
holomorphic in the interior of K. By Hc

0(K) we mean the subset of Hc(K) consisting
of all elements which are nonvanishing on K.

Lemma 3.1 [5]. Suppose that ϕ ∈ S̃ and α is a transcendental number. Let K1 be a
compact subset of D(σ∗,1) and K2 be a compact subset of D( 1

2 ,1), both with connected
complements. Suppose that f1 ∈ Hc

0(K1) and f2 ∈ Hc(K2). Then, for every ε > 0,

lim inf
T→∞

1
T
µ
{
τ ∈ [0,T ] : sup

s∈K1

|ϕ(s + iτ) − f1(s)| < ε,

sup
s∈K2

|ζ(s + iτ, α;B) − f2(s)| < ε
}
> 0,

where µ{A} denotes the Lebesgue measure of the measurable set A ⊂ R.

Note that for the proof of Lemma 3.1 we use the joint mixed limit theorem in the
sense of weakly convergent probability measures for the Matsumoto zeta functions
ϕ(s) and the periodic Hurwitz zeta function ζ(s, α;B). It was proved by the authors in
[5, Theorem 2.1].

3.2. A denseness lemma. For the proof of Theorem 2.3, we also need a denseness
lemma.

Define the map u : R→ C2N by the formula

u(t) =
(
ϕ(σ + it), ϕ′(σ + it), . . . , ϕ(N−1)(σ + it),
ζ(σ + it, α;B), ζ′(σ + it, α;B), . . . , ζ(N−1)(σ + it, α;B)

)
with σ∗ < σ < 1.
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Lemma 3.2. Suppose that α is transcendental. Then the image of R by u is dense in
C2N .

Proof. We will give a sketch, since the proof follows in the same way as Lemma 13
from [4] (see also [12, Theorem 3]).

We can find a sequence {τm : τm ∈ R}, limm→∞ τm =∞, such that the inequalities

|ϕ( j)(σ + iτm) − s1 j| <
ε

2N

and
|ζ( j)(σ + iτm, α;B) − s2 j| <

ε

2N
hold for every ε > 0 and arbitrary complex numbers sl j, l = 1, 2, j = 0, . . . ,N − 1. To
show this, we consider the polynomial

plN(s) =
sl,N−1 · sN−1

(N − 1)!
+

sl,N−2 · sN−2

(N − 2)!
+ · · · +

sl0

0!
, l = 1, 2.

Then, for j = 0, . . . ,N − 1 and l = 1, 2,

p( j)
lN (0) = sl j.

Now, in view of Lemma 3.1 and repeating analogous arguments as in the proof of [4,
Lemma 13], we can prove the existence of the above sequence {τm} and obtain that the
image of R by the map u is dense in C2N . �

3.3. Proof of Theorem 2.3. Now we are ready to complete the proof of Theorem
2.3. The essential idea is due to Voronin (see, for example, [17]). We first prove that
Fn ≡ 0.

Suppose that Fn . 0. It follows that there exists a point

a = (s10, s11, . . . , s1,N−1, s20, s21, . . . , s2,N−1) ∈ C2N

such that Fn(a) , 0. From the continuity of the function Fn, we find a bounded domain
G ⊂ C2N such that a ∈ G and, for all s ∈ G,

|Fn(s)| ≥ c > 0. (3.1)

By Lemma 3.2, there exists a sequence {τm : τm ∈ R}, limm→∞ τm =∞, such that

(ϕ(σ + it), ϕ′(σ + it), . . . , ϕ(N−1)(σ + it),
ζ(σ + it, α;B), ζ′(σ + it, α;B), . . . , ζ(N−1)(σ + it, α;B)) ∈ G.

But this together with (3.1) contradicts the hypothesis of the theorem if τm is
sufficiently large. Hence, Fn ≡ 0.

Similarly, we can show that Fn−1 ≡ 0, . . . , F0 ≡ 0, inductively. The proof is
complete.
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4. A generalisation

The mixed joint universality and the mixed joint functional independence theorem
can be obtained in the following more general situation.

Suppose that α j is a real number with 0 < α j < 1, l( j) ∈ N, j = 1, . . . , r and λ =

l(1) + · · · + l(r). For each j and l, 1 ≤ j ≤ r, 1 ≤ l ≤ l( j), let B jl = {bm jl ∈ C : m ∈ N0}

be a periodic sequence of complex numbers (not all zero) with the minimal period k jl,
and let ζ(s, α j;B jl) be the corresponding periodic Hurwitz zeta function. Denote by k j

the least common multiple of periods k j1, . . . , k jl( j). Let B j be the matrix consisting of
coefficients bm jl from the periodic sequences B jl, l = 1, . . . , l( j), m = 1, . . . , k j, that is,

B j =


b1 j1 b1 j2 . . . b1 jl( j)
b2 j1 b2 j2 . . . b2 jl( j)
. . . . . . . . . . . .

bk j j1 bk j j2 . . . bk j jl( j)

 .
The functional independence for the above collection of periodic Hurwitz zeta

functions was proved by Laurinčikas in [7, Theorem 3] under a certain matrix
condition. The proof is based on the joint universality theorem among periodic
Hurwitz zeta functions proved by Steuding in [14].

For the proof of mixed joint functional independence, we may adopt the method
developed in a series of works by Laurinčikas and his colleagues (see, for example, [1,
8, 13]). Then it is possible to obtain the following generalisation of Theorem 2.3.

Theorem 4.1. Suppose α1, . . . , αr are algebraically independent over Q, rankB j = l( j),
1 ≤ j ≤ r and ϕ(s) belongs to the class S̃ . Let the function F j : CN(λ+1) → C be a
continuous function for each j = 0, . . . , n. Suppose that the function

n∑
j=0

s j · F j(ϕ(s), ϕ′(s), . . . , ϕ(N−1)(s),

ζ(s, α1;B11), ζ′(s, α1;B11), . . . , ζ(N−1)(s, α1;B11), . . . ,

ζ(s, α1;B1l(1)), ζ′(s, α1;B1l(1)), . . . , ζ(N−1)(s, α1;B1l(1)), . . . ,

ζ(s, αr;Br1), ζ′(s, αr;Br1), . . . , ζ(N−1)(s, αr;Br1), . . . ,

ζ(s, αr;Brl(r)), ζ′(s, αr;Brl(r)), . . . , ζ(N−1)(s, αr;Brl(r)))

is identically zero. Then F j ≡ 0 for j = 0, . . . , n.

This theorem is a consequence of the following mixed joint universality theorem,
which is a generalisation of Lemma 3.1. This theorem is also an analogue of a result
of Genys et al. [1, Theorem 3], which treats the case that ϕ(s) is replaced by ζ(s).

Theorem 4.2. Suppose α1, . . . , αr are algebraically independent over Q, rankB j = l( j),
1 ≤ j ≤ r and ϕ(s) belongs to the class S̃ . Let K1 be a compact subset of D(σ∗, 1)
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and K2 jl be compact subsets of D( 1
2 , 1), all with connected complements. Suppose that

f1 ∈ Hc
0(K1) and f2 jl ∈ Hc(K2 jl). Then, for every ε > 0,

lim inf
T→∞

1
T
µ
{
τ ∈ [0,T ] : sup

s∈K1

|ϕ(s + iτ) − f1(s)| < ε,

max
1≤ j≤r

max
1≤l≤l( j)

sup
s∈K2 jl

|ζ(s + iτ, α j;B jl) − f2 jl(s)| < ε
}
> 0.

Remark 4.3. Consider the case when all l( j) = 1, 1 ≤ j ≤ r. Write B j1 = B j. In this
case, the condition rankB j = l( j) trivially holds. Therefore, the joint universality and
the functional independence among the functions ϕ(s), ζ(s, α1,B1), . . . , ζ(s, αr,Br)
are valid without any matrix condition, only under the assumption that α1, . . . , αr

are algebraically independent over Q. When Laurinčikas started his study of the
universality of periodic Hurwitz zeta functions, he assumed various matrix-type
conditions, but, finally, the joint universality among periodic Hurwitz zeta functions
without any matrix condition was established by Laurinčikas and Skerstonaitė in [9,
Theorem 3]. Our Theorems 4.1 and 4.2 include the ‘mixed’ generalisation of this
theorem.

5. Proof of Theorems 4.1 and 4.2

In the proof of Theorems 4.1 and 4.2, the crucial role is played by a mixed joint
limit theorem in the sense of weakly convergent probability measures in the space of
analytic functions.

5.1. A generalised mixed joint limit theorem. Let D1 be an open subset of D(σ∗,1)
and D2 be an open subset of D( 1

2 , 1). For any set S , by B(S ) we denote the set of all
Borel subsets of S . For any region D, denote by H(D) the set of all holomorphic
functions on D. Let H be the Cartesian product of λ + 1 such spaces, that is,

H = H(D1) × H(D2) × · · · × H(D2)︸                     ︷︷                     ︸
λ

.

Moreover, let

Ω1 =
∏
p∈P

γp and Ω2 =

∞∏
m=0

γm,

where γp = γ for all p ∈ P, γm = γ for all m ∈ N0 and γ = {s ∈ C : |s| = 1}, and define

Ω = Ω1 ×Ω21 × · · · ×Ω2r,

where Ω2 j = Ω2 for all j = 1, . . . , r. Then, by the Tikhonov theorem, Ω is a compact
topological Abelian group also. Then we have the probability space (Ω,B(Ω),mH).
Here mH is the product of Haar measures mH1,mH21, . . . ,mH2r, where mH1 is the
probability Haar measure on (Ω1,B(Ω1)) and mH2 j is the probability Haar measure
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on (Ω2 j,B(Ω2 j)), j = 1, . . . , r. Let ω1(p) be the projection of ω1 ∈ Ω1 to γp, and, for
every m ∈ N, define

ω1(m) =
∏
pα‖m

ω1(p)α

with respect to the factorisation of m to primes. Denote by ω2 j(m) the projection of
ω2 j ∈ Ω2 j to γm, m ∈ N0, j = 1, . . . , r.

For brevity, we write α = (α1, . . . , αr), B = (B11, . . . ,B1l(1), . . . ,Br1, . . . ,Brl(r)),
s = (s1, s211, . . . , s21l(1), . . . , s2r1, . . . , s2rl(r)) ∈ Cλ+1 and

Z(s, α;B) = (ϕ(s1), ζ(s211, α1;B11), . . . , ζ(s21l(1), α1;B1l(1)),
. . . , ζ(s2r1, αr;Br1), . . . , ζ(s2rl(r), αr;Brl(r))).

Let ω = (ω1, ω21, . . . , ω2r) ∈ Ω. Define the H-valued random element Z(s, α, ω;B)
on the probability space (Ω,B(Ω),mH) by the formula

Z(s, α, ω;B) = (ϕ(s1, ω1), ζ(s211, α1, ω21;B11), . . . , ζ(s21l(1), α1, ω21;B1l(1)),
. . . , ζ(s2r1, αr, ω2r;Br1), . . . , ζ(s2rl(r), αr, ω2r;Brl(r))),

where

ϕ(s, ω1) =

∞∑
m=1

cmω1(m)
ms , s ∈ D(σ∗, 1),

and

ζ(s, α j, ω2 j;B jl) =

∞∑
m=0

bm jlω2 j(m)
(m + α j)s , s ∈ D

(1
2
, 1

)
, j = 1, . . . , r, l = 1, . . . , l(r),

respectively. These series are convergent for almost all ω1 ∈ Ω1 and ω2 j ∈ Ω2 j,
j = 1, . . . , r. Denote by PZ the distribution of the random element Z(s, α, ω;B), that is,

PZ(A) = mH(ω ∈ Ω : Z(s, α, ω;B) ∈ A), A ∈ B(H).

Now we are ready to state our mixed joint limit theorem for the functions ϕ(s),
ζ(s, α1;B11), . . . , ζ(s, αr;Brl(r)) as a lemma.

Lemma 5.1. Suppose that the numbers α1, . . . , αr are algebraically independent over
Q, and ϕ ∈ S̃ . Then the probability measure PT defined by

PT (A) =
1
T

meas{τ ∈ [0,T ] : Z(s + iτ, α;B) ∈ A}, A ∈ B(H), (5.1)

converges weakly to PZ as T →∞.

When r = 1 and l(1) = 1, this lemma is [5, Theorem 2.1]. On the other hand, the
same type of limit theorem with ϕ replaced by the Riemann zeta function is given in
[1, Theorem 4]. The proof of the above lemma is quite similar to that of those results,
so here we give a very brief outline.
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Let ϕn(s), ϕn(s, ω̂1), ζn(s, α;B), ζn(s, α, ω̂2;B) be the same as in [5, Section 3] and
define

Zn(s, α;B) = (ϕn(s1), ζn(s211, α1;B11), . . . , ζn(s21l(1), α1;B1l(1)),
. . . , ζn(s2r1, αr;Br1), . . . , ζn(s2rl(r), αr;Brl(r)))

and

Zn(s, α, ω̂;B) = (ϕn(s1, ω̂1), ζn(s211, α1, ω̂21;B11), . . . , ζn(s21l(1), α1, ω̂21;B1l(1)),
. . . , ζn(s2r1, αr, ω̂2r;Br1), . . . , ζn(s2rl(r), αr, ω̂2r;Brl(r))),

where ω̂ = (ω̂1, ω̂21, . . . , ω̂2r) ∈ Ω. The probability measures PT,n, P̂T,n and P̂T on
H are defined similarly to PT in (5.1), replacing Z(s + iτ, α;B) respectively by
Zn(s + iτ, α;B), Zn(s + iτ, α, ω̂;B) and Z(s + iτ, α, ω̂;B). As an analogue of [5,
Lemma 3.2] or [1, Lemma 2], we can show that both measures PT,n and P̂T,n converge
weakly to a certain probability measure Pn as T →∞. (In the course of the proof, a
key is [1, Lemma 1], which is based on the assumption that α1, . . . , αr are algebraically
independent over Q.)

Next we need an approximation lemma in the mean value sense, similar to [5,
Lemma 3.3]. In the proof of [5, Lemma 3.3], we used the result of [3]. The desired
approximation can be shown by using, instead of [3], mean value results given in [10,
(2.3) and (2.5)].

Then we can prove that both PT and P̂T converge weakly to a certain probability
measure P. This is an analogue of [5, Lemma 3.4] or [1, Lemma 5]. Finally, we
can show that P = PZ , by the usual ergodic argument. This completes the proof of
Lemma 5.1.

5.2. Completion of the proof. Now we complete the proof of Theorems 4.1 and 4.2.
Hereafter we assume that α1, . . . , αr are algebraically independent over Q, rankB j =

l( j), 1 ≤ j ≤ r and ϕ(s) belongs to the class S̃ .
Let S ϕ be the set of all f ∈ H(D1) which are nonvanishing on D1 or identically ≡ 0

on D1.

Lemma 5.2. The support of the measure PZ is S ϕ × H(D2)λ.

This can be shown analogously to [1, Theorem 5]. Then Theorem 4.2 follows from
Lemmas 5.1 and 5.2 by the standard argument; see again [1].

Next, as a generalisation of Lemma 3.2, we can show that the image of the map
u : R→ C(λ+1)N by the formula

u(t) = (ϕ(σ + it), ϕ′(σ + it), . . . , ϕ(N−1)(σ + it),
ζ(σ + it, α1;B11), ζ′(σ + it, α1;B11), . . . , ζ(N−1)(σ + it, α1;B11), . . . ,
ζ(σ + it, α1;B1l(1)), ζ′(σ + it, α1;B1l(1)), . . . , ζ(N−1)(σ + it, α1;B1l(1)), . . . ,
ζ(σ + it, αr;Br1), ζ′(σ + it, αr;Br1), . . . , ζ(N−1)(σ + it, αr;Br1), . . . ,
ζ(σ + it, αr;Brl(r)), ζ′(σ + it, αr;Brl(r)), . . . , ζ(N−1)(σ + it, αr;Brl(r)))

is dense in C(λ+1)N . Using this denseness result, similar to the proof of Theorem 2.3,
we obtain the assertion of Theorem 4.1.
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Appendix

Here we give a comment on [11]. On [11, page 179], it is mentioned that the
Euler product (2.1) is convergent absolutely, under the condition (2.2), in the region
σ > α + β + 1. This can be seen by the estimate

∞∑
m=1

g(m)∑
j=1

|a( j)
m |p

−σ f ( j,m)
m ≤

∞∑
m=1

g(m)∑
j=1

pβ−σm �

∞∑
m=1

pα+β−σ
m

and hence the Dirichlet series expansion (2.3) is also valid in that region.
On the same page of [11], the estimate c̃k = O(kα+β) is also stated. However, this is

to be amended as follows. From (2.1),

ϕ̃(s) =

∞∏
m=1

∞∑
l=0

(∑∗

(a(1)
m )h1 · · · (a(g(m))

m )hg(m)

)
p−ls

m ,

where
∑∗ means the summation over all tuples (h1, . . . , hg(m)) of nonnegative integers

satisfying
h1 f (1,m) + · · · + hg(m) f (g(m),m) = l.

Denote by C(m, l) the number of such tuples. Using (2.2),∑∗

(a(1)
m )h1 · · · (a(g(m))

m )hg(m) ≤
∑∗

p(h1+···+hg(m))β
m ≤ plβ

mC(m, l).

To estimate C(m, l), it suffices to consider the case when f (1,m) = · · · = f (g(m),m) = 1
and in this case

C(m, l) =

(
g(m) + l − 1

l

)
≤ g(m)l ≤ (C1 pαm)l.

Therefore,
∑∗ ≤ Cl

1 p(α+β)l
m , which yields, if k = pl1

1 . . . plr
r ,

c̃k ≤ Cl1+···+lr
1 (pl1

1 . . . plr
r )α+β = CΩ(k)

1 kα+β,

where Ω(k) denotes the total number of prime divisors of k.
For any ε > 0, we see that C1 pαm ≤ pα+ε

m if m is sufficiently large, and then we have∑∗ ≤ (pα+β+ε
m )l. This implies that c̃k = O(kα+β+ε) if all prime factors of k are large.

Note added in proof

Lemma 5.1 can be shown, more generally, for any Matsumoto zeta-function ϕ (as
in [5, Theorem 2.1]). The statement is valid as it is. The only point to change is that
in the definition of H in Section 5.1, D1 is to be chosen as a subset of Dϕ ∩ {σ < 1},
where Dϕ is defined in [5].
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for zeta-functions’, Math. Model. Anal. 15(4) (2010), 431–446.
[2] D. Hilbert, ‘Mathematische Probleme’, Nachr. Königl. Ges. Wiss. Göttingen Math.-Phys. Kl. 7

(1900), 253–297; also in D. Hilbert, Gesammelte Abhandlungen, Vol. III (Chelsea, New York,
1965) (originally 1935), 290–329.

https://doi.org/10.1017/S0004972716000733 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972716000733
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