JNS Journal of nutritional science

RESEARCH ARTICLE

Prevalence of postpartum anaemia and iron deficiency by serum ferritin, soluble transferrin receptor and total body iron, and associations with ethnicity and clinical factors: a Norwegian population-based cohort study

Marthe-Lise Næss-Andresen¹* , Anne Karen Jenum², Jens Petter Berg³, Ragnhild Sørum Falk⁴ and Line Sletner^{5,6}

¹Department of General Practice, Institute of Health and Society, University of Oslo, Oslo, Norway

²General Practice Research Unit, Department of General Practice, Institute of Health and Society, University of Oslo, Oslo, Norway

³Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway

⁴Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway

⁵Department of Paediatric and Adolescents Medicine, Akershus University Hospital, Lørenskog, Norway

⁶Institute of Clinical Medicine, University of Oslo, Oslo, Norway

(Received 11 May 2022 - Accepted 16 May 2022)

Journal of Nutritional Science (2022), vol. 11, e46, page 1 of 12

Abstract

Worldwide, there are limited data on the prevalence of postpartum anaemia and iron status. The aims of the present study were to assess the prevalence of anaemia and iron deficiency (ID) by three iron indicators 14 weeks postpartum, their relations to haemoglobin (Hb) and associations with ethnicity and clinical factors in a multi-ethnic population. We conducted a population-based cohort study of 573 women followed from early pregnancy. The prevalence of postpartum anaemia (Hb <12.0 g/dl) was 25 %. ID prevalence varied from 39 % by serum ferritin (SF <15 μ g/l), to 19 % by soluble transferrin receptor (sTfR >4.4 mg/l) and 22 % by total body iron (TBI < 0 mg/kg). The mean Hb concentration was 12.8 g/dl in women with no ID, 12.6 g/dl in those with ID by SF only and 11.6 g/dl in those with ID by SF, sTfR and TBI. ID by sTfR and TBI defined by the current threshold values probably identified a more severe iron-deficient population compared with ID assessed by SF. Compared with Western Europeans, the prevalence of anaemia was at least the double in ethnic minorities (26–40 % *v*. 14 %; *P* < 0.01–0.05), and the prevalence of ID by sTfR and TBI, but not of ID by SF <15 μ g/l, was significantly higher in some minority groups. After adjustment for covariates, only South Asians had lower Hb and higher sTfR concentration. Insufficient iron intake, gestational anaemia or ID, and postpartum haemorrhage were associated with lower postpartum Hb concentration and poorer iron status.

Key words: Anaemia: Cohort: Ethnic minorities: Iron deficiency: Postpartum iron status

Introduction

The prevalence of postpartum anaemia in high-income countries is estimated to 10–30 %, but is generally higher in low- and middle-income countries⁽¹⁾. Iron deficiency (ID) is considered the main cause of anaemia, due to bleeding during childbirth or inadequate dietary iron intake/uptake^(2–4). Women who have emigrated from low- and middle-income countries to Europe are considered a vulnerable group

concerning several nutritional insufficiencies in pregnancy, e.g. ID, vitamin D deficiency and low use of folic acid^(5–9), but their postpartum iron status has scarcely been assessed.

ID occurs through a gradually reduction of iron stores, from being replete to being depleted and eventually absent, which consequently results in ID anaemia. ID can be measured by a variety of biomarkers. Serum ferritin (SF) concentration <15 or <12 μ g/ml is widely used in the diagnosis of ID,

* Corresponding author: Marthe-Lise Næss-Andresen, email m.l.nass-andresen@medisin.uio.no

© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

doi:10.1017/jns.2022.45

and is considered a sensitive indicator of body iron stores in the absence of pregnancy, infection and inflammatory processes. The SF concentration below the threshold reflects depleted body iron stores, but cannot determine the severity of the ID⁽¹⁰⁾. Soluble transferrin receptor (sTfR) is an alternative iron marker suggested used when SF interpretations are hampered, and better reflects the cellular iron demand. In contrast to SF, sTfR is increased in ID. Elevated sTfR concentration reflects increasing cellular iron demand and falling Hb-synthesis, and the circulating sTfR and cellular iron demand are found to be proportional, thus reflecting early functional ID⁽¹¹⁾. Together, SF and sTfR cover the full range of iron status, and combining them in a new model, called total body iron (TBI) is considered to better predict the absence of bone marrow iron⁽¹⁰⁾. While this marker is now widely used in the United States, it has not been implemented in Europe⁽¹²⁾. A positive value of TBI represents iron storage, while negative values indicate a deficient iron supply to peripheral tissues^(12,13).

We have previously shown that in early pregnancy ethnic minority women had more ID for all three iron indicators, also when adjusting for covariates⁽⁵⁾. Postpartum anaemia and ID may have adverse short – and long-term health implications for the mother and her child, such as fatigue, lower work capacity and increased risk of postpartum depression and poorer mother–child interaction⁽⁴⁾. Furthermore, maternal mortality increases with severe anaemia, as well as the risk of infections in the puerperium and poorer wound healing⁽⁴⁾.

There are limited data on the prevalence of postpartum anaemia and iron status. The aims of the present study were to assess the prevalence of anaemia and ID by three iron indicators 14 weeks after delivery, including the relations between the ID indicators and their relations to haemoglobin (Hb), and their associations with ethnicity and clinical factors.

Subjects and methods

Study population and data selection

Our data is from the STORK-Groruddalen study of multiethnic pregnancies in Oslo, Norway, collected at public Child Health Clinics for primary antenatal care in the period 2008–10 in three administrative districts in Oslo. The study methods have been described in detail elsewhere⁽¹⁴⁾. In short, information, material and questionnaires were translated into Arabic, English, Sorani, Somali, Tamil, Turkish, Urdu and Vietnamese and quality checked by bilingual health professionals. Pregnant women were eligible if they (I) lived in the district, (II) planned to give birth at one of the two study hospitals, (III) were in <20 gestational week (GW) (IV) were not suffering from diseases necessitating intensive hospital follow-up during pregnancy, (V) could communicate in Norwegian or any of the specified languages and (VI) were able to provide written informed consent.

In total, 823 pregnant healthy women from 65 countries were included in early pregnancy (mean GW 8–20), with planned follow-up visits in GW 28 and about 3 months after delivery. The time point for the postpartum visit was

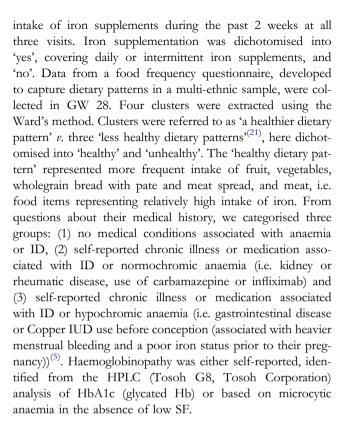
chosen to ensure a high attendance rate, as at this point, most women have recovered from birth, and have established daily routines. Furthermore, physiological pregnancy-related changes, including haemodilution, will have returned to normal. At all three study visits, questionnaire data were collected through interviews by authorised study personnel, assisted by professional interpreters when needed⁽¹⁴⁾. The questionnaire data covered a wide range of health issues, and clinical measurements were collected according to the study protocol. Participating women were found representative for the main ethnic groups of pregnant women attending the Child Health Clinics⁽¹⁴⁾. Ethical approval was obtained from The Regional Ethics Committee.

Outcome measures

Postpartum anaemia was defined as Hb concentrations <12.0 g/dl^(3,15) measured 14 weeks post-delivery. In addition, we used three established definitions for ID; SF concentration <15 μ g/l, the primary indicator used by the WHO⁽¹⁶⁾, sTfR concentration >4.4 mg/l according to the manufacturer's guidelines, and TBI<0 mg/kg⁽¹³⁾. SF concentration below the threshold indicates depleted body iron stores, while an increased sTfR concentration reflects early functional ID and TBI is meant to be a quantitative estimate of the iron status^(10–13,17). Iron-deficiency anaemia (IDA) was defined as anaemia in the presence of ID by any iron indicator.

Measurements of iron indicators and anaemia

Blood samples were drawn at all visits^(5,14). Hb (g/dl) and SF (µg/l) were analysed consecutively at the Department of Medicine Multidisciplinary Laboratory and Medical Biochemistry at Akershus University Hospital, Oslo, Norway. Hb was measured using an SLS method (XE 5000 from Sysmex; inter-assay coefficient of variation (CV) 0.7 %). SF was measured using an electro-chemiluminescence immunoassay (ECLIA) method (Unicel DxI 800 from Beckman Coulter; inter-assay CV <7 %). Blood samples were frozen and biobanked at -80 °C. In 2016, sTfR and high sensitivity C-reactive protein (CRP) were analysed from biobanked serum samples at the Department of Medical Biochemistry at Oslo University Hospital, Oslo, Norway. CRP was measured by a particle-enhanced turbidimetric immunoassay (CRP Vario from Sentinel on Vitros 5.1 FS; inter-assay CV <5 %), and sTfR by ELISA (Modular P800 from Roche; inter-assay CV $<5 \%^{(18)}$). We calculated TBI according to Cook⁽¹³⁾ from the ratio of sTfR concentration (by Flowers assay) to SF concentration: $-\lceil \log_{10} (sTfR \times$ $1000 \div SF$) – 2.8229] ÷ 0.1207). To convert our Roche sTfR concentration to Flowers sTfR concentrations, we used the conversion equation Flowers sTfR $1.5 \times \text{Roche sTfR} + 0.35$ $mg/l^{(13)}$.


Socio-demographic variables

Ethnicity was defined as each participant's country of birth, or the participant's mother's country of birth if the participants' mother was born outside Europe or North America^(14,19), and grouped as Western Europeans (Norway, other Western European countries and North America), South Asians (primarily Pakistan and Sri Lanka), Middle Easterners (primarily Iraq, Morocco and Turkey), East Asians (primarily Vietnam and The Philippines), Sub-Saharan Africans (primarily Somalia) and Eastern Europeans (primarily Poland, Kosovo and Russia). Maternal age was calculated from date of birth and date at enrolment in the present study. Parity was dichotomised into primiparous (first pregnancy lasting >22 weeks) and parous (one or more previous births) women. Pre-pregnancy body mass index (BMI, kg/m²) was calculated from self-reported weight before pregnancy and height measured at inclusion⁽¹⁴⁾. Gestational age was primarily derived from the first day of the mother's last menstrual period (LMP), but ultrasound-derived gestational age was used in 7 % of pregnancies where there were reasons to believe that the LMP-derived GA was uncertain⁽²⁰⁾.

Most variables reflecting socioeconomic position (SEP) and level of integration are strongly correlated, although representing different dimensions of societal and contextual factors. Individual and household markers of maternal present SEP and variables related to the level of integration were therefore entered into a principal components analysis (PCA). Two separate, uncorrelated components were extracted⁽¹⁹⁾. The first component was strongly correlated with predefined markers reflecting integration such as language skills, time of residence, social interaction with ethnic Norwegians and use of Norwegian media, and was skewed to the right, as all ethnic Norwegians had high scores. Due to the skewed distribution, and as we were mainly interested in the potential effect of low integration, and to ease the interpretation of our results, the integration score was further dichotomised as the 40 % with the lowest scores v. the 60 % with highest scores. This pragmatic cut-point had a sufficient number in the lowest category and still carried important information. The second component had strong correlations with the predefined individual and household markers of SEP such as educational level, occupational class, employment status, renting tenure and rooms per person in the household, and was normally distributed, with a higher score reflecting higher SEP. Maternal early life SEP was derived from a separate PCA of three childhood socio-demographic variables (family occupational class (highest of mother and father), rooms per person in household and family ownership of car, all referring to maternal age of 10 years), and was also normally distributed. Time of residence was calculated from the participants' self-reported year of arrival to Norway, and the participants' Norwegian language skills were categorised as good and poor, derived from the their need of interpreter at the study visits⁽¹⁹⁾.

Variables potentially associated with iron metabolism

Of ethical reasons, all participants with Hb <10.0 g/dl during pregnancy were informed by letter, and encouraged to seek their family doctor. Women with SF $<20 \mu$ g/l and Hb >10 g/dl were recommended to use 30–50 mg iron supplementation per day. All participants were asked about their

Birth-related variables potentially associated with postpartum iron status

We have detailed data on birth complications extracted from hospital birth records. We categorised delivery mode into (1) normal vaginal delivery, (2) instrumental vaginal delivery (i.e. forceps or vacuum-assisted vaginal delivery), (3) elective caesarean section and (4) emergency caesarean section. Postpartum blood loss after delivery was extracted from the hospital's birth record (mainly reflecting blood loss directly related to birth); and further dichotomised into <500 ml and \geq 500 ml – the last category defined as postpartum haemorrhage. Due to small numbers of each type of birth complications, we also constructed a composite variable reflecting the presence of at least one of the following complications; episiotomy, third- or fourth-degree perineal tear, obstructed labour and manual removal of placenta as an outcome.

Sample size

Of the 823 (74 % of invited participants) women included in early pregnancy, 644 (78 %) attended at the postpartum visit in mean postpartum week 13.9 (sD \pm 2.5) (flowchart, Supplementary Figure S1). For the present study, we included participants with no missing values for SF, sTfR and TBI at the postpartum visit, resulting in a total sample of 573 women (89 % of those attending the postpartum visit). There were no significant differences between the study sample and the 250 excluded women regarding age, parity, prepregnant BMI and SEP (data not shown). However, the study sample consisted of a slightly larger proportion of ethnic minority women as they were prioritised for fasting blood

samples at the postpartum visit due to resource limitations, compared with the excluded women⁽²²⁾.

Statistical analyses

The STORK-Groruddalen study was originally designed to identify ethnic differences in the prevalence of gestational diabetes and aimed at including 800 women. In the present study, we take advantages of the collected date and performed regression models based on the large sample size available. Descriptive statistics are presented as frequencies with proportions for categorical variables and mean with standard deviations (SD) or medians with interquartile range for continuous variables. The sTfR, TBI and Hb values were approximately normally distributed (Table 1). We calculated percentages of abnormal values for SF (<15 µg/l), sTfR (>4.4 mg/l), TBI (<0 mg/kg) and Hb (<12.0 g/dl) for the total sample, and for each ethnic group. The differences in prevalence between Western Europeans and each non-Western group were tested by χ^2 tests (Table 2). We used a scaled Venn diagram to illustrate the degree of overlap between measures of ID, and further to illustrate their relations to Hb by measuring mean Hb concentration in the groups with ID defined by the different iron indicators (Fig. 1). We also categorised Hb concentration into four groups, presented at the group midpoint, to explore the distribution of the three different iron indicators by ethnicity (Fig. 2). Furthermore, we performed sensitivity analysis, using the threshold of SF $<12 \mu g/l$ for the prevalence of ID to ease comparison to other studies using this threshold and to the prevalence rates between the different iron indicators (Supplementary Table S1).

To examine associations between ethnicity, maternal factors before and during pregnancy, birth complications, and postpartum anaemia and ID, we performed linear regression analyses with Hb, sTfR and TBI as continuous outcome variables, and logistic regression analyses with SF <15 µg/l as a dichotomous outcome variable due to its skewed distribution. Factors of particular clinical relevance, such as ethnicity, gestational anaemia and ID, postpartum haemorrhage, parity, dietary pattern and iron supplementation were hence forced into the models. However, other potentially relevant factors with P-value <0.2 in the univariate analysis were also included into the multiple regression analyses, but only included in the final model if still significantly associated with the outcome after a stepwise backward elimination process (Table 3). Interactions with ethnicity were examined graphically and by entering cross-product terms, one-by-one, into the model. We a priori defined an interaction to be significant if the P-value was <0.01 and consistent for Hb and all three iron indicators. No significant interactions were observed.

As ethnicity is a broader concept than geographical ancestry, we also explored the impact of level of social integration, as alternative explanatory variables. First, we performed multivariable regression analyses replacing the ethnicity variable with the dichotomous variable low and high social integration (Supplementary Table S2). Second, we conducted sensitivity analyses in a sub-sample of ethnic minority women (n 332), dichotomised into 'South Asian' or 'other' ethnic origin, and

explored if social integration could explain the differences observed between ethnic minority groups (Supplementary Table S3).

Results from linear regressions are presented as β -coefficients and results from logistic regression as odds ratios (ORs), both with accompanied 95 % confidence intervals (CIs). Model fit is presented by adjusted R^2 or Nagelkerke R^2 , as appropriate. *P*-values <0.05 were considered statistically significant. SPSS version 25 and Stata version 15 were used for statistical analysis.

Results

Sample characteristics

Of the 573 women who constitute the sample 14 weeks postpartum sample, 62 % had ethnic origin outside Western Europe, mean age at inclusion was 29.7 (sD \pm 4.8) years, mean pre-pregnant BMI was 24.6 (\pm 4.8) kg/m², and 46 % were primiparous (Table 1). Non-Western women were younger, and more often reported a dietary pattern categorised as less healthy compared with Western European women. They also had a lower socioeconomic position, both in childhood and as adults, represented by lower SEP-scores generated from the PCA analyses of several individual and household socio-demographic variables.

Prevalence of anaemia and ID, relations between ID indicators and relations with anaemia

The mean Hb concentration was 12.5 ± 1.0 g/dl at the postpartum visit, and the overall prevalence of anaemia was 25 %, but the prevalence of ID differed by iron indicator, and was significantly higher by SF than by sTfR and TBI (Table 2). Only four women with haemoglobinopathy were identified. The Venn diagram (Fig. 1) illustrates that among the 298 women with ID by any indicator, 35 % had ID by all three indicators, 38 % by SF only, 6.3 % by sTfR only, while none had ID identified by TBI only. The mean Hb concentration was highest in those with no ID by any iron indicator (12.8 g/dl), lowest in those with ID by all indicators (11.6 g/dl), while 12.6 g/dl in those with ID by SF only (Fig. 1).

The prevalence of anaemia differed significantly between ethnic groups and was at least the double in all ethnic minority women compared with Western European women (26–40 % v. 14 %; P < 0.01-0.05) (Table 2). Regarding ID, the prevalence by TBI was twice as high in South Asians, Middle Easterners and Sub-Saharan Africans compared with Western Europeans. We found no significant ethnic differences for ID using SF <15 µg/l. East Asians had an overall better iron status by all indicators compared with the other ethnic groups in all four Hb concentration intervals, including those with anaemia (Hb concentration interval 8.0–11.9 g/dl) (Fig. 2).

After having excluded women with elevated CRP concentration >5 mg/l (9–26 % by ethnic groups), only minor changes in the mean and median values and in the prevalence

' Press
iversity
idge Ur
Cambr
line by
onlin
lished
Pub
2022.45
v.
/10.1017/jn:
g/10.
doi.or
https://u

Ś

α.
bs
ž
2
D
ïţ
<u> </u>
Ĩ.
Ε
<u>e</u> .
Ē
eth
Ð
<u>е</u>
.⊆
er
Ĕ
Ы
÷
р
a
ć
ē
E
õ
2
em
fe
ester
3
Ę
nor
p
ar
ŝ
an
Ð
g
Чr
Ц
c
5
este
e)
\$
0
inte
-
ĕ
ţ
rati
str
≥
ę
stu
č
ē
a
8
5
ē
Ū
Ý
Ē
ō
F
S
ĥ
₽
.⊆
Ð
d
ΠĽ
Sa
b B
total
the
ō
istics
Ĕ
~
fe
ac
ars
-
с С
hic
ā
ra
g
Ĕ
der
ġ.
0
0
Soci
I. So
÷
e 1.
÷
ble 1.

International conditional conditionana conditional conditional conditional conditional cond	nor sb or sc or <th><i>n</i> or</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>East Asia</th> <th></th> <th></th> <th></th>	<i>n</i> or						East Asia			
	means % means % artum week 566 13.9 2.5 13.6 2.2 inclusion, years 57.3 29.7 4.8 30.9 4.6 inclusion, years 564 13.9 2.5 13.6 2.2 egnant Body Mass Index, 564 24.6 4.8 25.0 4.7 agnant Body Mass Index, 564 24.6 4.8 25.0 4.7 na adult socioeconomic 570 0.01 1.0 0.5 0.8 ation ^d 20.01 1.0 0.7 0.8 0.7 na adult socioeconomic 570 0.01 1.0 0.8 0.7		n or			<i>n</i> or	sd or	<i>n</i> or	sd or	n or	sd or
	n 573 100 217 38 artum week 566 13.9 2.5 13.6 2.2 inclusion, years 573 29.7 4.8 30.9 4.6 iparous 564 260 46 113 53 egnant Body Mass Index, 564 24.6 4.8 25.0 4.7 main adult socioeconomic 570 0.01 1.0 0.5 0.8 main adult socioeconomic 573 239 4.2 12 25.5 otal integration ^c 555 -0.01 1.0 0.8 0.7 ition ⁶ 573 239 4.2 12 55 12 ition ⁶ 573 239 4.2 12 26 12 ition ⁶ 565 -0.01 1.0 0.8 37 1 ition ⁶ 563 32 22 11 1 1 1 ition ⁶ 562 32 23 4	means	means			means	%	means	%	means	%
	artum week 566 13-9 2-5 13-6 2-2 inclusion, years 573 29-7 4.8 30-9 4.6 iparous 564 66 46 113 53 egnant Body Mass Index, 564 24-6 4.8 25-0 4.7 n^{2} addult socioeconomic 570 0-01 1-0 0-5 0.8 n^{2} addult socioeconomic 570 0-01 1-0 0-5 0.8 n^{2} bineigration* 573 239 4.2 12 9.7 n^{2} bineigration* 573 239 4.2 12 9.7 n^{2} bineigration* 565 -0.01 1-0 0.8 0.7 ition* 565 -0.01 1-0 0.8 0.7 11 n^{2} 11 1 1 1 1 1 1 n^{2} 56 32 14 10 18 22 <td>356</td> <td>157</td> <td></td> <td></td> <td>38</td> <td>7</td> <td>33</td> <td>9</td> <td>34</td> <td>9</td>	356	157			38	7	33	9	34	9
	(inclusion, years 573 29.7 4.8 30.9 4.6 iparous 564 266 4.6 113 53 iparous 564 246 4.8 25.0 4.7 aparous 564 246 4.8 25.0 4.7 al adult socioeconomic 570 0.01 1.0 0.5 0.8 al adult socioeconomic 570 0.01 1.0 0.8 0.7 al adult socioeconomic 570 0.01 1.0 0.8 0.7 al adult socioeconomic 570 0.01 1.0 0.8 0.7 al adult socioeconomic 570 178 31 26 12 bitional inon deficiency or 565 2.01 1.0 0.8 0.7 tational ID by TFI 562 32 11 1 1 1 ational anatina 563 101 18 25 13 1 ational ID by TFI 562 32 2	14.1	14.0			14.4	2.2	14.7	ς Υ	13.7	1.9
Set Set <td>564 564 564 564 564 564 564 564 564 564 564 564 564 564 564 573 599 47 593 47 593 47 593 47 593 47 593 47 593 47 593 47 593 47 573 593 42 12 55 633 61 10 65 63 11</td> <td>29.2</td> <td>28.7</td> <td></td> <td></td> <td>29.0</td> <td>5.1</td> <td>30.9</td> <td>4.4</td> <td>28.4</td> <td>4.3</td>	564 564 564 564 564 564 564 564 564 564 564 564 564 564 564 573 599 47 593 47 593 47 593 47 593 47 593 47 593 47 593 47 593 47 573 593 42 12 55 633 61 10 65 63 11	29.2	28.7			29.0	5.1	30.9	4.4	28.4	4.3
piperines 260 64 113 57 147 240 64 113 57 147 240 64 130 57 147 230 34 341 355 249 57 101 110 113 260 47 242 45 289 411 255 201 110 112 011 120 03 201 110 112 011 101 111 011	iparous 260 46 113 53 egnant Body Mass Index, 564 24-6 4.8 25-0 4.7 egnant Body Mass Index, 564 24-6 4.8 25-0 4.7 egnant Body Mass Index, 564 24-6 4.8 25-0 4.7 egnant Body Mass Index, 564 2001 1-0 0-5 0.8 field 573 239 42 12 55 field 573 239 42 12 55 ition ⁶ 573 239 42 12 55 ition ⁶ 573 239 42 10 0-8 0.7 ition ⁷ 573 239 42 12 12 12 ition ⁶ 57 32 6 0 0 12 12 ition ⁶ 564 32 6 10 14 1 1 1 1 ported iron supplement use ⁶ 564 32 6 22	1	2								
304 54 99 47 205 59 47 205 59 47 205 51 50 51 50 57 50 57 50 41 255 208 47 205 47 205 47 205 47 205 47 205 47 205 41 255 209 47 200 47 200 61 573 239 42 12 54 100 64 60 03 -02 09 -10 112 01 07 565 50 11 1 1 1 1 1 1 1 0 10 07 -05 08 -05 08 -05 06 01 07 -05 08 -05 08 -05 08 -05 08 -06 01 07 -05 08 -05 08 -07 09 -06 01 01 <	304 54 99 47 z 570 0.01 1.0 0.5 0.8 z 570 0.01 1.0 0.5 0.8 z 573 239 42 12 5.5 z 565 -0.01 1.0 0.8 0.7 z 562 32 42 12 5.5 z 562 32 11 1 1 z 562 63 11 1 1 1 z 564 101 18 25 12 32 z 564 101 18 25 12 32 z 564 101 18 25 12 32 z 564 301 70 89 42 32 56 z 564 101 18 25 12 55 56 57 z 564 10 22 46 22 58 47 57 57 56	147	65			17	47	13	39	22	65
x_1 z_{10} 41 z_{20} 4_{10} z_{20} 4_{10} z_{20} 4_{10} z_{20} 4_{10} z_{20} 2_{10}	x, 564 24.6 4.8 25.0 4.7 5 570 0.01 1.0 0.5 0.8 573 239 42 12 5.5 565 -0.01 1.0 0.8 0.7 565 -0.01 1.0 0.8 0.7 562 323 239 42 12 5.5 562 32 11 1 1 1 564 32 6 3 11 1 1 564 32 23 6 3 12 26 12 555 124 22 46 22 33 <td>205</td> <td>91</td> <td></td> <td></td> <td>19</td> <td>53</td> <td>20</td> <td>61</td> <td>12</td> <td>35</td>	205	91			19	53	20	61	12	35
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24.2	23.8			25.0	4.7	22·0	3.2	23.9	4.8
		-0.3	-0.2			-1.0	1.2	0.1	0.7	0.1	÷
565 -001 10 08 07 -05 03 -05 03 -04 03 -06 03 572 178 31 26 12 152 43 75 48 37 39 20 54 9 27 2 54 9 27 2 6 11 11 27 2 6 06 03 20 54 9 27 2 6 03 20 54 9 27 2 6 03 27 28 27 16 9 27 2 6 11 23 24 16 17 13 25 5 14 16 7 4 11 27 2 6 13 13 33 34 34 34 14 13 35 5 14 13 35 5 14 13 35 5 14 13 34 34 <	565 -0.01 1.0 0.8 0.7 572 178 31 26 12 562 32 6 0 0.7 562 32 6 0 0.7 562 533 11 1 1 1 564 32 6 3 1 1 564 32 6 3 1 1 564 32 6 3 1 1 1 565 124 22 43 65 32 32 32 555 124 22 43 65 12 22 32 555 124 20 331 70 332 22 32 564 331 70 33 7 32 22 22 573 573 331 7 32 22 22 573 573 333 7 32 2	227	100			20	53	20	61	25	74
	572 178 31 26 12 562 63 11 1 1 1 564 32 6 0 0 0 564 32 6 3 11 1 1 564 32 6 3 11 1 1 1 564 32 6 3 11 1 1 1 1 555 124 22 43 65 32 46 22 32 56 <td></td> <td></td> <td></td> <td></td> <td>- - -</td> <td></td> <td>- - -</td> <td></td> <td>c 2 1</td> <td>. 0</td>					- - -		- - -		c 2 1	. 0
		C-O-	C-O			-0.4	n O	0.0-	ю. О	0.0 -	o O
562 32 6 0 0 32 9 19 12 9 10 4 12 0 0 562 63 11 1 62 13 1 29 18 33 21 15 7 4 11 2 6 5 564 101 18 25 12 7 4 11 6 7 4 11 2 6 5 553 124 26 13 36 23 16 33 24 16 7 4 11 2 6 5 555 14 30 122 56 13 40 27 26 14 13 27 25 16 17 3		152	75			20	54	6	27	11	32
562 63 11 1 62 18 33 21 15 16 9 27 2 6 564 101 18 25 12 76 22 38 24 16 11 2 6 533 232 43 65 32 167 50 84 56 38 44 18 51 11 2 6 535 124 22 38 24 16 27 20 22 6 11 2 6 1 3 555 12 70 89 42 12 14 9 6 7 5 12 7 22 555 564 3 7 9 6 7 8 1 13 3 564 3 5 12 30 9 7 8 2 6 1 3 573	562 63 11 1 1 564 32 6 3 1 564 32 6 3 1 554 101 18 25 12 555 124 22 46 22 555 124 22 46 22 555 124 22 46 22 564 301 70 89 42 564 301 70 89 42 564 301 70 89 42 564 301 7 89 42 564 301 7 89 42 564 301 7 89 42 573 83 175 81 10 573 58 10 25 12 65 11 27 3 7 3 65 11 27 3 7 3 3	32	19			4	12	0	0	0	0
	564 32 6 3 1 ent use ¹ 564 101 18 25 12 553 232 43 65 32 555 124 22 46 22 555 124 22 46 22 555 164 30 122 58 564 10 70 89 42 564 391 70 89 42 564 391 70 89 42 564 391 70 89 42 564 391 70 89 42 564 391 70 89 42 564 391 7 3 5 2 ochromic 55 10 25 12 ochromic 58 10 21 10 ion 29 5 16 7 65 11 27 3 7 65 11 27 3 7 65 65 11 27 3		33			6	27	2	9	e	6
	ent use ¹ 564 101 18 25 12 555 124 22 46 22 555 124 22 46 22 555 124 22 46 22 564 30 122 58 ag1 70 89 42 564 3 122 58 mochromic 14 3 5 2 ochromic 55 10 25 12 ochromic 55 10 25 12 ion 29 5 16 7 eection 68 12 25 12 eection 15 3 7 3 efficien 15 5 12 eection 15 5 13 eection 15 5 12 eection 15 5 12 eection 15 5 12 eection 10 21 10 eection 15 5 12 eection 15 5 13 eection 15 5 13 eection 15 5 13 eection 15 5 13 eection 15 5 12 eection 15 5 12 eecti		17			4	1	2	9	0	0
564 101 18 25 12 76 22 38 24 16 17 9 25 10 30 555 124 22 46 22 38 24 16 17 9 25 10 30 555 124 22 46 22 78 23 40 27 5 15 7 22 555 164 30 122 58 42 12 14 9 6 7 5 15 7 22 564 30 122 58 140 91 84 93 29 15 7 22 564 14 3 5 2 9 33 7 8 7 8 15 7 22 564 14 3 5 12 30 9 15 7 22 15 15 15 15 <	564 101 18 25 12 539 232 43 65 32 555 124 22 46 22 555 164 30 122 58 564 17 70 89 42 564 301 70 89 42 564 301 70 89 42 564 30 122 58 32 mochromic 14 3 5 2 573 473 83 175 81 very ¹ 58 10 25 12 ion 29 5 16 7 65 12 25 12 3 exction 68 12 25 12 65 11 27 3 7 3										
539 232 43 65 32 167 50 84 56 38 44 18 51 11 34 555 124 22 46 22 78 23 40 27 20 22 6 16 4 13 555 164 30 122 58 42 12 14 9 6 7 5 15 7 22 564 30 122 58 42 30 9 16 7 5 15 7 22 301 70 89 4 14 18 9 5 5 78 573 56 10 25 12 30 9 13 8 7 8 7 8 5 15 573 473 83 175 81 13 8 7 8 2 6 15 15	539 232 43 65 32 555 124 22 46 22 555 124 22 46 22 555 124 22 46 22 564 30 122 58 42 564 30 122 58 42 564 3 70 89 42 564 3 5 10 21 573 473 83 175 81 veny ¹ 58 10 21 10 ion 29 5 16 7 section 68 12 25 12 erineal tear 15 3 7 3	76	38			0	25	10	30	с С	6
555 124 22 46 22 78 23 40 27 20 22 6 16 4 13 555 164 30 122 58 42 12 14 9 6 7 5 15 7 22 564 30 122 58 42 32 8 140 91 84 93 29 85 25 7 22 28 7 16 1 3 9 9 9 9 9 9 9 9 9 <td< td=""><td>555 124 22 46 22 555 164 30 122 58 391 70 89 42 564 3 122 58 mochromic 14 3 5 2 564 3 122 58 42 564 3 5 2 58 ochromic 55 10 25 12 573 473 83 175 81 ven^{yi} 58 10 21 10 ion 29 5 16 7 section 68 12 25 12 erineal tear 15 3 7 3</td><td>167</td><td>84</td><td></td><td></td><td>18</td><td>51</td><td>11</td><td>34</td><td>16</td><td>50</td></td<>	555 124 22 46 22 555 164 30 122 58 391 70 89 42 564 3 122 58 mochromic 14 3 5 2 564 3 122 58 42 564 3 5 2 58 ochromic 55 10 25 12 573 473 83 175 81 ven ^{yi} 58 10 21 10 ion 29 5 16 7 section 68 12 25 12 erineal tear 15 3 7 3	167	84			18	51	11	34	16	50
555 164 30 122 584 12 14 9 6 7 22 564 30 122 58 42 12 30 12 58 2 9 6 7 5 15 7 22 mochromic 14 3 5 2 9 3 2 1 4 4 2 6 1 3 style 3 2 1 4 4 2 6 1 3 style 3 2 1 4 4 2 6 1 3 style 3 2 1 3 2 1 4 5 6 1 3 style 3 2 1 1 8 7 8 2 6 1 3 <	555 164 30 122 58 391 70 89 42 564 3 122 58 mochromic 14 3 5 2 564 3 5 2 mochromic 55 10 25 12 573 473 83 175 81 ven ^{yi} 58 10 21 10 ion 29 5 16 7 section 68 12 25 12 erineal tear 15 3 7 3 erineal tear 15 3 7 3	78	40			9	16	4	13	8	24
	164 30 122 58 391 70 89 42 564 3 70 89 42 mochromic 14 3 5 2 bochromic 55 10 25 12 sochromic 55 10 25 12 very ¹ 58 10 25 12 very ¹ 58 10 21 10 ion 29 5 16 7 section 68 12 25 12 erineal tear 15 3 7 3										
	391 70 89 42 564 3 5 2 mochromic 14 3 5 2 bochromic 55 10 25 12 sochromic 53 83 175 81 very ¹ 58 10 21 10 ion 29 5 16 7 section 68 12 25 12 erineal tear 15 3 7 3	42	14		7	5	15	7	22	10	29
564 1 5 2 9 3 2 1 4 2 6 1 3 nochromic 55 10 25 12 30 9 13 8 7 8 2 6 1 3 573 473 83 175 81 298 84 134 85 79 86 30 79 27 82 6 5 15 very ¹ 58 10 21 10 17 11 8 9 6 16 3 3 9 very ¹ 56 12 23 10 17 11 18 9 6 16 3 3 9 very ¹ 573 65 12 23 12 18 12 18 12 18 3 3 9 9 9 9 9 13 3 6 6 12 <td< td=""><td>564 564 mochromic 14 3 5 2 bochromic 55 10 25 12 573 473 83 175 81 very¹ 58 10 21 10 ion 29 5 16 7 573 65 12 25 12 exition 68 12 25 12 etineal tear 15 3 7 3</td><td>302</td><td>140</td><td></td><td>93</td><td>29</td><td>85</td><td>25</td><td>78</td><td>24</td><td>71</td></td<>	564 564 mochromic 14 3 5 2 bochromic 55 10 25 12 573 473 83 175 81 very ¹ 58 10 21 10 ion 29 5 16 7 573 65 12 25 12 exition 68 12 25 12 etineal tear 15 3 7 3	302	140		93	29	85	25	78	24	71
with normochronic14352932142613with hypochronic551025123091387826515stith hypochronic57347383175812988413485798630792782elivery57358102110171189616737and delivery581021101711189616379and elivery531017111812133111233statean section68122512431218121371833 573 651127133811151371833statean section536112713381115137183statean section33615788266139statean section3361127133811151371837statean section3361578713381115137181617<	with normochromic 14 3 5 2 with hypochromic 55 10 25 12 with hypochromic 55 10 25 12 elivery 573 83 175 81 nal delivery ¹ 58 10 21 10 an section 29 5 16 7 an section 68 12 25 12 strean section 68 12 25 12 egree perineal tear 15 3 7 3										
with hypochronic55102512309138787826515 573 573 473 83 175 81 298 84 134 85 79 86 30 79 27 82 and delivery ¹ 58 10 21 10 37 10 17 11 8 9 6 16 37 9 an section 29 5 16 7 13 4 5 3 1 1 1 3 9 an section 29 5 12 12 12 12 12 12 12 12 12 3 573 65 11 27 13 38 11 15 12 12 13 7 18 3 573 65 11 27 13 38 11 15 12 12 12 12 3 egree perineal tear 15 3 7 38 11 15 12 12 3 6 11 27 3 9 573 6 11 27 13 38 11 15 12 12 12 12 3 27 8 4 12 573 6 11 27 3 8 2 4 3 2 6 6 1 3 27 3 27 3 <td>with hypochromic 55 10 25 12 elivery 573 473 83 175 81 nal delivery¹ 58 10 21 10 an section 29 5 16 7 arean section 68 12 25 12 egree perineal tear 15 3 7 3</td> <td></td> <td>N</td> <td>1 4</td> <td>4</td> <td>5</td> <td>9</td> <td>-</td> <td>ი</td> <td>0</td> <td>0</td>	with hypochromic 55 10 25 12 elivery 573 473 83 175 81 nal delivery ¹ 58 10 21 10 an section 29 5 16 7 arean section 68 12 25 12 egree perineal tear 15 3 7 3		N	1 4	4	5	9	-	ი	0	0
with hypochromic 55 10 25 12 30 9 13 8 7 8 2 6 5 15 filvery 573 473 83 175 81 298 84 134 85 79 86 30 79 27 82 and delivery ¹ 58 10 21 10 17 11 8 9 6 16 3 <	with hypochromic 55 10 25 12 selivery 573 and delivery ¹ 58 10 21 10 an section 29 5 16 7 arean section 68 12 25 12 arean section 68 12 25 12 serean section 68 12 25 12 egree perineal tear 15 3 7 3										
573 573 573 473 83 175 81 298 84 134 85 79 86 30 79 27 82 nal delivery ¹ 58 10 21 10 37 10 17 11 8 9 6 16 37 10 17 11 8 9 6 16 37 10 17 11 8 9 6 16 37 9	573 573 573 elivery 473 83 175 81 nal delivery ¹ 58 10 21 10 an section 29 5 16 7 arean section 68 12 25 12 573 65 11 27 13 egree perineal tear 15 3 7 3	30	13		ω	0	9	5	15	e	0
573 573 573 573 83 175 81 298 84 134 85 79 86 30 79 27 82 nal delivery ¹ 58 10 21 10 37 10 17 11 8 9 6 16 3 9 an section 29 5 16 7 13 4 5 3 1 1 1 3 3 an section 29 5 16 7 13 4 5 3 1 1 3 3 573 65 11 27 13 38 11 15 10 11 12 38 4 12 65 11 27 13 38 11 15 10 11 12 38 4 12 egree perineal tear 15 3 7 38 2 4 3 0 0 2 6 6 1 3 7 65 11 27 13 38 11 15 10 11 12 3 4 12 65 11 27 3 8 2 4 3 0 0 2 6 6 65 11 27 38 2 4 3 0 0 2 6 6 1 3 65 6 15 7 18 5 5 2 4 <	573 573 elivery 473 83 175 81 nal delivery ¹ 58 10 21 10 an section 29 5 16 7 an section 68 12 25 12 stream section 68 12 25 12 egree perineal tear 15 3 7 3										
elivery 473 83 175 81 298 84 134 85 79 86 30 79 27 82 nal delivery ¹ 58 10 21 10 37 10 17 11 8 9 6 16 3 9 an section 29 5 16 7 13 4 5 3 1 1 1 3 3 9 an section 29 5 12 43 12 18 12 12 13 7 18 3 9 sate an section 68 12 25 3 12 18 12 12 13 3 9 sate an section 68 11 27 13 38 11 15 13 7 18 3 9 sate an section 68 11 27 13 38 11 15 10 11 12 3 3 9 sate pointeral tear 15 3	elivery 473 83 175 81 nal delivery ¹ 58 10 21 10 an section 29 5 16 7 arean section 68 12 25 12 iarean section 68 12 25 12 egree perineal tear 15 3 7 3										
nal delivery ¹ 58 10 21 10 37 10 17 11 8 9 6 16 3 9 an section 29 5 16 7 13 4 5 3 1 1 1 3 3 9 an section 29 5 16 7 13 4 5 3 1 1 1 3 3 9 arean section 68 12 25 12 43 12 18 12 13 7 18 3 9 573 5 13 7 13 38 11 15 12 13 7 18 3 9 stere perineal tear 15 3 7 3 8 2 4 3 0 0 2 6 </td <td>nal delivery¹ 58 10 21 10 an section 29 5 16 7 arrean section 68 12 25 12 573 11 27 13 egree perineal tear 15 3 7 3</td> <td>298</td> <td>134</td> <td></td> <td></td> <td>30</td> <td>29</td> <td>27</td> <td>82</td> <td>28</td> <td>82</td>	nal delivery ¹ 58 10 21 10 an section 29 5 16 7 arrean section 68 12 25 12 573 11 27 13 egree perineal tear 15 3 7 3	298	134			30	29	27	82	28	82
an section 29 5 16 7 13 4 5 3 1 1 1 3 3 9 arean section 68 12 25 12 43 12 18 12 13 7 18 3 9 573 section 68 12 25 12 43 12 18 7 18 3 9 573 section 68 11 15 10 11 12 3 8 4 12 egree perineal tear 15 3 7 38 11 15 10 11 12 3 8 4 12 egree perineal tear 15 3 7 18 5 5 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 0	an section 29 5 16 7 iarean section 68 12 25 12 573 57 1 27 13 egree perineal tear 15 3 7 3	37	17			9	16	з	ი	с С	6
arean section 68 12 25 12 43 12 18 12 13 7 18 3 9 573 573 5 11 27 13 38 11 15 1 12 3 8 4 12 egree perineal tear 15 3 7 38 11 15 10 11 12 3 8 4 12 egree perineal tear 15 3 7 18 5 5 3 6 6 1 3 1 3 r 33 6 15 7 18 5 5 3 6 6 1 3 1 3 of placenta 25 4 13 6 12 3 0 <td>arean section 68 12 25 12 573 573 65 11 27 13 egree perineal tear 15 3 7 3</td> <td>13</td> <td>5</td> <td></td> <td></td> <td>-</td> <td>ო</td> <td>c S</td> <td>б</td> <td>ი</td> <td>6</td>	arean section 68 12 25 12 573 573 65 11 27 13 egree perineal tear 15 3 7 3	13	5			-	ო	c S	б	ი	6
573 573 573 65 11 27 13 38 11 15 10 11 12 3 8 4 12 egree perineal tear 15 3 7 3 8 2 4 3 0 0 2 5 2 6 r 33 6 15 7 18 5 5 3 1 3 1 3 1 3 5 5 5 5 5 5 5 5 5 5 5 5 1 3 1 3 5 1 3 1 3 5	573 65 11 27 13 egree perineal tear 15 3 7 3	43	18			7	18	с С	6	ო	6
65 11 27 13 38 11 15 10 11 12 3 8 4 12 eal tear 15 3 7 3 8 2 4 3 6 15 7 18 5 5 4 3 6 1 3 1 3 5 6 1 3 1 3 2 6 1 3 1 3 1 3 2 6 1 3 1 3 1 3 2 8 4 12 3 1 3 1 3 1 3 2 6 1 3 3 0 0 0 0 0 0 0 0 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	65 11 27 13 urth-degree perineal tear 15 3 7 3 Iobour 22 6 15 7										
eal tear 15 3 7 3 8 2 4 3 0 0 2 5 2 6 33 6 15 7 18 5 5 3 6 1 3 1 3 25 4 13 6 12 3 3 2 8 9 1 3 0 0	Jurth-degree perineal tear 15 3 7 3	38	15		12	ო	œ	4	12	5	15
33 6 15 7 18 5 5 3 6 6 1 3 1 3 25 4 13 6 12 3 3 2 8 9 1 3 0 0	20 G 1E 7	8	4		0	0	5	N	9	0	0
25 4 13 6 12 3 3 2 8 9 1 3 0 0		18	с С		9	-	с С	.	с С	5 L	15
	об A 13 6	5			σ	• -) (r	· c			2 0
		71	C		o	-	2	5	5		>

journals.cambridge.org/jns

Table 1. Continued																
	Total		Western Europe	Europe	Non-Western	tern	South Asia	m	Middle East	ast	Sub-Saharan Africa	aran	East Asia		Eastern Europe	enrope
	<i>n</i> or means	sd or %	<i>n</i> or means	sp or %	<i>n</i> or means	sp or %	<i>n</i> or means	sd or %	<i>n</i> or means	sd or %	<i>n</i> or means	sd or %	<i>n</i> or means	sd or %	<i>n</i> or means	sp or %
Postpartum haemorrhage ^k	33	9	15	7	18	5	5	e	9	9	-	9	-	с	5	15
 Hb, haemoglobin; ID, iron deficiency; SEP, socioeconomic position; SF, serum ferritin; sTR, soluble transferrin receptor; TBI; total body iron. ^a The STORK-Grouddalem multi-ethnic pregnancy cohort from Oslo, Norway, 2008–10. ^b Variable derived from a principal components analysis of predefined markers SEP, with a higher score reflect higher SEP. ^b Variable derived from a principal components analysis of predefined markers networks with the lowest scores reflect higher SEP. ^b Variable derived from a principal components analysis of predefined markers networks with the lowest scores. ^b Variable derived from a principal components analysis of three childhood socio-demorpantio variables representing matemal SEP at age 10 years, with a higher score reflect higher SCP. ^c Gestational iron deficiency by (1) SF <15 µg/t; (2) sTR > 44 mg/l or (3) TBI <0 mg/kg; and gestational anaemia by trimester-specific haemoglobin <10.5 or 11.0 g/dl, analysed in mean gestational week 15.1. ^c Self-reported intake of iron supplements during the past 2 weeks at all three study visits dichotomised into 'yes', covering daily or intermittent iron supplements, and 'no'. ^c Self-reported intake of iron supplements during the past 2 weeks at all three study visits dichotomised into 'yes', covering daily or intermittent iron supplements, and 'no'. ^c Self-reported intake of iron supplements during the past 2 weeks at all three study visits dichotomised into 'yes', covering daily or intermittent iron supplements, and 'no'. ^c Self-reported intake of iron supplements during the past 2 weeks at all three study visits dichotomised into 'yes', covering daily or intermittent iron supplements, and 'no'. ^c Self-reported intake of iron supplements during the mean all three stational use of chonomised into 'healthy' dietary patterns'; here dichotomised into 'healthy' dietary pattern	SEP, socioeconom to pregnancy cohor mponents analysis i mponents analysis of megration' represen monents analysis (i <15 µg/t; (2) sTFR mits during the past mits during the past raires collected in C vation associated w ation associated w	ic position; t from Oslo, of predefine. Di predefine three chilt >44 mg/ or 2 weeks at W 28; four c ith normoch tith ID and hy	SF, serum fe Norway, 200 d individual a tharkers refi the ad socio- dinod socio- all three stuc alusters were - tromic anaem ypochromic a	ritin; sTfR, : 8–10. Ind househo lecting integ lecting integ demographic yry visits dich extracted us iia (i.e. kidhe naemia (i.e. kidhe naemia (i.e.	soluble transf Id markers SI ration such ar with the low v variables representational an otomised intr ing the Ward' y or rheumat gastrointestii	errin receptr EP, with a h s language : est scores. presenting n aemia by trii aemia by trii o'yes', cove s method. Cl tic disease, u al disease , u al disease , u	soluble transferrin receptor, TBI; total body iron. Jold markers SEP, with a higher score reflect high pation such as language skills, time of residence % with the lowest scores. % using the lowest scores maternal SEP at age 11 gestational anaemin by trimester-specific haemo hotomised into 'yes', covering daily or intermitter sing the Ward's method. Clusters were referred to sing the Ward's method. Clusters were referred to ever or theumatic disease, use of carbamazeptine es. gastrointestinal disease or Copper intrautentine . gastrointestinal disease or Copper intrautentine	ody iron. flect higher esidence, s at age 10 y at age 10 y termittent i sferred to as arzepine or auterine de	r SEP. social interac social interac dars, with a bin <10.5 or iron suppleme s 'a healthier' infliximab).	tion with eth higher score ents, and 'nu dietary patte fore concept	nic Norwegi s reflecting h nalysed in rr o'. srn' v. three 'I	ans and use igher SEP. iean gestati ess healthy	of Norwegiar onal week 15. dietary pattern	n media, wi 1. ns'; here dic	ith a higher s	core reflect to 'healthy'
Assisted vaginal delivery through forceps or vacuum.	ceps or vacuum.															

of ID and anaemia across ethnic groups were observed (data not shown). Furthermore, using SF concentration $<\!12\,\mu g/l$ as the threshold for ID, the overall prevalence of ID declined from 39 to 29 % in the total sample, approaching the prevalence levels for sTfR and TBI (Supplementary Table S1).

Associations between ethnicity and clinical factors with Hb, SF, sTfR and TBI

In unadjusted analyses, the Hb concentration was significantly lower in South Asians, Sub-Saharan Africans and East Asians compared with Western Europeans (Table 3). After adjusting for covariates, the ethnic differences were reduced and only South Asians had lower Hb concentration compared with Western European women. Gestational anaemia, other chronic illnesses/medication and postpartum haemorrhage were associated with lower Hb concentration, and higher age, self-reported intake of iron supplement in GW 28, and higher SEP in childhood were associated with higher Hb concentration.

Also for the ID indicators, ethnic differences were reduced after adjusting for covariates, as only South Asians had higher sTfR concentrations compared with Western Europeans (Table 3). Gestational ID and an 'unhealthy' dietary pattern were consistently associated with poorer iron status post-partum by all iron indicators. Postpartum haemorrhage was associated with higher OR of SF <15 μ g/l and lower TBI concentration, and multiparous women and women with self-reported intake of iron supplement in the second trimester had better iron stores by all iron indicators.

Associations between level of integration and clinical factors with Hb, SF, sTfR and TBI

Adjusting for SEP had minimal effect on the effect estimates (data not shown), and when exploring relations with variables reflecting the level of social integration, as alternatives to ethnicity, we found no or only weak associations with anaemia or the ID measures (Supplementary Table S2). In the ethnic minority sub-sample, we observed that the level of social integration could not explain the higher sTfR – and lower Hb concentrations found in South Asians compared with other ethnic minority groups (Supplementary Table S3).

Discussion

after deliverv

loss (≥500 ml)

Excessive blood

To the best of our knowledge, this is one of very few studies from Europe to estimate the prevalence of postpartum anaemia and ID in a multi-ethnic population, and the only one comparing three indicators of ID, their relations and their relations to anaemia. One-fourth of the women had anaemia 14 weeks postpartum, two in five had ID by SF and about one in five had ID by sTfR or TBI. The mean Hb concentration was higher in those with ID by SF only (12.6 g/dl) than in those with ID by all indicators (11.6 g/dl). Women with ethnic origin outside Europe had a crude prevalence of anaemia and ID by sTfR and TBI that was about the double compared with European women. However, after adjusting for clinically

Table 2. Values for serum ferritin, soluble transferrin receptor (sTfR), total body iron (calculated from ferritin and sTfR concentrations) and haemoglobin concentration, and prevalence of abnormal values (iron deficiency and anaemia) 14 weeks postpartum in the STORK-Groruddalen study^a

	n	SF, μg/l	SD or IQR	sTfR, mg/l	SD or IQR	TBI, mg/kg	SD or IQR	Hb, g/dl	SD or IQR
Mean in total sample ^a	573	23	18	3.7	1.7	2.7	3.7	12.5	1.0
Median in total sample ^a	573	18	10, 32	3.3	2.7, 4.1	3.1	0.4, 5.4	12.6	11.9, 13.2
Prevalence of abnormal values ^{b,c}	n	%	95 % CI	%	95 % CI	%	95 % CI	%	95 % CI
Total sample ^a	573	39	35, 43	19	16, 22	22	19, 26	25	22, 29
Ethnic group ^d									
Western Europe	217	35	29, 42	12	8, 17	15	11, 20	14	10, 19
South Asia	157	44	36, 52	30	23, 38**	30	23, 37**	40	33, 48**
Middle East	94	39	30, 50	22	15, 32*	29	20, 39**	27	19, 37**
Sub-Saharan Africa	38	50	34, 66	21	11, 38	32	18, 49**	26	14, 43*
East Asia	33	36	21, 55	12	4, 29	15	6, 33	33	19, 52**
Eastern Europe	34	32	8, 50	6	1, 22	18	8, 35	18	8, 36

Hb. haemoglobin: ID. iron deficiency: SF. serum ferritin: sTfR, soluble transferrin receptor: TBI: total body iron.

^a The STORK-Groruddalen multi-ethnic pregnancy cohort from Oslo, Norway, 2008–10. N 573 for serum ferritin, n 568 for soluble transferrin receptor (sTfR) and total body iron and n 569 for haemoglobin. ^b Abnormal values are presented as percentage (95 % CI), defined as serum ferritin <15 µg/l, soluble transferrin receptor (sTfR) >4.4 mg/l, total body iron <0 mg/kg and haemo-

globin <12.0 g/dl.

Haemoglobinopathy (n 4) was either self-reported, identified from the HPLC (Tosoh G8, Tosoh Corporation) analysis of glycated haemoglobin, or from a combination of microcytic anaemia and high ferritin.

⁴ The difference in the prevalence of abnormal values between Western Europeans and each non-Western group were tested by χ^2 test.

P*<0.05, *P*<0.01.

relevant covariates, these ethnic differences mostly disappeared, with only South Asians having lower Hb concentration and higher sTfR concentration. The level of social integration into the Norwegian mainstream society did not explain these differences.

Different biomarkers are used to measure ID in clinical practice, SF being the most commonly used⁽²³⁾. A Nordic study compared ID defined by SF $<15 \,\mu g/l$ to bone marrow staining, and found SF to have a 75 % sensitivity and 98 % specificity⁽²⁴⁾. The comparison of the different iron indicators revealed a larger dispersion for median SF concentration than mean sTfR concentration between the ethnic groups for the same Hb concentration interval, which could suggest that

sTfR has less random variation and is a reliable iron indicator. Furthermore, Fig. 1 shows that the mean Hb concentration in those with ID by SF is only slightly influenced (mean Hb 0.2 g/dl lower compared with those with no ID by any marker), while it is significantly decreased in those with ID by sTfR and TBI (mean Hb 1.2 g/dl lower). This supports findings from others that SF covers an earlier stage of ID, called 'depleted body iron stores', while sTfR and TBI reflect a later stage of ID where the synthesis of Hb is affected⁽¹¹⁾. This is also supported by a higher proportion of anaemia among those with ID by sTfR or TBI compared with those with ID by SF. To achieve an even higher concordance between ID assessed by SF and TBI, assuming TBI being a

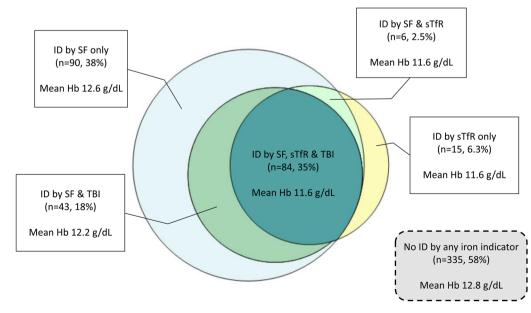
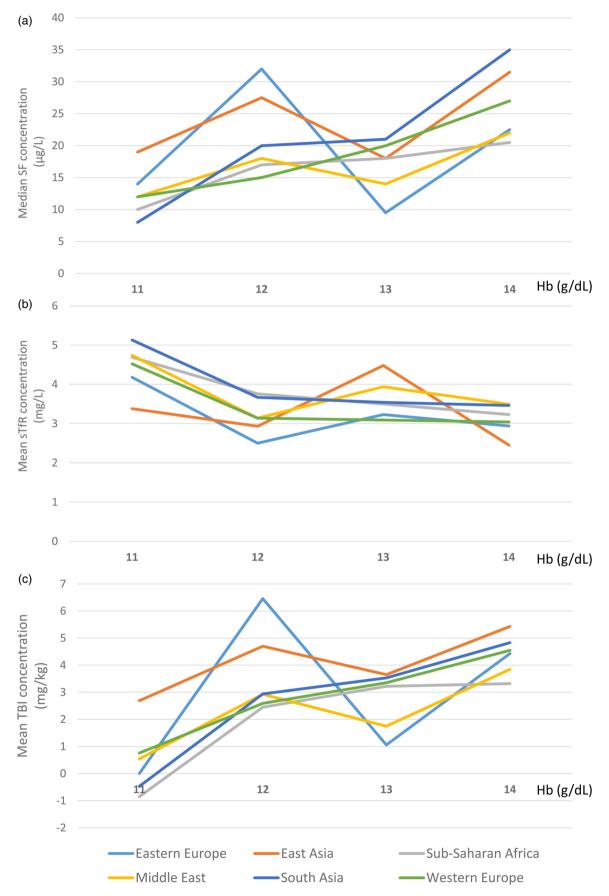



Fig. 1. Venn diagram for postpartum women with iron deficiency by ≥1 of the three iron indicators serum ferritin, soluble transferrin receptor and total body iron (n 238) 14 weeks postpartum in the STORK-Groruddalen study^a. Hb, haemoglobin; ID by SF, iron deficiency by serum ferritin concentration <15 µg/l; ID by sTfR, iron deficiency by soluble transferrin receptor concentration >4.4 mg/l; ID by TBI, iron deficiency by total body iron concentration <0 mg/kg. ^aThe STORK-Groruddalen multi-ethnic pregnancy cohort from Oslo, Norway, 2008-10.

Fig. 2. Median serum ferritin concentration ($\mu g/l$), mean soluble transferrin receptor concentration (mg/l) and mean total body iron concentration (mg/kg) in four haemoglobin concentration intervals (g/dl)^a at the postpartum visit in the STORK-Groruddalen multi-ethnic pregnancy cohort from Oslo, Norway, 2008–10. Hb, haemoglobin; SF, serum ferritin; sTfR, soluble transferrin receptor; TBI, total body iron. ^aHaemoglobin as grouped midpoint; 11 (8·0–11·9); 12 (12·0–12·5); 13 (12·6–13·0) and 14 (13·1–15·0).

S
Press
۲,
~
.£`
S
Ð
.≧
5
2
g
Ð
Ë.
뉟
E
Ű
5
ف
ē
.≘
0
σ
e
5
il
ildu
Publi
15 Publi
.45 Publi
22.45 Publi
022.45 Publi
202
1s.2022.45 Publi
/jns.2022.45 Publi
17/jns.2022.45 Publi
017/jns.2022.45 Publi
017/jns
017/jns
/10.1017/jns.2022.45 Publi
017/jns

partum in the	
on 14 weeks pos	Hb, g/dl
r regression analyses of soluble transferrin receptor, total body iron and haemoglobin concentration 14 weeks postpartum in the	
l body iron and hae	TBI, mg/kg
iferrin receptor, total	
ses of soluble trans	sTfR, mg/l
ar regression analy	ŝ
Table 3. Logistic regression analysis of serum ferritin <15 $\mu g/l,$ and linear STORK-Groruddalen study ^a	SF <15 µg/dl
/sis of serum ferriti	SF
tic regression analy dalen study ^a	
Table 3. Logistic regressio STORK-Groruddalen study ⁵	

RO																
		95 % CI	adj OR	95 % CI	β	95 % CI	adj β	95 % CI	β	95 % CI	adj β	95 % CI	β	95 % CI	adj β	95 % CI
	Н	R ² 0.13				R ² 0.14				R ² 0.15				R ² 0.17		
Ethnicity (Western European = reference)																
South Asia 1.4	4 0.5	0.9, 2.2	÷	0.6, 1.7	0·0	0.6, 1.3**	0.8	0.4, 1.2**	-1:2	-2.0, -0.05**	-0.4	-1:2, 0:5	9.0-	-0.8, -0.4**	-0.4	-0.7, -0.2**
Middle East 1.2	2 0.7	0.7, 1.9	0·8	0.4, 1.5	9·0	0.1, 1.0**	0.4	-0.1, 0.9	-0.9	-1.8, -0.01*	-0.1	-1.1, 0.9	-0.2	-0.8, 0.01	0.03	-0.3, 0.3
Sub-Saharan Africa 1.8		0.9, 3.6	1.0	0.4, 2.3	0.5	-0.1, 1.1	0.4	-0.3, 1.0	-1:2	-2.5, 0.1	-0-1	-1.5, 1.3	-0.4	-0.8, -0.03*	-0.1	-0.5, 0.3
East Asia 1.0		0.5, 2.2	0·8	0.3, 1.8	0.2	-0.4, 0.8	0.2	-0.4, 0.9	0.6	-0.7, 1.9	0.0	-0.5, 2.2	-0.4	-0.8, -0.1*	-0.2	-0.6, 0.2
East Europe 0.9		0.4, 1.9	0·2	0.2, 1.3	-0.1	-0.7, 0.5	-0.1	-0.7, 0.5	0.01	-1.3, 1.3	0·8	-0.5, 2.2	0.3	-0.02, 0.7	0.5	0.1, 0.9*
Postpartum week 1.0		0.9, 1.0			-0.1	-0.1, -0.01*	-0.3	$-0.1, -0.03^{**}$	0.1	-0.04, 0.2			0.02	-0.01, 0.05		
Age, per 5 year 0.8		0.7, 1.0*			-0.2	-0.4, -0.1**			0.7	0.4, 1.0**	0.5	0.2, 0.9**	0.1	-0.01, 0.02	0.1	0.01, 0.2*
Multiparous (primiparous = reference) 0.6		0.4, 0.8**	9·0	0.4, 0.8**	-0.2	-0.5, 0.1	-0.3	$-0.6, -0.04^{*}$	-0.1	-0.4, 0.2	0·8	0.1, 1.4*	-0.03	-0.1, 0.1	-0.2	-0.3, 0.02
Pre-pregnant Body Mass Index, 1.0		0.8, 1.2			0.2	0.03, 0.3*			-0,1	-0.4, 0.4			0.03	-0.1, 0.1		
per 5 kg/m ²																
Adult socioeconomic position ^b 0.8		7, 0.9*			€·0–	-0.4, 0.1**			0.0	0.3, 0.9**			0.2	0.1, 0.2**		
on°		0.7, 1.0			-0.2	-0.4, -0.1**			ю. О	0.01, 0.6*			0.2	0.1, 0.3**	0.1	0.03, 0.2*
Gestational ID or anaemia 1.3		0.9, 1.8	1·6	1.0, 2.5*	2.0	1.4, 2.6**	1.7	1.1, 2.4**	-2.5	$-3.4, -1.5^{**}$	-2.5	$-3.5, -1.5^{**}$	6.0-	-1.3, -0.6**	-0.9	$-1.3, -0.6^{**}$
(no = reference) ^d																
Iron supplementation use in GW 28 0.6		0.4, 0.9*	0.5	0.3, 0.7**	-0.3	-0.6, -0.004*	-0.6	-0.9, -0.3**	0 [.] 8	0.1, 1.4*	<u>ι</u>	0.7, 1.9**	-0.002	-0.2, 0.2	0.2	0.004, 0.3*
(no = reference) ^e																
Unhealthy dietary pattern 2.2		1.5, 3.3**	2·8	1.7, 4.5**	9·0	0.3, 1.0**	0.4	0.1, 0.8*	-1:5	-2·2, -0·8**	-1:3	-2·1, -0·5**	-0.2	-0.4, -0.1**	0.04	-0.2, 0.2
(healthy = reference) ^f																
Chronic illness/medication associated with 1.5		0.5, 4.4			0 [.] 8	-0.1, 1.7			-0.1	-2.0, 1.9			-0-8	-1.3, -0.2**	-0·8	-1.4, -0.3**
normochromic anaemia																
Chronic illness/medication associated with 0.7		0.4, 1.3			-0.2	-0.7, 0.3			0.4	-0.7, 1.4			-0.1	-0.3, 0.2	-0.1	-0.3, 0.2
nypocnromic anaemia (no = reference) ^h																
Onerstive delivery (no - reference) ¹		0.0 1.0			-0.03	-0.3 0.3			0.5	-1.0 0.1			0.01	0.0 0.0		
		1.4 6.0**	2.2	1.5 7.4**	000		6.0	0.0 0.0	9 4 -		0.0	**C2.2	000			0 8 0 1 *
			5	t	5	0.0	5	0.0	2	- F.9.	2	· · · · · ·	10	00,00		- ó, ó,
					10 0				Ċ	****			Ċ			
Birm complications (no = reterence) 1.4		0.9, 2.2			0.07	-0.3, 0.5			0.0	-1.6, -0.04"			I-0-	-0.3, 0.2		

^o Variable derived from a separate principal components analysis of three childhood socio-demographic variables representing maternal SEP at age 10 years, with a higher score reflecting higher SEP. ^d Gestational iron deficiency by (1) SF <15 µg/l; (2) sTfR >44 mg/l or (3) TBI <0mg/kg; and gestational anaemia by trimester-specific haemoglobin < 10.5 or 11-0 g/dl, analysed in mean gestational week 15-1. ^e Self-reported intake of iron supplements during the past 2 weeks at all three study visits dichotomised into 'yes', covering daily or intermittent iron supplements, and 'no'.

Data from a food frequency questionnaires collected in GW 28; four clusters were extracted using the Ward's method. Clusters were referred to as 'a healthier dietary pattern' v. three 'less healthy dietary patterns'; here dichotomised into 'healthy' and 'unheatthy' dietary pattern. ⁹ Self-reported chronic illness or medication associated with normochromic anaemia (i.e. kidney or rheumatic disease, use of carbamazepine or infliximab).

^hSelf-reported chronic illness or medication associated with ID and hypochromic anaemia (i.e. gastrointestinal disease or Copper intrautenne device use before conception). ¹Operative delivery: Caesarean section (elective and emergency) or assisted vaginal delivery (forceps or vacuum), with normal vaginal delivery as a reference. ¹A composite variable created by combining following four birth complication; episiotomy, third- and fourth-degree perineal tear, obstructed labour and manual removal of placenta. * P<0.05, **P<0.01.

9

better predictor of ID, a lower threshold for ID by SF might perform better. This is supported by our findings that the prevalence of ID by SF <12 µg/l, also a widely used definition⁽¹⁶⁾, provided more comparable prevalence rates to those for sTfR and TBI (29 % v. 19 and 22 %, respectively). SF is an acute phase protein and the concentration is known to increase with infection and inflammatory processes, and can lead to an underestimate of ID⁽¹⁷⁾. sTfR and TBI are believed to better assess the severity of ID, as the sTfR is proportional to the cellular iron demand, but recent studies show that also these biomarkers may be affected by these processes, more specifically low-grade chronic inflammation that can result in an overestimate of $ID^{(11,12)}$. We therefore ran the analyses in women without inflammatory response (CRP < 5), and found only minor changes in the mean/median concentration and prevalence rates of ID and anaemia across ethnic groups and conclude that inflammation could not explain the differences observed in our population. Therefore, we chose not to adjust SF, sTfR or TBI values for CRP to correct for inflammation, as suggested by some others^(11,12,17).

The crude total prevalence estimates for postpartum anaemia are in accordance with other studies from Europe^(1,25), the US^(26,27) and estimates published by the WHO^(2,28) when measured at least >8 weeks postpartum. Although ethnic minority background is recognised as a risk factor^(25,26,29–31), we did not find any studies from Europe reporting prevalence rates stratified by ethnic groups. The prevalence of postpartum anaemia in minority groups in our study was slightly lower than in the US⁽³²⁾, but generally similar to those reported from their country of origin⁽²⁾, although prevalence rates reported from South Asian countries differ considerably (23–62 %)⁽²⁸⁾.

We have only identified two studies reporting postpartum iron status^(26,33), and no studies comparing three different iron indicators or different ethnicities in postpartum women. The prevalence of postpartum ID defined by SF <12 µg/l in the NHANES study⁽²⁶⁾ was about half of the prevalence in our study (13 % v. 29 %) and the mean SF concentration in postpartum women attending the special supplemental nutrition programme for women, infants and children (the WIC-programme) was higher than in our study (37 μ g/l v. $23 \,\mu g/l$ ⁽³³⁾. Of note, few women in our cohort used oral iron supplementation at postpartum. Studies among women in reproductive age, however, consistently indicate that ethnic minority and low SEP groups are at higher risk for the condition than the majority population (6,34-38). In our study, East Asians had lower prevalence of ID (Fig. 2) and generally better iron status than the other ethnic minority groups. Although caution is needed in the interpretation of these findings due to the low number, East Asian women also had higher vitamin D concentrations compared with the other ethnic minority groups⁽⁸⁾, indicating that they may have a generally better nutritional status. Lastly, in line with others, we found that gestational anaemia and ID, an inadequate iron intake, and also postpartum haemorrhage were strongly associated with Hb concentration and poor postpartum iron status^(25-27,30,39,40).

Our study did not suggest that socioeconomic position or level of social integration played an important role in

explaining ethnic differences in postpartum anaemia and ID. Women with South Asian origin had higher sTfR and lower Hb concentrations, both when compared with Western Europeans and with other ethnic minority groups, also after adjusting for covariates, including different measures of social integration, dietary pattern and life course SEP. We can, however, only speculate if this could be related to specific dietary factors among women with South Asian origin, such as Chapatti-based meals which contains a high level of phytates, a well-known inhibitor of iron absorption.

Strength and limitations

The present study's major strength is its population-based cohort design with a high proportion of ethnic minorities, found to be fairly representative for the main ethnic groups of pregnant women living in Oslo, Norway. We present more robust data for anaemia than in our previous study from early pregnancy⁽⁵⁾, and were therefore able to compare the relations between three iron indicators and this clinical outcome. We have a broad, high-quality data set that enabled us to explore the relations between simultaneously measured Hb, and three indicators of ID and adjust for relevant covariates, and including socioeconomic conditions across the woman's life course, and we performed additional analyses to explore the impact of integration. There is, however, also limitations to report, including the possibility of heterogeneity within relatively broad ethnic groups. Furthermore, the number in some ethnic groups was low. We had some loss to follow-up at the postpartum visit, but we prioritised ethnic minority women for blood sampling. Low SF concentrations indicate ID, but different thresholds (<15 or <12 μ g/ml) are used in the diagnosis of ID. To ease comparison with other studies, we primarily used the definition used by WHO when estimating $ID^{(16,23)}$. We lack detailed information on iron intake, and postpartum haemorrhage was not measured exactly, but based on clinical judgement. We may also have underestimated the prevalence of haemoglobinopathy.

Clinical implications

Hb measurements are often performed shortly after delivery, and only in women with postpartum haemorrhage or in women presenting symptoms of anaemia. In view of the clinical consequences of postpartum anaemia, a more active casefinding among high-risk women, such as most ethnic minority women, women with gestational anaemia and ID, and women with excessive postpartum bleeding seems needed - and could be implemented in clinical guidelines for later postpartum follow-up visit. This is also supported by the WHO target to reduce anaemia with 25 % by 2025⁽⁴¹⁾. Laboratory measurements are essential for a proper diagnosis of ID. Although more expensive, sTfR and TBI seem to assess the severity of ID better than SF. As it is considered clinically important to prevent the later stages of ID associated with IDA, our findings suggest that each iron indicator offers a slightly different interpretation of the physiological processes involved in the body's response to low iron stores. Further research is

needed to disentangle the different stages and pathways in more detail.

Conclusion

We present the first population-based study from Europe on postpartum anaemia and ID using three different iron indicators in a multi-ethnic sample of women. In total, 25 % of the women had postpartum anaemia measured 14 weeks after delivery. The prevalence of ID varied between 20 and 40 % by the different iron indicators. The current threshold values used to define ID by sTfR and TBI probably identified a more severe iron-deficient population compared with ID assessed by SF threshold values. Gestational anaemia or ID, insufficient iron intake in pregnancy and postpartum haemorrhage were independent risk factors of postpartum anaemia and ID, but women with South Asian origin had more anaemia and ID by sTfR, even when adjusting for covariates. To improve women's postpartum health status, clearer recommendation about measuring Hb and iron status in women at risk should be implemented in clinical guidelines in Norway and internationally.

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1017/jns.2022.45.

Acknowledgements

We thank the midwives and research staff at the Grorud, Bjerke and Stovner Child Health clinics and the women who participated in the STORK Groruddalen study. We would also like to thank the two laboratories: the Department of Multidisciplinary Laboratory Medicine and Medical Biochemistry in Akershus University Hospital, and the Department of Medical Biochemistry at Oslo University Hospital who performed the analyses. The Norwegian Research Fund for General Practice has funded the PhD fellowship for Marthe-Lise Næss-Andresen. The data collection was supported by the Norwegian Research Council, the Southern and Eastern Norway Regional Health Authority, the Norwegian Directorate of Health, and collaborative partners in the Stovner, Grorud and Bjerke administrative districts of the city of Oslo.

M. N. A.: The Norwegian Research Fund for General Practice.

This research received no specific grant from any funding agency, commercial or not-for-profit sectors.

M. N. A. and L. S. had full access to all data in this study. M. N. A. is responsible for the integrity of data and accuracy of the data analysis; M. N. A., L. S., J. P. B. and A. K. J. revised the study concept and design, contributed to analysis, tables and interpretation of data and critical revision of the manuscript. R. S. F. guided the statistical analysis and revised the tables; and all authors read and approved the final manuscript. None of the authors reported a conflict of interest related to the study.

References

- Milman N (2011) Postpartum anemia I: definition, prevalence, causes, and consequences. *Ann Hematol* 90, 1247–1253.
- Benoist B, McLean E, Egll I, et al. (2008) Worldwide Prevalence of Anaemia 1993-2005: WHO Global Database on Anaemia. Geneva: World Health Organization.
- 3. WHO (2021) Global Anaemia estimates, 2021 Edition.
- Markova V, Norgaard A, Jørgensen K, et al. (2015) Treatment for women with postpartum iron deficiency anaemia (Review). Cochrane Database Syst Rev, Art. No.: CD010861, 15, DOI: 10.1002/ 14651858.CD010861.pub2.
- Naess-Andresen ML, Eggemoen AR, Berg JP, et al. (2019) Serum ferritin, soluble transferrin receptor, and total body iron for the detection of iron deficiency in early pregnancy: a multiethnic population-based study with low use of iron supplements. Am J Clin Nutr 109, 566–575.
- Nybo M, Friis-Hansen L, Felding P, et al. (2007) Higher prevalence of anemia among pregnant immigrant women compared to pregnant ethnic Danish women. Ann Hematol 86, 647–651.
- Bencaiova G, Burkhardt T & Breymann C (2012) Anemia prevalence and risk factors in pregnancy. *Eur J Intern Med* 23, 529–533.
- Eggemoen AR, Falk RS, Knutsen KV, et al. (2016) Vitamin D deficiency and supplementation in pregnancy in a multiethnic population-based cohort. BMC Pregnancy Childbirth 16, 7.
- Kinnunen TI, Sletner L, Sommer C, *et al.* (2017) Ethnic differences in folic acid supplement use in a population-based cohort of pregnant women in Norway. *BMC Pregnancy Childbirth* 17, 143.
- Pfeiffer CM & Looker AC (2017) Laboratory methodologies for indicators of iron status: strengths, limitations, and analytical challenges. *Am J Clin Nutr* **106**, 1606s–1614s.
- Rohner F, Namaste SM, Larson LM, et al. (2017) Adjusting soluble transferrin receptor concentrations for inflammation: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am J Clin Nutr 106, 372S–382S.
- Mei Z, Namaste SM, Serdula M, et al. (2017) Adjusting total body iron for inflammation: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am J Clin Nutr 106, 383S–389S.
- Cook JD, Flowers CH & Skikne BS (2003) The quantitative assessment of body iron. *Blood* 101, 3359–3364.
- 14. Jenum AK, Sletner L, Voldner N, *et al.* (2010) The STORK Groruddalen research programme: a population-based cohort study of gestational diabetes, physical activity, and obesity in pregnancy in a multiethnic population. Rationale, methods, study population, and participation rates. *Scand J Public Health* **38**, 60–70.
- WHO (2011) Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Vitamin and Mineral Nutrition Information System.
- WHO (2001) Iron deficiency anaemia: assessment, prevention and control: a guide for programme managers.
- Namaste SM, Rohner F, Huang J, et al. (2017) Adjusting ferritin concentrations for inflammation: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am J Clin Nutr 106, 359S–371S.
- CDC Environmental Health (2016) Laboratory Procedure Manual. Soluble Transferrin Receptor. Division of Laboratory Sciences. Nutritional Biomarkers Branch.
- Sletner L, Jenum AK, Morkrid K, *et al.* (2014) Maternal life course socio-economic position and offspring body composition at birth in a multi-ethnic population. *Paediatr Perinat Epidemiol* 28, 445–454.
- Sletner L, Nakstad B, Yajnik CS, et al. (2013) Ethnic differences in neonatal body composition in a multi-ethnic population and the impact of parental factors: a population-based cohort study. PLoS One 8, e73058.
- Sommer C, Sletner L, Jenum AK, et al. (2013) Ethnic differences in maternal dietary patterns are largely explained by socio-economic score and integration score: a population-based study. Food Nutr Res 57, 21164, http://dx.doi.org/10.3402/fnr.v57i0.21164.

- Waage CW, Mdala I, Stigum H, et al. (2022) Lipid and lipoprotein concentrations during pregnancy and associations with ethnicity. BMC Pregnancy Childbirth 22, 246.
- 23. WHO (2005) Assessing the Iron Status of Populations: Report of a Joint World Health Organization/Centers for Disease Control and Prevention Technical Consultation on the Assessment of Iron Status at the Population Level, Geneva, Switzerland, 6–8 April 2004. Geneva: World Health Organization, Department of Nutrition for Health and Development.
- Hallberg L, Bengtsson C, Lapidus L, *et al.* (1993) Screening for iron deficiency: an analysis based on bone-marrow examinations and serum ferritin determinations in a population sample of women. *Br J Haematol* 85, 787–798.
- Bergmann RL, Richter R, Bergmann KE, et al. (2010) Prevalence and risk factors for early postpartum anemia. Eur J Obstet Gynecol Reprod Biol 150, 126–131.
- Bodnar LM, Cogswell ME & McDonald T (2005) Have we forgotten the significance of postpartum iron deficiency? *Am J Obstet Gynecol* 193, 36–44.
- Bodnar LM, Siega-Riz AM, Miller WC, et al. (2002) Who should be screened for postpartum anemia? An evaluation of current recommendations. *Am J Epidemiol* 156, 903–912.
- 28. WHO (2015) The Global Prevalence of Anaemia in 2011.
- Bodnar LM, Cogswell ME & Scanlon KS (2002) Low income postpartum women are at risk of iron deficiency. J Nutr 132, 2298–2302.
- Bodnar LM, Siega-Riz AM, Arab L, et al. (2004) Predictors of pregnancy and postpartum haemoglobin concentrations in low-income women. Public Health Nutr 7, 701–711.
- Barroso F, Allard S, Kahan BC, *et al.* (2011) Prevalence of maternal anaemia and its predictors: a multi-centre study. *Eur J Obstet Gynecol Reprod Biol* 159, 99–105.

- Miller EM (2014) Iron status and reproduction in US women: National Health and Nutrition Examination Survey, 1999-2006. *PLoS One* 9, e112216.
- Pehrsson PR, Moser-Veillon PB, Sims LS, et al. (2001) Postpartum iron status in nonlactating participants and nonparticipants in the special supplemental nutrition program for women, infants, and children. Am J Clin Nutr 73, 86–92.
- Le CH (2016) The prevalence of anemia and moderate-severe anemia in the US population (NHANES 2003-2012). PLoS One 11, e0166635.
- Barton JC, Wiener HH, Acton RT, et al. (2020) Prevalence of iron deficiency in 62,685 women of seven race/ethnicity groups: the HEIRS study. PLoS One 15, e0232125.
- Beck KL, Conlon CA, Kruger R, et al. (2014) Blood donation, being Asian, and a history of iron deficiency are stronger predictors of iron deficiency than dietary patterns in premenopausal women. BioMed Res Int 2014, 652860.
- Fischbacher C, Bhopal R, Patel S, et al. (2001) Anaemia in Chinese, South Asian, and European populations in Newcastle upon Tyne: cross sectional study. Br Med J (Clinical Res Ed) 322, 958–959.
- Morrone A, Nosotti L, Piombo L, *et al.* (2012) Iron deficiency anaemia prevalence in a population of immigrated women in Italy. *Eur J Public Health* 22, 256–262.
- Milman N (2011) Postpartum anemia I: definition, prevalence, causes, and consequences. *Ann Hematol* 90, 1247–1253.
- Milman N, Taylor CL, Merkel J, *et al.* (2017) Iron status in pregnant women and women of reproductive age in Europe. *Am J Clin Nutr* 106, 16558–1662S.
- WHO (2014) Global nutrition targets 2025: Anaemia policy brief, WHO/NMH/NHD/14.4 ed. https://www.who.int/publications/ i/item/WHO-NMH-NHD-14.4.