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BY 
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Banchoff and Pohl [3] have proved the following generalization of the 
isoperimetric inequality. 

THEOREM. If y is a closed, not necessarily simple, planar curve of length L, 
and w(p) is the winding number of a variable point p with respect to y, then 

(1) f w2dA^, 

with equality holding if and only if y is a circle traversed a finite number of times 
in the same sense. 

The object of this note is to give an elementary proof of this result based on 
the classical isoperimetric inequality, polygonal approximations, and some 
familiar theorems of real analysis. The identity 

(2) I wdA=- I (xdy-ydx), 
JR2 * Jy 

which relates two different formulas for signed area, is also established here, as 
a corollary. 

In [3] Banchoff and Pohl actually proved an n -dimensional version of the 
theorem above, using methods of integral geometry and making smoothness 
assumptions not needed in the planar case. Fédérer and Fleming, in their 
theory of currents, also obtained an abstract isoperimetric inequality [5, p. 486, 
line 8] of which the inequality (1) seems to be a special case. The identity (2) 
was proved by Radô [9]. Radô later [10] proved an inequality similar to (1), 
with w2 replaced by the smaller quantity |w|. These developments and others 
are reviewed in the survey article of Osserman [8]. 

We consider a closed rectifiable curve y in the plane—that is, a continuous 
map taking real numbers t in some interval [a, b] into points p(t) = (x(t), y(t)) 
in R2 in such a way that p(a) = p(b) and that the length 

L(?) = sup{ £ d(p(ti),p(ti+1)):n>2,a = t0<--<tn = b\ 

Received by the editors March 13, 1979 

161 

https://doi.org/10.4153/CMB-1981-026-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1981-026-8


162 A. VOGT [June 

is finite. Here d is the Euclidean metric on JR2. To avoid triviality, we assume 
that L ( Y ) > 0 . 

For a point p of JR2 not in range 7, the winding number w(p) of p with 
respect to 7 (see [1, Chap. 2] or [7, Chap. 7]) is equal to (0(b)-0(a))/27r, 
where 0(f) is the angle at p between p(f) and a fixed point q^p, measured 
counterclockwise from q and continuously as f varies. The function w is 
integer-valued, the set {p :w(p) = n} is open for each integer n, and w vanishes 
outside a compact set. 

Since 7 is rectifiable, range 7 has Lebesgue measure zero. So w is defined 
a.e. and is measurable. Rectifiability of 7 also implies that the component 
functions of 7, t*-*x(t) and f«-»y(f), are of bounded variation and define 
Riemann-Stieltjes measures on the interval [a, b]. In particular, the line 
integral in (2) is well-defined. 

In case 7 is polygonal, 7 will be represented by a string pQpx • • • pn, where 
the points p0, p 1 ? . . . , pn are the vertices of 7, pt ̂  pi+1 for 1 < i + 1 < n, and n is 
called the number of vertices of 7. Range 7 is the union of the closed line 
segments [ph pi+1], with successive line segments being homeomorphic images 
of successive closed subintervals of [a, b]. Since the exact choice of 
homeomorphisms does not affect w or the line integral in (2), this choice is left 
unspecified. Because 7 is closed, pn = p0 and n > 2. 

LEMMA. Let 7 be polygonal. Then (1) and (2) are satisfied. 

Proof. Let 7 = p0Pi • • * pn. The proof is an induction on n. If n = 2, range 7 
is collinear. Hence, w = w 2 ~ 0 a.e., w and w2 are integrable, and the left sides 
of (1) and (2) vanish. Since the right side of (2) is invariant under Euclidean 
motions, we can assume y = 0 = dy along 7, and thus the right side of (2) also 
vanishes. Supposing that the lemma is valid for n = 2 , . . . , k, we now consider 
the case when n — k 4-1 > 3. 

If 7 is a simple closed curve, the theory of Jordan curves [1, p. 64] shows 
that w is identically equal to 1 or - 1 inside 7 and identically equal to 0 outside 
7. Then (1) is just the classical isoperimetric inequality (proved in Courant-
Hilbert [4], for example), and this inequality shows incidentally that w2 and w 
are integrable. The identity (2), on the other hand, is a special case of Green's 
Theorem [2, p. 289] or can be proved directly by decomposing the polygonal 
area bounded by 7 into a sum of signed triangular areas. 

If 7 is not simple, let q be a point where 7 intersects itself. Then 7 can be 
decomposed into two closed polygonal subarcs yx and y2, complementary 
portions of 7 each having q as initial and terminal point. Apart from q itself, 
the vertices of yt and y2 are consecutive members of the cyclically ordered list 
p l 5 . . . , pk+1. If n{ is the number of vertices of yt for i = 1, 2, then 2<nt < 
k + 1: otherwise, one of the polygonal arcs yx or y2 has q as its only vertex, and 
this is impossible. 
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Suppose y1 or y2—say Yi—has exactly n = k + 1 vertices. Then y2 has two 
vertices—q and an original vertex ph q is distinct from ph and q lies in 
lPi-uPi)^(Pv Pi+ii (Here l < * < n , and if i = n, "i + 1" should be replaced by 
"1".) If two line segments have an endpoint pt and one other point q in 
common, one segment must be a subset of the other. Then new subarcs yx and 
72 can be defined as follows: (i) if [ft-i, pt) is a proper subset of (pi? pi+1], let 
Yi = P»-iPi+i • • • PnPi " ' ' Pi-i a n d Y2 = Pi-iPiPi-i; (ii) if (ft, P H I ] is a proper 
subset of [#_!, A ) , let yt = p i + 1 • • • pnpx • • • Pi-Xpi+1 and Y2 = Pi+iPiPi+i', and (iii) 
if Pi-i = ft+i> let 7i = pi+1 • • • pnPi • • • Pi-t and Y2 = Pi-iPift+i- The new subarcs 
are closed polygonal curves decomposing 7, and they satisfy nx = n — 1 = k and 
n2 = 2. 

The above demonstrates that if 7 is not simple, 7 can be divided into two 
closed polygonal curves yx and y2 whose numbers of vertices nt and n2 satisfy 
2 < nt < fc for i = l , 2 . By the inductive hypothesis Yi and y2, and their winding 
number functions wx and w2, satisfy (1) and (2). Since y differs only trivially 
from the curve Y1Y2 consisting of Yi followed by y2, y and Y1Y2 h a v e the same 
winding number function and the same length and the line integrals of 
xdy-y dx over Y and YiY2 are the same. It follows that w = wx + w2 a.e., that 
w inherits integrability and square-integrability from wx and w2, and that if || || 
denotes the L2 norm for functions defined on JR2, then 

H I = | | w 1 + w 2 | N W + | | w j ^ ^ + ^ = ^ . 
V47T V47r V47T 

Squaring the first and last terms, we obtain (1). Likewise, 

j ^ wdA = J ^ (w1 + w 2 ) d A = - y + 1 j ( x d y - y d x ) = - J ( x d y - y d x ) , 

and (2) is established. I 

Proof of the theorem. For simplicity we reparametrize Y by arc length s so 
that s is mapped to p(s) for 0 < S < L = L ( Y ) . Such a reparametrization does 
not affect w or the line integral in (2). 

Let n be an integer >2, and let s^jL/n for 0 < / < H . Choose numbers 
t0, * i , . . . , fn+i satisfying the following conditions: (i) t0 = s0 = 0; (ii) fn+1 = sn = 
L; (iii) s^<*•=£$ for l < / < n ; and (iv) p(tf)±p(fJ+1) for 0 < / ' < n . Condition 
(iv) can be satisfied since the set {p(r):s J_1<r<s J} consists of infinitely many 
points for each 7 = 1 , . . . , n. 

Let Yn t>e ^ e closed polygonal curve p(f0)p(*i) ' * * p(tn+1), parametrized in 
the following way. For 0 < f < L , Yn takes t to qn(t) so that: (i) qn(i) = p(t) for 
t=t0,...,tn+1; and (ii) t»-»qn(0 is a homeomorphism of [f,, f m ] onto 

[ p ( ^ P ( ^ + i ) ] f o r 0 ^ / ^ w -
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Next we define a homotopy hn :[0, L]x[0 , 1 ] - > J R 2 by hn(t,\) = 
(1-A)p(0 + Aqn(f). This homotopy deforms the curve y into the polygonal 
curve yn. Since 7 and yn are homotopic closed curves, their winding number 
functions w and wn agree on points outside range hn (see [1, p. 48] or [7, p. 
192]). 

For j = 0, . . . , n , let B(n, j) = {p:d(p,p(Sj))<L/n}. For s in [ri? fi+1], 
d(p(s), p(Sj))^\s-Sj\ since s is an arc length parameter; and j s - s , ! ^ 
max{*,-+!-si? Sj-tj}<Lln by definition of the t/s. Thus p(s) is in B(n,j). 
However, J3(n, j) is a convex set. Consequently, for t in [£,, fi+1], the point qn(0, 
which lies on the line segment [p(tj), p(fJ+1)], is in B(n, /). Moreover, for f in 
[fy, ti+1] and A in [0, 1], the point hn(t, A), which lies in [p(t), qn(t)], is also in 
B(nJ). We conclude that range hn is a subset of Vn =Uj l=0 B(n, j) = 

Llj1»! B(n,j). 
The Lebesgue measure of Vn is <mr(Lln)2 = 7rL2/n since each set B(n, j) is 

a disc of radius L/n. Thus w(p) = wn(p) for all points p outside a set of measure 
<7rL2/n. SO the sequence {wn} converges in measure to w. By a theorem of F. 
Riesz [6, p. 156], there exists a subsequence {wn(k)} which converges pointwise 
a.e. to w. (For notational convenience, we will use the subscript k instead of 
n(k) henceforth.) The polygonal curves {yn} satisfy (1), and L(yn)<L(y). So 
by Fatou's lemma [6, p. 172], 

w2 dA = \ lim inf w2- dA < lim inf w2- dA 
JR2 JR2 JR2 

<lim inf L(yk)
2/4iT < L(y)2/4ir. 

Thus (1) is proved, along with square-integrability of w. 
The inequality (1) becomes an equality when 7 is a circle of radius r 

traversed n times in the same sense: for then both sides of (1) equal 7rn2r2. To 
see that equality can occur in no other way, consider the class T of all closed 
rectifiable curves, parametrized by arc length, which reduce (1) to an equality. 
Define a function y «->n(y) for 7 in T by 71(7) = min {|w(p)| : p is not in range 7 
and w(p)^0}, where w is the winding number function of 7. Since (1) is an 
equality, positivity of L(y) implies that w takes nonzero values and so ^1(7) is 
well-defined. 

If 7 is a member of T which is not a simple closed curve, 7 can be 
decomposed into two successive closed subarcs yx and y2 parametrized by arc 
length and having positive lengths. Since 7 differs only trivially from the 
combined curve 7i72 , L(y) = L(y1) + L(y2) and w = wx + w2 a.e., where v^ and 
w2 are winding number functions for yx and y2. Applying the L2 norm || || and 
(1), we find that ||w|| = ||w1 + w2|| <\\w^ +1|w2|| < (L(T l) + L(7 2 ) ) /V4TT = L ( 7 ) /V4TT. 

the first and last terms above are equal by hypothesis. So ||w£|| = L(7i)/V4Tr for 
i = 1, 2, and yx and 72 are in T. Furthermore, equality in the triangle inequality 
implies that w1 = Xuw and w 2 =( l -A)ww where u = ±1 and 0 < A < 1 . Thus 

https://doi.org/10.4153/CMB-1981-026-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1981-026-8


1981] THE ISOPERIMETRIC INEQUALITY 165 

n(y1) = An(y) and n(y2) = ( 1 - k)n(y), and both niy^ and n(y2) are strictly 
smaller than n(y). 

The decomposition described in the last paragraph can be repeated as long 
as one or more of the resulting subarcs fails to be simple. However, y*->n(y) is 
a function with positive integer values and decreases strictly at each decompos
ition. So only finitely many decompositions are possible before one arrives at 
simple closed curves. It follows that for a curve 7 in T, there exist simple closed 
curves yl9..., yn in T such that L(y) = L(y1) + - • - + L(yn), and such that 
w = w1 + - - • + wn a.e., where w 1 ? . . . , wn, w are winding number functions of 
yl9 . . . , yn, 7. 

Since y l 5 . . . , yn are simple closed curves, their winding number functions 
assume only two values—namely, 0 and ±1 . Hence, equality in (1) implies 
equality in the classical isoperimetric inequality; and so yl9..., yn must be 
circles. On the other hand, ||w|| = |lwi + * ' ' +wJI —llwill + •• • + ||wn|| = 
(L(7x) + - • ' + L(yn))lJ4ir=L(y)ly/4ir=\\w\\. Then by the Cauchy-Schwarz in
equality, Wj = XjUW a.e. for u = ±1 and for positive numbers A 1 ? . . . , An sum
ming to 1. Since the winding number function of a circle is nonzero only inside 
the circle and since wl9..., wn vanish simultaneously, yl9..., yn must repres
ent the same circle; since w 1 ? . . . , wn have the same sign inside this circle, we 
further conclude that yx,..., yn represent the same circle traversed in the 
same sense. 

To show that the initial curve 7 is a circle traversed a finite number of times 
in the same sense, we reverse the decomposition process. It suffices to show 
that if Yi and y2 are obtained from 7 by decomposition and if y1 and y2 are 
each circles traversed a finite number of times in the same sense—the circle 
and the sense being common to yt and y2, then 7 is likewise. But this is 
obvious. So the theorem is proved. I 

COROLLARY 1. Under the hypotheses of the theorem, let An be the Lebesgue 
measure of the set {p: w(p) exists and |w(p)|>n}. Then 

00 

I n 2(A n-A n + 1)<L(T) 2 /4T7 
n = l 

and 

An <L(7)2/47m2 for all n > 1. 

Proof. The first inequality is a restatement of (1). The second inequality also 
results from (1) when it is observed that the integral of w2 over R2 is greater 
than or equal to the integral of w2 over {p : |w(p)| > n}, which in turn is greater 
than or equal to n2An. I 

COROLLARY 2. Under the hypotheses of the theorem, the signed area identity 
(2) is satisfied. 
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Proof. Let {yn} be the sequence of closed polygonal curves described in the 
proof of the theorem. Then a straightforward computation shows that (|) 
$yn (xdy-y dx) is equal to 

I) t [xit^yit^-yit^-yit^xit^-xitM 

The last expression can be interpreted as a Riemann-Stieltjes sum for the line 
integral of (D(xdy-ydx) along 7 because the points p(tj) = (x(tf), y(tj)) for 
0 < / < M are successive points on both 7n and 7. As n approaches 00, this sum 
converges to the Riemann-Stieltjes integral | J 7 ( x d y - y dx). Since (2) is valid 
for polygonal curves by the lemma, it follows that the winding number 
functions vvn of yn satisfy: 

(2.1) lim wndA = ~\ (xdy-ydx). 
n-*°° JR2 2 Jy 

Recall from the proof of the theorem the subsequence {wk} which converges 
a.e. to w. Let M be a fixed positive integer, and let gM,k(p) = 1 if |w k (p) |<M 
and |w(p) |<M and gM,k(p) = 0 otherwise. Then 

I wk dA - | wk dA + | gM,kO - wk) dA - I w dA 

{p:|w(p)|<M} 

j wkdA + J 

(2.2) 

{p :K(p ) |>M} "" " {p:|w(p)|<M} 

w dA. 

{p:K(p) |<M, |w(p) |>M} {p:lwk(p)|>M,|w(p)|<M} 

We analyze what happens to the terms on the right side of (2.2) as k 
approaches 00. By (2.1) the first term converges to (|) j"^ (x dy - y dx). Let C be 
a compact set outside of which all the winding number functions {wk} and w 
vanish (the manner of construction of the curves {7n} shows that we may take C 
to be any closed disc containing range 7), and let Xcip) be the characteristic 
function of C. Then Lebesgue's Dominated Convergence Theorem [6, p. 172] 
can be applied to gM,k(w- wk) because |gM,k(w- w k ) |<2M^ c and the latter is 
integrable. Thus, since lim^oo gM,k(w- wk) = 0 a.e., the second term on the 
right side of (2.2) converges to 0. The fourth term on the right side of (2.2) has 
absolute value < M times the measure of {p:wk(p)^ w(p)}<MirL2/n(k) (see 
the proof of the theorem), and since n(k) approaches ™ as k does, this term 
approaches 0. In like manner, the fifth term on the right side of (2.2) 
approaches 0. 

Thus 

wk dA = - (xdy-y dx)- wdA, lim 
k^>°° 

{p:iwk(p)|^M} {p:|w(p)|<M} 
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or equivalently 

(2.3) - (x dy - y dx)\ w dA = lim wkdA- w dA. 

{p:|wk(p)|>M} {p:|w(p)|>Ml 

But the integral of wk over {p : |wk(p)| > M } has absolute value < the integral of 
wl/M over R2<L(yk)

2/4TrM<L(y)2/4irM for all k. Similarly, the integral of 
w over {p: |w(p)|>M} has absolute value < L(y)2/4irM. So the left side of 
(2.3) has absolute value < L ( Y ) 2 / 2 T T M . Since the left side does not depend on 
M, M can be increased without bound to yield the identity (2). I 
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