ARITHMETICAL FUNCTIONS OF A GREATEST COMMON DIVISOR, III. CESÀRO'S DIVISOR PROBLEM by ECKFORD COHEN

(Received 20 October, 1960)

1. Introduction. Let $\sigma_{t}(n)$ denote the sum of the t th powers of the divisors of n, $\sigma(n)=\sigma_{1}(n)$. Also place

$$
\begin{equation*}
v(x)=x^{2}\left\{\log x+2 \gamma-\frac{1}{2}-\frac{1}{2} \zeta(2)\right\}, \quad \Delta(x)=\sum_{a, b \leq x} \sigma((a, b))-v(x), \tag{1.1}
\end{equation*}
$$

where γ is Euler's constant, $\zeta(s)$ is the Riemann ζ-function and $x \geqq 2$. The function $\Delta(x)$ is the remainder term arising in the divisor problem for $\sigma((m, n))$. Cesàro proved originally [1], [6, p. 328] that $\Delta(x)=o\left(x^{2} \log x\right)$. More recently in I [2, (3.14)] it was shown by elementary methods that $\Delta(x)=O\left(x^{3 / 2} \log x\right)$. This estimate was later improved to $O\left(x^{3 / 2}\right)$ in II [3, (3.7)]. In the present paper (§3) we obtain a much more substantial reduction in the order of $\Delta(x)$, by showing that $\Delta(x)$ can be expressed in terms of the remainder term in the classical Dirichlet divisor problem. On the basis of well known results for this problem, it follows easily that $\Delta(x)=O\left(x^{4 / 3}\right)$. The precise statement of the result for $\sigma((m, n))$ is contained in (3.2).

The analogous problem for $\sigma_{2}((m, n))$ is also considered in §3. Place

$$
\begin{equation*}
\Delta^{\prime}(x)=\sum_{a, b \geqq x} \sigma_{2}((a, b))-\frac{x^{3}}{3}\{2 \zeta(2)-\zeta(3)\} . \tag{1.2}
\end{equation*}
$$

It was shown in $[2,(3.13)]$, $[3,(3.5)]$ that $\Delta^{\prime}(x)=O\left(x^{2} \log x\right)$. In this paper, we express $\Delta^{\prime}(x)$ in terms of the remainder term in the divisor problem for $\sigma(n)$, obtaining as a consequence a material improvement in the order of $\Delta^{\prime}(x)$. The main result in the case of $\sigma_{2}((m, n))$ is found in (3.9).

In § 4 we consider average values in two classes of functions generalizing $\sigma((m, n))$ and $\sigma_{2}((m, n))$, respectively. The results are analogous to those obtained for $\Delta(x)$ and $\Delta^{\prime}(x)$ in $\S 3$, and furnish improvements on estimates proved in [2, Theorem ($\alpha=1, \alpha=2$)], (also see [3, Theorem 4.1]). The corollaries of $\S 4$ contain estimates for the special functions $\phi((m, n))$ and $\phi_{2}((m, n))$, where $\phi_{t}(n)$ denotes the generalized totient function.

The method of this paper is essentially a refinement of that employed in II.
2. Preliminary details. We collect in this section a number of known miscellaneous facts that will be needed in the later discussion. Denoting by $[x]$ the integral part of x, we place $\psi(x)=x-[x]-\frac{1}{2}$ and write

$$
\begin{equation*}
\rho(x)=\sum_{n \leq V_{x}} \psi\left(\frac{x}{n}\right), \quad \rho^{\prime}(x)=\sum_{n \leqq x} \frac{1}{n} \psi\left(\frac{x}{n}\right) . \tag{2.1}
\end{equation*}
$$

The functions $\rho(x)$ and $\rho^{\prime}(x)$ occur in the remainder terms of the average-value problems for $\tau(n)=\sigma_{0}(n)$ and $\sigma(n)$, respectively. In particular, we recall that [8, p. 16], [5, p. 37],

$$
\begin{equation*}
\delta(x)=-2 \rho(x)+O(1), \quad \delta^{\prime}(x)=-x \rho^{\prime}(x)+O(x) \tag{2.2}
\end{equation*}
$$

where $\delta(x)$ and $\delta^{\prime}(x)$ are the " remainders",

$$
\delta(x)=\sum_{n \leq x} \tau(n)-x(\log x+2 \gamma-1), \quad \delta^{\prime}(x)=\sum_{n \leq x} \sigma(n)-\frac{1}{2} x^{2} \zeta(2) .
$$

It is also remarked that, if α and β are the least values such that for all $\varepsilon>0$,

$$
\begin{equation*}
\rho(x)=O\left(x^{\alpha+\varepsilon}\right), \quad \rho^{\prime}(x)=O\left\{(\log x)^{\beta+\varepsilon}\right\} \tag{2.3}
\end{equation*}
$$

then $\alpha \leqq 27 / 82$ [4], $\beta \leqq 4 / 5$ [5]. While these estimates have been improved, the exact values of α and β are still unknown. It is easily verified that $\alpha>0, \beta \geqq 0$ (compare [9, p. 187]).

The following classical estimates will also be required. In particular [8, p. 15],

$$
\begin{equation*}
\sum_{n \leqq x} \frac{1}{n}=\log x+\gamma-\frac{\psi(x)}{x}+O\left(\frac{1}{x^{2}}\right) \tag{2.4}
\end{equation*}
$$

moreover [7, (2), p. 26)]

$$
\begin{equation*}
\sum_{n \leq x} \frac{1}{n^{\alpha}}=\zeta(\alpha)-\frac{1}{(\alpha-1) x^{\alpha-1}}+O\left(\frac{1}{x^{\alpha}}\right) \quad(\alpha>1) \tag{2.5}
\end{equation*}
$$

In addition, we note the elementary fact that

$$
\begin{equation*}
\sum_{n>x} \frac{\log n}{n^{2}}=O\left(\frac{\log x}{x}\right) \tag{2.6}
\end{equation*}
$$

Adopting the notation

$$
\begin{equation*}
S_{1}^{*}(x)=\sum_{a, b \leqq x} \sigma((a, b)), \quad S_{2}^{*}(x)=\sum_{a, b \leqq x} \sigma_{2}((a, b)), \tag{2.7}
\end{equation*}
$$

we remark [3, (3.9)] that

$$
\begin{equation*}
S_{1}^{*}(x)=\sum_{n \leqq \sqrt{ } x}\left(2 n-\frac{1}{2}\right)\left[\frac{x}{n}\right]^{2}+\sum_{n \leqq \sqrt{ } x}\left(n-\frac{1}{2}\right)\left[\frac{x}{n}\right]-\frac{1}{2}[\sqrt{ } x]^{4}-\frac{1}{2}[\sqrt{ } x]^{3} ; \tag{2.8}
\end{equation*}
$$

moreover

$$
\begin{equation*}
S_{2}^{*}(x)=\frac{1}{3} \sum_{n \leqq x}(2 n-1)\left[\frac{x}{n}\right]^{3}+\frac{1}{2} \sum_{n \leqq x}(2 n-1)\left[\frac{x}{n}\right]^{2}+\sum_{n \leq x}(2 n-1)\left[\frac{x}{n}\right], \tag{2.9}
\end{equation*}
$$

the latter relation following from [3, (3.8)] in conjunction with the identity

$$
\sum_{a \leqq n} a^{2}=\left(2 n^{3}+3 n^{2}+n\right) / 6 .
$$

The next lemma was proved first in II. Let $g(n)$ and $h(n)$ denote arbitrary arithmetical functions and place

$$
\begin{gather*}
f(n)=\sum_{d \delta=n} g(d) h(\delta), \tag{2.10}\\
k(n)=\sum_{d \mid n} h(d), \quad q(n)=\sum_{d \mid n} g(d) \mu\left(\frac{n}{d}\right), \tag{2.11}
\end{gather*}
$$

where $\mu(n)$ denotes the Möbius function. Furthermore, let $K^{*}(x)$ denote the summatory function of $k((m, n)), K^{*}(x)=\sum_{a, b \leq x} k((a, b))$. We have [3, (4. 2)]

Lemma 2.1. On the basis of the above notation

$$
\begin{equation*}
\sum_{a, b \leqq x} f((a, b))=\sum_{n \leqq x} q(n) K^{*}\left(\frac{x}{n}\right) . \tag{2.12}
\end{equation*}
$$

Finally, we mention the following estimate proved in II:
Lemma 2.2 [3, Lemma 4.2]. If $g(n)$ is bounded then $q(n)=O\left(n^{\xi}\right)$ for all $\xi>0$.
3. The average order of $\sigma((m, n))$ and $\sigma_{2}((m, n))$. We consider first the function $\sigma((m, n))$.

Theorem 3.1. If $\rho(x)$ is defined by (2.1), then

$$
\begin{equation*}
\Delta(x)=-4 x \rho(x)+O(x \log x) \tag{3.1}
\end{equation*}
$$

moreover, for all $\varepsilon>0$,

$$
\begin{equation*}
\Delta(x)=O\left(x^{1+\alpha+\ell}\right) \tag{3.2}
\end{equation*}
$$

where α is defined by (2.3).
Proof. Denote by $S_{1}, S_{2}, S_{3}, S_{4}$ respectively, the four terms arising in (2.8). Applying (2.4) and (2.5), one obtains

$$
\begin{aligned}
S_{1}= & \sum_{n \leqq \sqrt{ } x}\left(2 n-\frac{1}{2}\right)\left\{\frac{x}{n}-\left(\psi\left(\frac{x}{n}\right)+\frac{1}{2}\right)\right\}^{2}=\sum_{n \leqq \sqrt{ } x}\left(2 n-\frac{1}{2}\right)\left\{\frac{x^{2}}{n^{2}}-\frac{2 x}{n}\left(\psi\left(\frac{x}{n}\right)+\frac{1}{2}\right)+O(1)\right\} \\
= & 2 x^{2} \sum_{n \leqq \sqrt{ } x} \frac{1}{n}-\frac{1}{2} x^{2} \sum_{n \leqq \sqrt{ } x} \frac{1}{n^{2}}-4 x \sum_{n \leqq \sqrt{ } x}\left(\psi\left(\frac{x}{n}\right)+\frac{1}{2}\right)+x \sum_{n \leq \sqrt{ } x} \frac{1}{n}\left\{\psi\left(\frac{x}{n}\right)+\frac{1}{2}\right\}+O\left\{\sum_{n \leq \sqrt{ } x} n\right\} \\
= & 2 x^{2}\left\{\frac{\log x}{2}+\gamma-\frac{\psi(\sqrt{ } x)}{\sqrt{ } x}+O\left(\frac{1}{x}\right)\right\}-\frac{1}{2} x^{2}\left\{\zeta(2)-\frac{1}{\sqrt{ } x}+O\left(\frac{1}{x}\right)\right\} \\
& -4 x \sum_{n \leqq \sqrt{ } x} \psi\left(\frac{x}{n}\right)-2 x\{\sqrt{ } x+O(1)\}+O\left\{x \sum_{n \leqq \sqrt{ } x} \frac{1}{n}\right\}+O(x),
\end{aligned}
$$

from which it follows that

$$
\begin{equation*}
S_{1}=x^{2}\left\{\log x+2 \gamma-\frac{1}{2} \zeta(2)\right\}-4 x \rho(x)-2 x^{3 / 2} \psi(\sqrt{ } x)-\frac{3}{2} x^{3 / 2}+O(x \log x) \tag{3.3}
\end{equation*}
$$

As for S_{2} we have

$$
S_{2}=\sum_{n \leqq \sqrt{ } x}\left(n-\frac{1}{2}\right)\left[\frac{x}{n}\right]=\sum_{n \leqq \sqrt{ } x}\left(n-\frac{1}{2}\right)\left(\frac{x}{n}+O(1)\right)=x(\sqrt{ } x+O(1))-\frac{1}{2} x \sum_{n \leqq \sqrt{ } x} \frac{1}{n}+0\left\{\sum_{n \leqq x} n\right\},
$$

from which one deduces that

$$
\begin{equation*}
S_{2}=x^{3 / 2}+O(x \log x) \tag{3.4}
\end{equation*}
$$

Regarding S_{3}, one obtains

$$
S_{3}=-\frac{1}{2}\left\{\sqrt{ } x-\left(\psi(\sqrt{ } x)+\frac{1}{2}\right)\right\}^{4}=-\frac{1}{2}\left\{x^{2}-4 x^{3 / 2}\left(\psi(\sqrt{ } x)+\frac{1}{2}\right)+O(x)\right\}
$$

from which it follows that that

$$
\begin{equation*}
S_{3}=-\frac{1}{2} x^{2}+2 x^{3 / 2} \psi(\sqrt{ } x)+x^{3 / 2}+O(x) \tag{3.5}
\end{equation*}
$$

Also it is clear that

$$
\begin{equation*}
S_{4}=-\frac{1}{2} x^{3 / 2}+O(x) \tag{3.6}
\end{equation*}
$$

Since $S_{1}{ }^{*}(x)=S_{1}+S_{2}+S_{3}+S_{4}$, it follows from (3.3), (3.4), (3.5) and (3.6) that

$$
\begin{equation*}
S_{1}{ }^{*}(x)=x^{2}\left\{\log x+2 \gamma-\frac{1}{2}-\frac{1}{2} \zeta(2)\right\}-4 x \rho(x)+O(x \log x), \tag{3.7}
\end{equation*}
$$

which is equivalent to (3.1). (3.2) results immediately from (3.1) and (2.3), because $\alpha \geqq 0$. This proves the theorem.

Remark. We note that if, in calculating $\Delta(x)$, the third expressions obtained for S_{1} and S_{2} are used, then (by [5, Lemma 8]) the formula (3.1) is replaced by

$$
\begin{equation*}
\Delta(x)=-4 x \rho(x)+x \rho^{\prime}(x)+O(x) \tag{3.1a}
\end{equation*}
$$

so that by (2.3) and the fact that $\beta \geqq 0$,

$$
\begin{equation*}
\Delta(x)=-4 x \rho(x)+O\left\{x(\log x)^{\beta+\varepsilon}\right\} \quad(\varepsilon>0) \tag{3.1b}
\end{equation*}
$$

However, this result leads to no improvement over (3.2).
We now consider $\sigma_{2}((m, n))$, proving
Theorem 3.2.

$$
\begin{equation*}
\Delta^{\prime}(x)=-2 x^{2} \rho^{\prime}(x)+O\left(x^{2}\right) \tag{3.8}
\end{equation*}
$$

where $\rho^{\prime}(x)$ is defined by (2.1); moreover, for all $\varepsilon>0$,

$$
\begin{equation*}
\Delta^{\prime}(x)=O\left\{x^{2}(\log x)^{\beta+\varepsilon}\right\} \tag{3.9}
\end{equation*}
$$

where β is defined by (2.3).

Proof. Denote the three terms of (2.9) by T_{1}, T_{2}, T_{3} respectively. Then by the estimates of $\S 2$, one obtains

$$
\begin{aligned}
T_{1} & =\frac{1}{3} \sum_{n \leq x}(2 n-1)\left\{\frac{x}{n}-\left(\psi\left(\frac{x}{n}\right)+\frac{1}{2}\right)\right\}^{3} \\
& =\frac{1}{3} \sum_{n \leq x}(2 n-1)\left\{\frac{x^{3}}{n^{3}}-\frac{3 x^{2}}{n^{2}}\left(\psi\left(\frac{x}{n}\right)+\frac{1}{2}\right)+O\left(\frac{x}{n}\right)\right\} \\
& =\frac{2 x^{3}}{3} \sum_{n \leq x} \frac{1}{n^{2}}-\frac{x^{3}}{3} \sum_{n \leqq x} \frac{1}{n^{3}}-2 x^{2} \rho^{\prime}(x)-x^{2} \sum_{n \leq x} \frac{1}{n}+O\left(x^{2}\right)
\end{aligned}
$$

from which it follows that

$$
T_{1}=\frac{1}{3} x^{3}\{2 \zeta(2)-\zeta(3)\}-2 x^{2} \rho^{\prime}(x)-x^{2} \log x+O\left(x^{2}\right)
$$

In the case of T_{2} we have

$$
T_{2}=\frac{1}{2} \sum_{n \leqq x}(2 n-1)\left\{\frac{x^{2}}{n^{2}}+O\left(\frac{x}{n}\right)\right\}=x^{2} \sum_{n \leq x} \frac{1}{n}+O\left(x^{2}\right),
$$

so that

$$
\begin{equation*}
T_{2}=x^{2} \log x+O\left(x^{2}\right) \tag{3.11}
\end{equation*}
$$

Also, evidently

$$
\begin{equation*}
T_{3}=O\left(x^{2}\right) \tag{3.12}
\end{equation*}
$$

Since $S_{2}{ }^{*}(x)=T_{1}+T_{2}+T_{3}$, it follows from (3.10), (3.11) and (3.12) that

$$
\begin{equation*}
S_{2}^{*}(x)=\frac{1}{3} x^{3}\{2 \zeta(2)-\zeta(3)\}-2 x^{2} \rho^{\prime}(x)+O\left(x^{2}\right) \tag{3.13}
\end{equation*}
$$

which can be restated as (3.8). The result (3.9) is a consequence of (3.8), (2.3) and the fact that $\beta \geqq 0$. This completes the proof.
4. The general functions $f_{1}((m, n))$ and $f_{2}((m, n))$. As in I and II we define $f_{t}(n)$ by

$$
\begin{equation*}
f_{t}(n)=\sum_{d \delta=n} g(d) \delta^{t} \tag{4.1}
\end{equation*}
$$

It is noted, on the basis of Lemma 2.1 with $h(n)=n^{2}$, that

$$
\begin{equation*}
F_{t}^{*}(x) \equiv \sum_{a, b \leq x} f_{t}((a, b))=\sum_{n \leqq x} q(n) S_{t}^{*}\left(\frac{x}{n}\right), \tag{4.2}
\end{equation*}
$$

where $S_{t}^{*}(x)$ is the summatory function of $\sigma_{t}((m, n))$. It follows then from (4.2) and the definition of $q(n)$ that

$$
\begin{equation*}
F_{t}^{*}(x) \equiv \sum_{d \leq x} g(d) \sum_{\delta \leq x / d} \mu(\delta) S_{t}^{*}\left(\frac{x}{d \delta}\right) . \tag{4.3}
\end{equation*}
$$

As in I and II we place

$$
\begin{equation*}
L(s, g)=\sum_{n=1}^{\infty} \frac{g(n)}{n^{s}} \quad(s>1) \tag{4.4}
\end{equation*}
$$

and denote its derivative by $L^{\prime}(s, g)$. We now consider the average order of $f_{t}((m, n))$ in the
cases $t=1$ and $t=2$, with a boundedness restriction on $g(n)$. It is convenient to introduce the following notation in considering $f_{1}((m, n))$,

$$
\begin{gather*}
C_{1}=2 \gamma-\frac{1}{2}-\frac{1}{2} \zeta(2) \tag{4.5}\\
R(x)=\frac{x^{2}}{\zeta(2)}\left\{L(2, g)\left(\log x+C_{1}-\frac{\zeta^{\prime}(2)}{\zeta(2)}\right)+L^{\prime}(2, g)\right\} \tag{4.6}
\end{gather*}
$$

We prove now
Theorem 4.1. If $g(n)$ is bounded, then

$$
\begin{equation*}
F_{1}^{*}(x)=R(x)-4 x \sum_{n \leqq x} \frac{q(n)}{n} \rho\left(\frac{x}{n}\right)+O\left(x \log ^{3} x\right) \tag{4.7}
\end{equation*}
$$

moreover, for all $\varepsilon>0$,

$$
\begin{equation*}
F_{1}^{*}(x)=R(x)+O\left(x^{1+\alpha+\varepsilon}\right) \tag{4.8}
\end{equation*}
$$

where α is defined by (2.3).

Proof. By (3.7) and (4.3) with $t=1$, it follows that

$$
\begin{equation*}
F_{1}^{*}=S_{1}+S_{2}+S_{3}+S_{4}+S_{5} \tag{4.9}
\end{equation*}
$$

where

$$
\begin{align*}
& S_{1}=x^{2}\left(\log x+C_{1}\right) \sum_{d \leq x} \frac{g(d)}{d^{2}} \sum_{\delta \leq x / d} \frac{\mu(\delta)}{\delta^{2}} \tag{4.10}\\
& S_{2}=-x^{2} \sum_{d \leq x} \frac{g(d) \log d}{d^{2}} \sum_{\delta \leq x / d} \frac{\mu(\delta)}{\delta^{2}} \tag{4.11}\\
& S_{3}=-x^{2} \sum_{d \leq x} \frac{g(d)}{d^{2}} \sum_{\delta \leq x / d} \frac{\mu(\delta) \log \delta}{\delta^{2}} \tag{4.12}\\
& S_{4}=-4 x \sum_{d \leq x} \frac{g(d)}{d} \sum_{\delta \leq x / d} \frac{\mu(\delta)}{\delta} \rho\left(\frac{x}{d \delta}\right) \tag{4.13}\\
& S_{5}=O\left\{x \sum_{d \leq x} \frac{|g(d)|}{d} \sum_{\delta \leq \sqrt{ } x / d} \frac{|\mu(\delta)|}{\delta} \log \left(\frac{x}{d \delta}\right)\right\}+O\left\{\sum_{d \leq x} \frac{|g(d)|}{d} \sum_{\delta \leq x / d} \frac{|\mu(\delta)|}{\delta}\right\} \tag{4.14}
\end{align*}
$$

By (4.10) one obtains

$$
\begin{aligned}
S_{1} & =x^{2}\left(\log x+C_{1}\right) \sum_{d \leq x} \frac{g(d)}{d^{2}}\left\{\frac{1}{\zeta(2)}+O\left(\frac{d}{x}\right)\right\} \\
& =\frac{x^{2}}{\zeta(2)}\left(\log x+C_{1}\right)\left\{L(2, g)+O\left(\frac{1}{x}\right)\right\}+O\left\{x \log x \sum_{d \leq x} \frac{1}{d}\right\},
\end{aligned}
$$

from which it follows that

$$
\begin{equation*}
S_{1}=\frac{x^{2}\left(\log x+C_{1}\right) L(2, g)}{\zeta(2)}+O\left(x \log ^{2} x\right) \tag{4.15}
\end{equation*}
$$

By (4.11) and (2.6) one deduces that

$$
\begin{aligned}
S_{2} & =-x^{2} \sum_{d \leqq x} \frac{g(d) \log d}{d^{2}}\left\{\frac{1}{\zeta(2)}+O\left(\frac{d}{x}\right)\right\} \\
& =\frac{x^{2}}{\zeta(2)}\left\{L^{\prime}(2, g)+O\left(\sum_{d>x} \frac{\log d}{d^{2}}\right)\right\}+O\left\{x \sum_{d \leq x} \frac{\log d}{d}\right\}
\end{aligned}
$$

so that

$$
\begin{equation*}
S_{2}=\frac{x^{2}}{\zeta(2)} L^{\prime}(2, g)+O\left(x \log ^{2} x\right) \tag{4.16}
\end{equation*}
$$

By (4.12) and (2.6) we have

$$
\begin{aligned}
S_{3} & =x^{2} \sum_{d \leqq x} \frac{g(d)}{d^{2}}\left\{L^{\prime}(2, \mu)+O\left(\frac{d}{x} \log \frac{x}{d}\right)\right\} \\
& =-\frac{x^{2} \zeta^{\prime}(2)}{\zeta^{2}(2)}\left\{L(2, g)+O\left(\frac{1}{x}\right)\right\}+O\left\{x \log x \sum_{d \leq x} \frac{1}{d}\right\}
\end{aligned}
$$

and therefore

$$
\begin{equation*}
S_{3}=-\frac{x^{2} \zeta^{\prime}(2) L(2, g)}{\zeta^{2}(2)}+O\left(x \log ^{2} x\right) \tag{4.17}
\end{equation*}
$$

Placing $d \delta=n$ in (4.13) one may write, on the basis of (2.11),

$$
\begin{equation*}
S_{4}=-4 x \sum_{n \leq x} \frac{q(n)}{n} p\left(\frac{x}{n}\right) . \tag{4.18}
\end{equation*}
$$

As for S_{5}, it follows from (4.14) that

$$
\begin{equation*}
S_{5}=O\left(x \log x \sum_{d \leq x} \frac{1}{d} \sum_{\delta \leq x / d} \frac{1}{\delta}\right)=O\left(x \log ^{3} x\right) \tag{4.19}
\end{equation*}
$$

and (4.7) results on combining (4.9), (4.15), (4.16), (4.17), (4.18) and (4.19).

We deduce now (4.8), recalling first that $\alpha>0$. By Lemma 2.2 and (2.3), if ξ is chosen such that $0<\xi \leqq \alpha$, then for all $\varepsilon>0$,

$$
\sum_{n \leqq x} \frac{q(n)}{n} \rho\left(\frac{x}{n}\right)=O\left\{x^{\alpha+\varepsilon} \sum_{n \leqq x} \frac{1}{n^{1+\alpha+\varepsilon-\xi}}\right\}=O\left(x^{\alpha+\varepsilon}\right) .
$$

Hence (4.8) results from (4.7) and the theorem is proved.
Placing $g(n)=\mu(n)$ in (4.8), we obtain the following corollary.
Corollary 4.1. For all $\varepsilon>0$,

$$
\begin{equation*}
\sum_{a . b \leq x} \phi((a, b))=\frac{x^{2}}{\zeta^{2}(2)}\left\{\log x+2 \gamma-\frac{1}{2}-\frac{1}{2} \zeta(2)-\frac{2 \zeta^{\prime}(2)}{\zeta(2)}\right\}+O\left(x^{1+a+e}\right) . \tag{4.20}
\end{equation*}
$$

It is convenient in considering $f_{2}((m, n))$ to write

$$
\begin{equation*}
C_{2}=\frac{1}{3}\{2 \zeta(2)-\zeta(3)\}, \quad R^{\prime}(x)=\frac{x^{3} L(3, g) C_{2}}{\zeta(3)} \tag{4.21}
\end{equation*}
$$

Theorem 4.2. If $g(n)$ is bounded, then

$$
\begin{equation*}
F_{2}^{*}(x)=R^{\prime}(x)-2 x^{2} \sum_{n \leq x} \frac{q(n)}{n^{2}} \rho^{\prime}\left(\frac{x}{n}\right)+O\left(x^{2}\right) ; \tag{4.22}
\end{equation*}
$$

if β is defined as in (2.3), then for all $\varepsilon>0$,

$$
\begin{equation*}
F_{2}^{*}(x)=R^{\prime}(x)+O\left\{x^{2}(\log x)^{\beta+\varepsilon}\right\} . \tag{4.23}
\end{equation*}
$$

Proof. By (4.2) with $t=2$, in conjunction with (3.13), we may write

$$
\begin{gather*}
F_{2}^{*}(x)=T_{1}+T_{2}+T_{3}, \tag{4.24}\\
T_{1}=C_{2} x^{3} \sum_{n \leqq x} \frac{q(n)}{n^{3}}, \tag{4.25}\\
T_{2}=-2 x^{2} \sum_{n \leq x} \frac{q(n)}{n^{2}} \rho^{\prime}\left(\frac{x}{n}\right) \tag{4.26}
\end{gather*}
$$

where
and where, by Lemma 2.2,

$$
\begin{equation*}
T_{3}=O\left\{x^{2} \sum_{d \leq x} \frac{|q(d)|}{d^{2}}\right\}=O\left(x^{2}\right) \tag{4.27}
\end{equation*}
$$

From (4.25) one obtains

$$
T_{1}=C_{2} x^{3} \sum_{n=1}^{\infty} \frac{q(n)}{n^{3}}+O\left\{x^{3} \sum_{n>x} \frac{|q(n)|}{n^{3}}\right\}
$$

so that by (2.11) and Lemma 2.2

$$
\begin{equation*}
T_{1}=R^{\prime}(x)+O\left(x^{1+\xi}\right), \quad 0<\xi \leqq 1 . \tag{4.28}
\end{equation*}
$$

Combination of (4.24), (4.26), (4.27) and (4.28) leads to (4.22).

We recall that the quantity β defined by (2.3) is non-negative. Hence if ξ is any positive number less than 1 , it follows by Lemma 2.2 that for all $\varepsilon>0$,

$$
\begin{align*}
\sum_{n \leq x} \frac{q(n)}{n^{2}} \rho^{\prime}\left(\frac{x}{n}\right) & =O\left\{\sum_{n \leq \sqrt{ } x} \frac{1}{n^{2-\xi}}\left(\log \frac{x}{n}\right)^{\beta+\varepsilon}\right\}+O(1) \\
& =O\left\{(\log x)^{\beta+\varepsilon} \sum_{n \leq x} \frac{1}{n^{2-\xi}}\right\}=O\left\{(\log x)^{\beta+\varepsilon}\right\} . \tag{4.29}
\end{align*}
$$

Thus (4.23) results from (4.22), and the theorem is proved.
The case $g(n)=\mu(n)$ in (4.23) yields the following special result.
Corollary 4.2. For all $\varepsilon>0$,

$$
\begin{equation*}
\sum_{a, b \leq x} \phi_{2}((a, b))=\frac{x^{3}}{3 \zeta^{2}(3)}\{2 \zeta(2)-\zeta(3)\}+O\left\{x^{2}(\log x)^{\beta+\varepsilon}\right\} . \tag{4.30}
\end{equation*}
$$

REFERENCES

1. Ernest Cesàro, Étude moyenne du plus grand commun diviseur de deux nombres, Annali di Matematica Pura ed Applicata (2), 13 (1885), 233-268.
2. Eckford Cohen, Arithmetical functions of a greatest common divisor. I, Proc. American Math. Soc., 11 (1960), 164-171.
3. Eckford Cohen, Arithmetical functions of a greatest common divisor, II. Submitted to Boll. Mat. Ital.
4. J. G. van der Corput, Zum Teilerproblem, Math. Ann. 98 (1928), 697-716.
5. H. Davenport, A divisor problem, Quart. J. Math. Oxford Ser. (2), 20 (1949), 37-44.
6. L. E. Dickson, History of the theory of numbers (New York, 1952), vol. I.
7. A. E. Ingham, The distribution of prime numbers (Cambridge, 1932).
8. Edmund Landau, Uber Dirichlets Teilerproblem, Göttinger Nachr. (1920), 13-32.
9. Edmund Landau, Vorlesungen über Zahlentheorie (New York, 1957), vol. II.

The University of Tennessee
Knoxville
Tennessee

