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On the Neumann Problem for
Monge–Ampère Type Equations

Feida Jiang, Neil S. Trudinger, and Ni Xiang

Abstract. In this paper, we study the global regularity for regularMonge–Ampère type equations as-
sociated with semilinear Neumann boundary conditions. By establishing a priori estimates for sec-
ond order derivatives, the classical solvability of the Neumann boundary value problem is proved
under natural conditions. _e techniques build upon the delicate and intricate treatment of the
standard Monge–Ampère case by Lions, Trudinger, and Urbas in 1986 and the recent barrier con-
structions and second derivative bounds by Jiang, Trudinger, and Yang for the Dirichlet problem.
We also consider more general oblique boundary value problems in the strictly regular case.

1 Introduction

In this paper, we consider the following semilinear Neumann boundary value prob-
lem for the Monge–Ampère type equation

det[D2u − A(x , u,Du)] = B(x , u,Du), in Ω,(1.1)
Dνu = φ(x , u), on ∂Ω,(1.2)

where Ω is a bounded domain in n dimensional Euclidean space Rn with smooth
boundary, Du and D2u denote the gradient vector and the Hessian matrix of the sec-
ond order derivatives of the function u∶Ω → R, respectively, A is a given n × n sym-
metric matrix function deûned on Ω ×R ×Rn , B is a positive scalar valued function
on Ω×R×Rn , φ is a scalar valued function deûned on ∂Ω×R, and ν is the unit inner
normal vector ûeld on ∂Ω. As usual, we use x, z, p, r to denote points in Ω, R, Rn ,
Rn×n respectively. A solution u ∈ C2(Ω) of equation (1.1) is elliptic when the aug-
mented Hessian matrix Mu = D2u − A(x , u,Du) is positive deûnite; that is Mu > 0,
which implies B > 0. Also, a function u satisfying Mu > 0 is called an elliptic function
of equation (1.1). Since the matrix A determines the augmented Hessian matrix Mu,
we also call an elliptic solution (or function) an A-admissible solution (or function)
or, by analogy with the case A = 0, an A-convex solution (or function).

We shall establish an existence theorem together with a priori estimates for elliptic
solutions of the Neumann boundary value problem (1.1)–(1.2) in this paper, which
extend the special case where A is independent of p in [17]. For this purpose, we
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On the Neumann Problem for Monge–Ampère Type Equations 1335

need appropriate assumptions on A, B, φ and Ω. Assume that the matrix A is twice
diòerentiable with respect to p and A, B, and φ are diòerentiable with respect to z.
Following [24], we call the matrix A regular in Ω if A is co-dimension one convex
with respect to p, in the sense that

(1.3) A i j,kl(x , z, p)ξ i ξ jηkη l ≥ 0

for all (x , z, p) ∈ Ω ×R ×Rn , ξ, η ∈ Rn , ξ ⊥ η, where A i j,kl = D2
pk p l

A i j . If inequality
(1.3) is strict, then the matrix A is called strictly regular. We also deûne the matrix A
to be non-decreasing (strictly increasing) with respect to z if

DzA i j(x , z, p)ξ i ξ j ≥ 0, (> 0)
for all (x , z, p) ∈ Ω × R × Rn , ξ ∈ Rn . _e inhomogeneous term B and boundary
function φ are also non-decreasing, (strictly increasing), with respect to z if

Bz(x , z, p) ≥ 0 (> 0)
for all (x , z, p) ∈ Ω × R × Rn and φz(x , z) ≥ 0, (> 0), for all (x , z) ∈ ∂Ω × R. Note
that if we write the boundary value problem (1.1)–(1.2) in the general form

F[u] ∶= F(x , u,Du,D2u) = 0, in Ω,(1.4)
G[u] ∶= G(x , u,Du) = 0, on ∂Ω,(1.5)

where F and G are deûned by

F(x , z, p, r) = det[ r − A(x , z, p)] − B(x , z, p),(1.6)
G(x , z, p) = ν ⋅ p − φ(x , z),(1.7)

then A, B, and φ non-decreasing (strictly increasing) in z, correspond to the standard
monotonicity conditions Fz ≤ 0,Gz ≤ 0, (Fz < 0,Gz < 0) for symmetric matrices r
satisfying r > A(x , z, p), that is, for points (x , z, p, r) ∈ Ω ×R ×Rn ×Rn×n , where F
is elliptic.
As with [17], we also need the domain Ω to satisfy an appropriate uniform con-

vexity condition. Adapting [24], we deûne the domain Ω to be uniformly A-convex
(A-convex) with respect to the boundary function φ and an interval valued function
I on ∂Ω if Ω ∈ C2 and

(1.8) (D iν j(x) − DpkA i j(x , z, p)νk) τ iτ j < 0, (≤ 0),
for all (x , z, p) ∈ ∂Ω × R × Rn , satisfying p ⋅ ν(x) ≥ φ(x , z), z ∈ I(x) and vectors
τ = τ(x) tangent to ∂Ω. For a given function u0 on ∂Ω, we deûne Ω to be uni-
formly A-convex, (A-convex), with respect to φ and u0 if (1.8) holds for all p ⋅ ν(x) ≥
φ(x , u0(x)), that is, I = {u0}.
From the regularity of A (1.3), we can equivalently replace the boundary inequality

p ⋅ ν ≥ φ(x , z) by the boundary equality p ⋅ ν = φ(x , z), in the above deûnitions,
as DpνA i j(x , z, p)τ iτ j is then non-decreasing with respect to pν . _is leads us to a
further deûnition, which is independent of the boundary condition (1.2). Namely, Ω
is uniformly A-convex with respect to u ∈ C1(Ω) if

(1.9) (D iν j − DpkA i j( ⋅ , u,Du)νk) τ iτ j ≤ −δ0 on ∂Ω

https://doi.org/10.4153/CJM-2016-001-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-001-3


1336 F. Jiang, N. S. Trudinger, and N. Xiang

for all vectors τ = τ(x) tangent to ∂Ω and some positive constant δ0. Accordingly, if
A is regular, Ω is uniformly A-convex with respect to φ and u, and u satisûes (1.2), it
follows that Ω is uniformly A-convex with respect to u.

In order to use the regularity of A in its most general form, we will need to assume
the existence of a supersolution u to (1.1) satisfying

(1.10) det[D2u − A(x , u,Du)] ≤ B(x , u,Du) in Ω,

together with the same boundary condition,

(1.11) Dνu = φ(x , u) on ∂Ω.

We then have the following global second derivative estimate.

_eorem 1.1 Let u ∈ C4(Ω)∩C3(Ω) be an elliptic solution of the Neumann problem
(1.1)–(1.2) in a C3,1 domain Ω ⊂ Rn , which is uniformly A-convex with respect to u,
where A ∈ C2(Ω × R × Rn) is regular and non-decreasing, B > 0, ∈ C2(Ω × R × Rn)
is non-decreasing, and φ ∈ C2,1(∂Ω × R) is non-decreasing. Suppose there exists an
elliptic supersolution u ∈ C2(Ω) satisfying (1.10)–(1.11). _en we have the estimate

(1.12) sup
Ω

∣D2u∣ ≤ C ,

where C is a constant depending on n,A, B, Ω, u, φ, δ0, and ∣u∣1;Ω .

_eorem 1.1 extends [17, _eorem 3.3] except for the supersolution hypothesis, as
a supersolution is constructed in [17] in the course of the proof. We also point out
that, as in [17], the restriction to the Neumann condition is critical for our proof, and,
moreover, as shown by the Pogorelov example, (see [31, 34]), one cannot generally
expect second derivative estimates and classical solutions of (1.1)–(1.2) for A = 0 when
the geometric normal ν is replaced by an oblique vector β satisfying β ⋅ ν > 0; that is,
in (1.7),

(1.13) G(x , z, p) = β ⋅ p − φ(x , z),

no matter how smooth β, φ, B and ∂Ω are. However, if the matrix function A is
strictly regular on Ω, so that we have a positive lower bound in (1.3) when z and p
are bounded, then the proof is much simpler and also embraces oblique boundary
conditions. Moreover, in this case the monotonicity and supersolution hypotheses in
_eorem 1.1 can be dispensed with. Typically, second derivative behaviour for equa-
tion (1.1) in the strictly regular case is closer to that for uniformly elliptic equations
while the challenge in the general case is to carry over the more intricate Monge–
Ampère case, A = 0. Following [17], we can also relax the supersolution hypothesis
for uniformly convex domains in the special case when DpxA = 0 and DpzA = 0; that
is,

(1.14) A(x , z, p) = A0(x , z) + A1(p),

where A0 ∈ C2(Ω ×R) and A1 ∈ C2(Rn) is regular.
From _eorem 1.1, we obtain classical existence theorems for (1.1)–(1.2) under fur-

ther hypotheses ensuring estimates for solutions and their gradients. For solution
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estimates, by virtue of the comparison principle, we can simply assume the existence
of bounded subsolutions and supersolutions.

However, more speciûc conditions for solution bounds will be treated in Section 3
of this paper, including an extension of the Bakel’man condition in [17, _eorem 2.1].
For the gradient estimate we adopt the same structure condition used for theDirichlet
problem in [9], namely,

(1.15) A(x , z, p) ≥ −µ0(1 + ∣p∣2)I,

for all x ∈ Ω, ∣z∣ ≤ M0, p ∈ Rn and some positive constant µ0 depending on the con-
stant M0. Condition (1.15) provides a simple gradient bound for A-convex functions
u in terms of a lower bound for Dνu on the boundary. Combining the second deriv-
ative bounds with the lower order bounds and the global second derivative Hölder
estimates as in [15–17, 23], we establish the following existence result by the method
of continuity.

_eorem 1.2 Suppose that A, B, φ, u, andΩ satisfy the hypotheses of_eorem 1.1, with
either A, B, or φ being strictly increasing. Assume also condition (1.15) and that there
exists an elliptic subsolution u ∈ C2(Ω) ∩C1(Ω) of equation (1.1), with Dνu ≥ φ( ⋅ , u)
on ∂Ω and that Ω is uniformly A-convex with respect to φ and I = [u, u], in the sense
of (1.8). _en the Neumann boundary value problem (1.1)–(1.2) has a unique elliptic
solution u ∈ C3,α(Ω) for any α < 1.

_e uniqueness of solutions follows from the comparison principle for elliptic so-
lutions of general oblique boundary value problems, (1.4)–(1.5); see Lemma 3.1. _e
regularity for the solution u in _eorem 1.2 can be improved by the linear elliptic the-
ory [5] if the data are suõciently smooth. For example, if A, B, φ, and ∂Ω are C∞,
then the solution u ∈ C∞(Ω). From the monotonicity of φ, it is also enough to as-
sume (1.8) only holds for p ⋅ ν ≥ φ( ⋅ , u) and u ≤ z ≤ u. Moreover, if A is independent
of z, there is no need for the last inequality. Also taking account of our remarks a�er
the statement of _eorem 1.1, we only need to assume the supersolution u satisûes
(1.10) at points where it is elliptic and the boundary inequality Dνu ≤ φ( ⋅ , u), instead
of (1.11), if either A satisûes (1.14) with Ω also uniformly convex or A is strictly regular
in Ω.

_e regular condition for A was originally introduced in [22] in its strict form
for interior regularity of potential functions in optimal transportation, with the weak
form (1.3) subsequently introduced in [30] for global regularity; see also [24]. It
was subsequently shown to be sharp for C1 regularity of potential functions in [21].
Optimal transportation equations are special cases of prescribed Jacobian equations,
which have the general form,

(1.16) ∣detDY( ⋅ , u,Du)∣ = ψ( ⋅ , u,Du),

where Y is a C1 mapping from Ω ×R×Rn into Rn , ψ is a non-negative scalar valued
function on Ω × R × Rn . Assuming detYp /= 0, we see that for elliptic solutions,
equation (1.16) can be written in the form (1.1) with

(1.17) A = −Y−1
p (Yx + Yz ⊗ p), B = (detYp)−1ψ.

https://doi.org/10.4153/CJM-2016-001-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-001-3


1338 F. Jiang, N. S. Trudinger, and N. Xiang

_e natural boundary value problem for the prescribed Jacobian equation is the sec-
ond boundary value problem to prescribe the image,

(1.18) Tu(Ω) ∶= Y( ⋅ , u,Du)(Ω) = Ω∗ ,

where Ω∗ is another given domain inRn . _e global regularity of the second bound-
ary value problem (1.16)–(1.18) has been studied in [1,25,27,30,32] for diòerent forms
of the mapping Y . As shown in [30] in the optimal transportation case and in [25]
in the general case, condition (1.18) implies an oblique nonlinear boundary condition
for elliptic functions u; that is, (1.5) holds for a function G ∈ C1(∂Ω ×R ×Rn) with

(1.19) Gp( ⋅ , u,Du) ⋅ ν > 0 on ∂Ω.

_e crucial estimate in these papers is the control on the obliqueness, that is, an esti-
mate of the form, Gp ⋅ ν ≥ δ for a positive constant δ and this is done in [30] in the
optimal transportation case, and extended to the general case in [25], under appropri-
ate uniform convexity conditions on the domain and target, with the latter equivalent
to the uniform concavity of the function G with respect to the p variables. Because
we are deûning obliqueness with respect to the inner normal, in agreement with [17],
our function G is the negative of that in [25, 30, 32]. Once the obliqueness is esti-
mated, the boundary second derivative bounds follow in [7, 25, 30] from the same
uniform convexity conditions, together with the regular condition (1.3), similarly to
the Monge–Ampère case in [33]. Note that the uniform concavity of G excludes the
Neumann condition treated here, and, moreover, the derivation of the boundary C2

estimate is much simpler, being somewhat analogous to using the strict regular con-
dition. We also point out a recent paper [2] considering optimal transportation on a
hemisphere where the obliqueness is estimated without using any uniform convexity
of domains, which still gives the boundary C2 estimate in the two dimensional case.
Prescribed Jacobian equations also arise in geometric optics where solutions corre-
spond to re�ectors or refractors transmitting light rays from a source to a target with
prescribed intensities; see for example [7, 12, 19, 26, 28, 35] and references therein.

On the geometric side, the Neumann boundary value problem in themore general
context of augmentedHessian equations onmanifolds arises in the study of the higher
order Yamabe problem in conformal geometry; see [3, 4, 11, 13, 14]. To explain this
we let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3 with
nonempty smooth boundary ∂M, let Ag denote the Schouten tensor of the metric g
and let λ(Ag) = (λ1(Ag), . . . , λn(Ag)) denote the eigenvalues of Ag . Let Γ ⊂ Rn

be an open convex symmetric cone with vertex at the origin and let f be a smooth
symmetric function in Γ. _e fully nonlinear Yamabe problem on manifolds with
boundary is to ûnd a metric g̃ in the conformal class of the metric g with a prescribed
function of eigenvalues of the Schouten tensor and prescribed mean curvature. For
example, for a given constant c ∈ R, we are interested in ûnding a metric g̃ conformal
to g such that

(1.20)
F(A g̃) ∶= f (λ(A g̃)) = 1 for λ(A g̃) ∈ Γ on M,

h g̃ = c on ∂M,

where h g̃ denotes themean curvature of ∂Mwith respect to the inner normal. Writing
g̃ = e−2u g for some smooth function u on M, by the transformation laws for the
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Schouten tensor and mean curvature, problem (1.20) is equivalent to the following
semilinear Neumann boundary value problem:

(1.21)
f (λg(U)) = e−2u , λg(U) ∈ Γ on M,

∂u
∂ν

= ce−u − hg , on ∂M,

with
U = ∇2u + du ⊗ du − 1

2
∣∇u∣2g + Ag ,

where λg(U) denotes the eigenvalues ofU with respect to g, ν is the unit inner normal
vector ûeld to ∂M, and∇ denotes the Levi-Civita connection with respect to g. If we
choose f = det and Γ = Γn ∶= {λ = (λ1 , . . . , λn) ∈ Rn ∶ ∑ λ i > 0}, then we have
an example (1.21) of a semilinear Neumann boundary value problem (1.1)–(1.2) for
a Monge–Ampère type equation. In conclusion, a prescribed mean curvature fully
nonlinear Yamabe problem (1.20) is equivalent to a semilinear Neumann problem
(1.21) for an augmented Hessian equation. _e corresponding matrix functions in
these cases will be strictly regular when expressed in terms of local coordinates so
that in theMonge–Ampère case strong local estimates are available, with second order
estimates being considerably simpler than the general regular case we treat here. In
fact, the particular Neumann boundary value problem (1.21) with f = det was studied
in [11]. In the special case of Euclidean space Rn , the matrix A is given by

(1.22) A = 1
2
∣p∣2I − p⊗ p,

in which case our A-convexity condition (1.8) reduces to simply κ1 + φ > 0, (≥ 0),
where κ1 denotes the minimum curvature of ∂Ω.

_eoverall organisation of this paper follows that of theDirichlet problem case [9],
where again the main issue was to deal with the general case of regular A. Also, here
the strictly regular case is considerably simpler in the case of smooth data but in the
optimal transportation case, with only Hölder continuous densities, local and global
second derivative estimates were obtained in [6,20], in agreement with the uniformly
elliptic case. In Section 2 we prove_eorem 1.1, which constitutes the heart of the pa-
per. In Section 3 we provide the gradient estimate to complete the proof of _eorem
1.2, along with alternative solution bounds for more general oblique boundary value
problems. In the optimal transportation case we also prove a Bakel’man type estimate
for solutions that extends the Monge–Ampère case in [17]. In Section 4 we switch
to the strictly regular case and prove ûrst and second derivative bounds for general
oblique boundary value problems (1.5), whereG is concave with respect to the p vari-
ables, which extend the semilinear conditions (1.13). For this purpose we extend our
deûnition of A-convexity so that a C2 domain Ω is uniformly A-convex, (A-convex),
with respect toG and an interval I if (1.8) holds for all (x , z, p) ∈ ∂Ω×R×Rn , satisfy-
ingG(x , z, p) ≥ 0, z ∈ I and vectors τ tangent to ∂Ω. WhenG is independent of z, this
corresponds to the c-convexity conditions from optimal transportation [24, 30] and
more generally to the Y-convexity conditions for prescribed Jacobian equations in
[25]. Finally, we remark that a general theory of oblique boundary value problems for
augmented Hessian equations, which embraces our results in Section 4, is presented
in [8].
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2 Second Derivative Estimates

In this section, we shall derive the second order derivative estimates and complete
the proof of _eorem 1.1 by taking full advantage of the assumed C2 supersolution u.
Note that we only need to get an upper bound for the second derivatives, since the
lower bound can be derived from the ellipticity condition D2u − A > 0.
For the arguments below, we assume the functions φ, ν can be smoothly extended

to Ω × R and Ω, respectively. We also assume that near the boundary, ν is extended
to be constant in the normal directions. From equation (1.1), we have

(2.1) F̃[u] ∶= log det[D2u − A( ⋅ , u,Du)] = B̃( ⋅ , u,Du),
where B̃ ≜ logB. We have

∂F̃
∂w i j

= w i j and
∂2 F̃

∂w i j∂wkl
= −w ikw j l ,

where {w i j} ≜ {u i j −A i j} denotes the augmented Hessian matrix and {w i j} denotes
the inverse of the matrix {w i j}. We now introduce the following linearized operators
of F̃ and (2.1),

L ≜ w i j(D i j − Dp lA i j( ⋅ , u,Du)D l) , L ≜ L − Dp l B̃( ⋅ , u,Du)D l .

For convenience in later discussion, we denote Dξηu ≜ D i juξ iη j , wξη ≜ w i jξ iη j =
D i juξ iη j−A i jξ iη j for any vectors ξ and η. As usual, C denotes a constant depending
on the known data and may change from line to line in the context.
Before we start to deal with the second derivative estimates, we recall a fundamen-

tal lemma in [7, 9], which is also crucial for constructing the global barrier function
using the supersolution in our situation. We shall omit its proof, which is similar to
those in [7, 9].

Lemma 2.1 Let u ∈ C2(Ω) be an elliptic solution of (1.1), and let ũ ∈ C2(Ω) be an
elliptic function of equation (1.1) in Ω with ũ ≥ u in Ω, where A is regular and non-
decreasing. _en

(2.2) L(eK(ũ−u)) ≥ є1∑
i
w i i − C

holds in Ω for suõciently large positive constant K and uniform positive constants є1 ,C
depending on A, B, Ω, ∣u∣1;Ω and ũ.

We assume that the domain Ω is uniformly A-convex, with respect to φ and u, and
ûrst consider the second derivative estimates on the boundary ∂Ω in nontangential
directions. We introduce the tangential gradient operator δ = (δ1 , . . . , δn), where
δ i = (δ i j − ν iν j)D j . Applying this tangential operator to the boundary condition
(1.2), we have

(Dku)δ iνk + νkδ iDku = δ iφ, on ∂Ω,
hence we have

(2.3) ∣Dτνu∣ ≤ C , on ∂Ω,
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for any tangential vector ûeld τ.
We next deduce the estimate for Dννu on ∂Ω. By a direct calculation, we have

Lu = w i j(D i ju − Dp lA i j( ⋅ , u,Du)D lu)
= n −w i j(A i j − Dp lA i j( ⋅ , u,Du)D lu) .

(2.4)

Diòerentiating equation (2.1) with respect to xk , we have, for k = 1, . . . , n,

w i j(D i juk − DxkA i j − DzA i juk − Dp lA i jD luk) = Dxk B̃ + Dz B̃uk + Dp l B̃D luk ,

which implies

(2.5) Luk = Dxk B̃+Dz B̃uk+Dp l B̃Dklu+w i j(DxkA i j+DzA i juk), for k = 1, . . . , n.

If we consider the function h = νkDku − φ(x , u), by (2.4) and (2.5), we immediately
have

(2.6) ∣Lh∣ ≤ C(1 +∑w i i + ∣D2u∣), in Ω.

From the positivity of B we can estimate

1 ≤ Cw i i and (w i i)
1

n−1 ≤ Cw i i .

_us, we obtain from (2.6) and the boundary condition (1.2),

(2.7) ∣Lh∣ ≤ C(1 + ∣D2u∣ n−2n−1 )∑w i i in Ω and h = 0 on ∂Ω.

From the uniform A-convexity of Ω (1.9) and the regularity of A, there exists a
deûning function, ϕ ∈ C2(Ω), satisfying ϕ = 0 on ∂Ω, Dϕ /= 0 on ∂Ω and ϕ < 0 in Ω,
together with the inequality

(2.8) D i jϕ − DpkA i j( ⋅ , u,Du)Dkϕ ≥ δ1I,
in a neighbourhood N of ∂Ω, whenever Dνu ≥ φ(x , u), where δ1 is a positive con-
stant and I denotes the identity matrix, with N and δ1 depending also on δ0, A, and
∣u∣1;Ω . We remark that (2.8) follows from (1.9), using the continuity of DpA with re-
spect to x and z together with an appropriate extension of the distance function, as
in for example [5, 30]. In particular, we can take ϕ = −d + td2 near ∂Ω, for a large
enough positive constant t, where d(x) = dist(x , ∂Ω) is the distance function of Ω.
Accordingly,

(2.9) Lϕ ≥ δ1∑w i i ,

for h ≥ 0, d < d0, for a positive constant d0 also depending on δ0, A and ∣u∣1;Ω . By
(2.7), (2.9), and choosing −ϕ as a barrier function, a standard barrier argument leads
to

Dνh ≤ C(1 +M
n−2
n−1
2 ) on ∂Ω,

where M2 = supΩ ∣D2u∣, so that we have the estimate

(2.10) Dννu ≤ C(1 +M2)
n−2
n−1 on ∂Ω.

We conclude from (2.3), (2.10) and the ellipticity of u that

(2.11) ∣Dνξu∣ ≤ C(1 +M2)
n−2
n−1 on ∂Ω,
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for any direction ξ. We remark that if B is independent of p or n = 2, then the term
M2 is not present in (2.11).

We have now established the mixed tangential normal derivative bound and the
double normal derivative bound on ∂Ω so that it remains to bound the double tan-
gential second derivatives on ∂Ω. We shall adapt the delicate method in [17], which
is speciûc for the Neumann boundary value problem, to obtain the double tangen-
tial derivative bound on the boundary and consequently the global second derivative
bound.

Proof of_eorem 1.1 First we note from the comparison principle, Lemma 3.1, that
u ≥ u in Ω or u − u is a constant. Discarding the second case, we modify the elliptic
supersolution u by adding a perturbation function −aϕ , where a is a small positive
constant and ϕ is the deûning function of the domain Ω satisfying ϕ = 0 on ∂Ω, ϕ < 0
in Ω and Dνϕ = −1 on ∂Ω. Note that the new function ũ = u − aϕ is still uniformly
elliptic in Ω if a is suõciently small. Also, by a direct computation, we have

Dν(ũ − u) = Dνu − Dνu − aDνϕ = φ( ⋅ , u) − φ( ⋅ , u) + a ≥ a,
on ∂Ω, where the non-decreasing of φ and u ≥ u on ∂Ω are used. If we deûne a
function with the form Φ = eK(ũ−u) with a positive constant K, we then have DνΦ ≥
Ka > 0 on ∂Ω. We now introduce an auxiliary function v, given by

(2.12) v = v( ⋅ , ξ) = e α
2 ∣Du∣2+κΦ(wξξ − v′( ⋅ , ξ)) ,

for x ∈ Ω, ∣ξ∣ = 1, where α, κ are positive constants to be determined, Φ = 1
є1 e

K(ũ−u)

is the barrier function in Lemma 2.1 with the above constructed ũ, and v′ is deûned
by

(2.13) v′( ⋅ , ξ) = 2(ξ ⋅ ν)ξ′i(D iφ( ⋅ , u) − DkuD iνk − A i jν j) ,

with ξ′ = ξ − (ξ ⋅ ν)ν. Here ν is a C2,1(Ω) extension of the inner unit normal vector
ûeld on ∂Ω. _e strategy of our proof is to estimate v at a maximum point in Ω and
vector ξ, in the same form as (2.11). From this we conclude a corresponding global
estimate for D2u in Ω from which follows the desired estimate (1.12).

Case 1. We suppose that v takes its maximum at an interior point x0 ∈ Ω and a unit
vector ξ. Let

H = log v = log(wξξ − v′) + α
2
∣Du∣2 + κΦ,

then the function H also attains its maximum at the point x0 ∈ Ω and the unit vector
ξ. _e following analysis follows the method of Pogorelov type estimates in [30], with
some modiûcation, adapted from [17], to handle the additional term v′. Accordingly
we have, at the point x0,

0 = D iH = D i(wξξ − v′)
wξξ − v′

+ αDkuD iku + κD iΦ, for i = 1 ⋅ ⋅ ⋅ n,

0 ≥ D i jH =
D i j(wξξ − v′)

wξξ − v′
−
D i(wξξ − v′)D j(wξξ − v′)

(wξξ − v′)2

+ α(D ikuD jku + DkuD i jku) + κD i jΦ,

(2.14)
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and consequently, at x0

(2.15) 0 ≥ LH = 1
wξξ − v′

L(wξξ − v′) − 1
(wξξ − v′)2w

i jD i(wξξ − v′)D j(wξξ − v′)

+ αw i jD ikuD jku + αDkuLuk + κLΦ.

Next, we shall estimate each term on the right-hand side of (2.15). We start with some
identities. By diòerentiation of equation (2.1) in the direction ξ, we have in accordance
with (2.5),

(2.16) w i j(D i juξ − DξA i j − DzA i juξ − Dp lA i jD luξ) =
Dξ B̃ + Dz B̃uξ + Dp l B̃D luξ ,

and a further diòerentiation in the direction of ξ yields,

(2.17) w i j[D i juξξ − DξξA i j − (DzzA i j)(uξ)2 − (Dpk p lA i j)DkuξD luξ

− (DzA i j)uξξ − (DpkA i j)Dkuξξ − 2(DξzA i j)uξ

− 2(DξpkA i j)Dkuξ − 2(DzpkA i j)(Dkuξ)uξ]
= w ikw j lDξw i jDξwkl + Dξξ B̃ + (Dzz B̃)(uξ)2 + (Dpk p l B)DkuξD luξ

+ 2(Dξz B̃)uξ + 2(Dξpk B̃)Dkuξ + 2(Dzpk B̃)(Dkuξ)uξ

+ (Dz B̃)uξξ + (Dpk B̃)Dkuξξ .

Using (2.17) and the regular condition (1.3) (see [30, (3.9)]), we have

(2.18) Luξξ ≥ w ikw j lDξw i jDξwkl − C[(1 +w i i)T + (w i i)2] ,

where we denote T = w i i to avoid any confusion with the usual summation conven-
tion. When calculating LAξξ , there will occur third derivative terms of u, which are
controlled using (2.16). We then obtain

(2.19) ∣LAξξ ∣ ≤ C[(1 +w i i)T +w i i]

and by a similar calculation, we have

(2.20) ∣Lv′∣ ≤ C[(1 +w i i)T +w i i].

Combining (2.18), (2.19), and (2.20), we have

(2.21) L(wξξ − v′) ≥ w ikw j lDξw i jDξwkl − C[(1 +w i i)T + (w i i)2].

By Cauchy’s inequality, we have

(2.22) w i jD i(wξξ − v′)D j(wξξ − v′) ≤ (1 + θ)w i jD iwξξD jwξξ + C(θ)w i jD iv′D jv′

for any θ > 0, where C(θ) is a positive constant depending on θ.
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By (2.2), (2.5), (2.21), and (2.22), we obtain from (2.15)

0 ≥ 1
wξξ − v′

w ikw j lDξw i jDξwkl −
1 + θ

(wξξ − v′)2w
i jD iwξξD jwξξ

+ αw i i + κT − C{ 1
wξξ − v′

[(1 +w i i)T + (w i i)2] + α + κ}

− C(θ)
(wξξ − v′)2w

i jD iv′D jv′ .

(2.23)

Without loss of generality, we assume that {w i j} is diagonal at x0 with maximum
eigenvaluew11. We can always assume thatw11 > 1 and is as large aswewant; otherwise
we are done. We proceed ûrst to estimate the third derivative terms in (2.23). From
the inequality [17, (3.48)], we have

(2.24) w ikw j lDξw i jDξwkl −
1
w11

w i jD iwξξD jwξξ ≥ 0.

Moreover, since v′ is bounded, w11 and wξξ are comparable in the sense that for any
θ > 0, there exists a further constant C(θ) such that

(2.25) ∣w11 −wξξ + v′∣ < θw11 ,

if w11 > C(θ). From (2.24) and (2.25), we have

(2.26) w ikw j lDξw i jDξwkl ≥
1 − θ

wξξ − v′
w i jD iwξξD jwξξ .

Next, we use D iH = 0 in (2.14) to estimate

w i jD iwξξD jwξξ ≤ 2w i i[ ∣D iv′∣2 + (wξξ − v′)2(αDkuD iku + κD iΦ)2]
≤ 2w i i ∣D iv′∣2 + C(wξξ − v′)2(α2w i i + κ2T).

(2.27)

Using (2.26) and (2.27) in (2.23), together with (2.25), we obtain the following for
w11 ≥ C(θ):

αw i i + κT ≤ C[α + κ + (1 + α2θ)w i i + (1 + κ2θ)T] .

By choosing α, κ large and ûxing a small positive θ, we thus obtain an estimate
w i i(x0) ≤ C, which implies a corresponding estimate for ∣D2u(x0)∣.

Case 2. We consider the case x0 ∈ ∂Ω; namely, the function

v(x , ξ) = e α
2 ∣Du∣2+κΦ(wξξ − v′)

attains its maximum over Ω at x0 ∈ ∂Ω and a unit vector ξ. We then consider the
following three subcases of diòerent directions of ξ. For this we employ the key trick
from [17].

Subcase (i). ξ = ν, where ν is normal to ∂Ω at x0. Since we already obtained the double
normal derivative bound from (2.10), we have

v(x0 , ν) ≤ C(1 +M2)
n−2
n−1 , on ∂Ω.
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Subcase (ii). ξ is neither normal nor tangential to ∂Ω. _e unit vector ξ can be written
as ξ = (ξ ⋅ τ)τ + (ξ ⋅ ν)ν, where τ ∈ Sn−1, with τ ⋅ ν = 0, (ξ ⋅ τ)2 + (ξ ⋅ ν)2 = 1 and
ξ ⋅ ν /= 0. By the construction of v′, we have at x0,

wξξ = (ξ ⋅ τ)2wττ + (ξ ⋅ ν)2wνν + 2(ξ ⋅ τ)(ξ ⋅ ν)wτν

= (ξ ⋅ τ)2wττ + (ξ ⋅ ν)2wνν + v′(x , ξ).
By the construction of v, we then have

v(x0 , ξ) = (ξ ⋅ τ)2v(x0 , τ) + (ξ ⋅ ν)2v(x0 , ν)
≤ (ξ ⋅ τ)2v(x0 , ξ) + (ξ ⋅ ν)2v(x0 , ν),

which leads again to

v(x0 , ξ) ≤ v(x0 , ν) ≤ C(1 +M2)
n−2
n−1 , on ∂Ω.

Subcase (iii). ξ is tangential to ∂Ω at x0. From (2.13), we have v′(x0 , ξ) = 0. We then
have, at x0,

0 ≥ Dνv = Dν[ e
α
2 ∣Du∣2+κΦ(wξξ − v′)]

= e α
2 ∣Du∣2+κΦ[(wξξ − v′)Dν( α2 ∣Du∣2 + κΦ) + Dν(wξξ − v′)]

= e α
2 ∣Du∣2+κΦ{[αDkuDν(Dku) + κDνΦ]wξξ + Dνuξξ − Dν(Aξξ + v′)}

= e α
2 ∣Du∣2+κΦ{[κDνΦ + αDku(φk + φzDku − D iuDkν i)]wξξ

+ Dνuξξ − Dν(Aξξ + v′)}

≥ e α
2 ∣Du∣2+κΦ{(κc0 − αM)wξξ + Dνuξξ − Dν(Aξξ + v′)} ,

where c0 = Ka
є1 ,

M = max
x∈∂Ω

∣Dku(φk + φzDku − D iuDkν i)∣.

_e above inequality gives a relationship between wξξ(x0) and Dνuξξ(x0), namely
(2.28) Dνuξξ ≤ −(κc0 − αM)wξξ + Dν(Aξξ + v′), at x0 .

On the other hand, by tangentially diòerentiating the boundary condition twice, we
obtain

(Dku)δ iδ jνk + (δ iDku)δ jνk + (δ jDku)δ iνk + νkδ iδ jDku = δ iδ jφ, on ∂Ω.

Hence for the tangential direction ξ at x0, we have
Dνuξξ ≥ φzD i juξ i ξ j − 2(δ iνk)D jkuξ i ξ j + (δ iν j)ξ i ξ jDννu − C

≥ φzD i juξ i ξ j − 2(δ iνk)D jkuξ i ξ j − C(1 +M2)
n−2
n−1

≥ φzwξξ − 2(δ iνk)D jkuξ i ξ j − C(1 +M2)
n−2
n−1 ,

(2.29)

where the double normal boundary estimate (2.10) is used in the second inequal-
ity. Inequality (2.29) clearly provides another relationship between Dνuξξ(x0) and
wξξ(x0). Combining this with (2.28), we obtain

(2.30) (κc0−αM+φz)wξξ ≤ 2(δ iνk)D jkuξ i ξ j+Dν(Aξξ+v′)+C(1+M2)
n−2
n−1 , at x0 .
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Without loss of generality, we can assume the normal at x0 to be ν = (0, . . . , 0, 1), and
correspondingly, we can assume {w i j(x0)}i , j<n is diagonal with maximum eigen-
value w11(x0) > 1, as in the interior case. Observing that the ûrst term on the right-
hand side of (2.30) only involves tangential second derivatives and using (2.11), we can
then obtain the following estimate at x0:

(κc0 − αM + φz)wξξ ≤ C(w11 + ∣DDνu∣) + C(1 +M2)
n−2
n−1

≤ Cwξξ + C(1 +M2)
n−2
n−1 .

We now choose κ suõciently large such that

κ ≥ 2
c0

[αM − inf φz − C],

and again we obtain

(2.31) v(x0 , ξ) ≤ C(1 +M2)
n−2
n−1 .

We now conclude from the above three subcases that if v attains its maximum over Ω
at a point x0 ∈ ∂Ω, then v(x0 , ξ) is bounded from above as in (2.31), which implies the
second derivative Dξξu(x0) is similarly bounded from above. Combining the above
two cases, and using the Cauchy inequality, we obtain the desired estimate (1.12) and
complete the proof of _eorem 1.1.

As was remarked in Section 1, we can relax the supersolution hypothesis when
DpxA = 0 and DpzA = 0; that is, A is of the form (1.14). Moreover the details are then
much simpler, as we do not need to extend the Pogorelev argument to handle third
derivatives. Here, we proceed in accordance with [17, Remark 1, Section 3], assuming
initially that B is convex with respect to p, and replacing the auxiliary function v in
(2.12) by

v = v(x , ξ) = wξξ − v′ + α
2
∣Du∣2 + κΦ,

where now ũ ∈ C2(Ω) in Φ = 1
є1 e

K(ũ−u) is an elliptic function with ũ ≥ u in Ω, as in
Lemma 2.1. In place of (2.21), we now have the simpler inequality

L(wξξ − v′) ≥ −C(1 + T +w i i).

We obtain an estimate from above for wξξ if the maximum of v occurs at an interior
point of Ω by again taking suõciently large constants α and κ. If the maximum of v
occurs on the boundary ∂Ω, then we proceed as in Case 2, except now the technical
details are simpler, and we do not need DνΦ ≥ 0 on ∂Ω, but instead we need Ω
uniformly convex, ormore generally φz+2κ1 > 0, where κ1 is theminimum curvature
of ∂Ω, to use (2.29). We then obtain the estimate (1.12) as before, except that the
dependence on u is replaced by a dependence on an elliptic function ũ. _e removal
of the condition that B is convex in p can then be addressed in the same way as in [17]
by using _eorem 1.2 to construct a supersolution when B is replaced by its inûmum
and invoking the full strength of _eorem 1.1.
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Remark on Lemma 2.1

_eproof of Lemma 2.1 following [7,9] applies very generally. In fact, similarly to [24,
_eorem 2.1], we can replace the function “log det” in (2.1) by any increasing concave
C1 function f on an open convex set Γ in the linear space of n×n symmetric matrices
Sn , which is closed under addition of the positive cone. Here the ellipticity conditions
are replaced by the augmented Hessians Mu(Ω),Mũ(Ω) ⊂ Γ, which imply that the
operator F̃ is elliptic with respect to u and ũ on Ω and Ω, respectively, and w i j is
replaced by F̃r i j in the deûnition of L. _e general case is covered with a slightly
diòerent proof in part II of [8]; see also [10] for the k-Hessian case. However for
the special case of (2.1), the proof of Lemma 2.1 from [7, 9] can also be simpliûed
somewhat by avoiding the perturbation of ũ that is one of the key ingredients of the
general argument used there. To see this, we can modify the calculations in the proof
of [7, Lemma 2.2], with є = 0 and v = ũ − u, (without using concavity!), to arrive at
the inequality

LeKv ≥ KeKv{w i j[D i jũ − A i j( ⋅ , ũ,Dũ) −w i j] − ηw i i − Dp l B̃( ⋅ , u,Du)D lv} ,
for any positive constant η and suõciently large constant K depending also on η. We
then obtain (2.2) using the simple inequality

w i j[D i jũ − A i j( ⋅ , ũ,Dũ)] ≥ w i iλ[Mũ] > 0,

where λ[Mũ]denotes theminimumeigenvalue ofMũ, and taking η suõciently small.

3 Existence and Solution Estimates

In this section we complete the proof of _eorem 1.2 and provide alternative condi-
tions for the maximum modulus for solutions of the Neumann problem (1.1)–(1.2).
First, we formulate a comparison principle for general oblique boundary value prob-
lems (1.4)–(1.5) with F deûned by (1.6), with A and B non-decreasing in z, and G ∈
C1(∂Ω ×R ×Rn), non-increasing in z.

Lemma 3.1 Let u, v ∈ C2(Ω) ∩ C1(Ω) with F elliptic, with respect to u, in Ω and G
oblique with respect to [u, v] on ∂Ω, where [u, v] = {θu+(1−θ)v ∶ 0 ≤ θ ≤ 1}. Assume
also that either G is strictly decreasing in z or A or B are strictly increasing in z. _en if
F[u] ≥ F[v] on the subset of Ω, where F is elliptic with respect to v and G[u] ≥ G[v]
on ∂Ω, we have
(3.1) u ≤ v , in Ω.

Moreover, if we assume that F is elliptic with respect to [u, v] on all of Ω, we can relax
the strict monotonicity condition on A, B, or G, provided u − v is not a constant.

_e proof of Lemma 3.1 is standard. By approximating Ω by a subdomain and
approximating u by a smaller elliptic function u satisfying F[u] > F[u], we infer
that the function u − v can only take a positive maximum on the boundary ∂Ω, and
(3.1) follows from the obliqueness and the strict monotonicity of G. When G is only
non-increasing in z, then we can take u = u − є(ϕ −min ϕ) for a deûning function
ϕ ∈ C2(Ω) ∩ C1(Ω) such that ϕ = 0 on ∂Ω, ϕ < 0 in Ω and suõciently small є > 0,
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to ensure G[u] > G[u] on ∂Ω, whence a positive maximum of u − v must be taken
on in Ω, and we conclude (3.1) from the strict monotonicity of F with respect to z.
Note that whenG is strictly decreasing, we need only assume that G is weakly oblique;
that is, Gp ⋅ ν ≥ 0 on ∂Ω, while when F is strictly decreasing we need only assume F
is degenerate elliptic. In the case when there is no strict monotonicity, the diòerence
w = u − v will satisfy a linear uniformly elliptic diòerential inequality of the form

Lw ∶= a i jD i jw + b iD iw + cw ≥ 0,

together with an oblique boundary inequality, β ⋅Dw ≥ γw, with coeõcients c ≤ 0 and
γ ≥ 0, and the result follows from the strong maximum principle and Hopf boundary
point lemma; see [5].

We remark that F is automatically elliptic with respect to v at an interior positive
maximum of u − v, provided F is elliptic with respect to u. In fact, assuming that the
positive maximum of u − v is attained at a point x0 ∈ Ω, we have Mv(x0) ≥ Mu(x0)
from the monotonicity of A. _erefore, we only require F[u] ≥ F[v] on the subset of
Ω, where F is elliptic with respect to v, but not all of the domain Ω.
From Lemma 3.1 we have immediately the uniqueness in _eorem 1.2 and the in-

equality u ≤ u ≤ u, where u and u are the assumed elliptic supersolution (1.10)–(1.11)
and subsolution.

Next, we obtain a gradient bound for A-convex functions for Neumann problem
(1.1)–(1.2), where A satisûes a quadratic bound from below, (1.15), by a modiûcation
of our argument for the Dirichlet problem in [9]. For this purpose, we formulate the
following gradient estimate as a lemma.

Lemma 3.2 Let u ∈ C2(Ω) ∩ C1(Ω) satisfy

(3.2) D2u ≥ −µ0( 1 + ∣Du∣2) I,

in a C2 domain Ω ⊂ Rn , with

(3.3) Dνu ≥ −σ ,
on ∂Ω, where µ0 and σ are non-negative constants. _en we have the estimate

(3.4) ∣Du∣ ≤ C ,
where C depends on µ0 , σ , Ω and sup ∣u∣.

Proof Deûning ũ = u − σϕ, whereas in Section 2, ϕ ∈ C2(Ω) is a negative deûning
function for Ω satisfyingDνϕ = −1 on ∂Ω, we see that ν⋅Dũ ≥ 0 on ∂Ω. Consequently,
at a maximum point x0 ∈ Ω of the function

(3.5) w = eκũ ∣Dũ∣2 ,
we have

(3.6) Dũ ⋅ Dw ≤ 0.

From (3.2), we have

D2ũ = D2u − σD2ϕ ≥ −µ0( 1 + ∣Du∣2) I − σΛϕI

≥ −µ0( 1 + 2∣Dũ∣2 + 2σ 2∣Dϕ∣2) I − σΛϕI ≥ −µ1( 1 + ∣Dũ∣2) I,
(3.7)
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for some positive constant µ1 depending on µ0, σ , Dϕ and Λϕ , where Λϕ denotes the
maximum eigenvalue of the Hessianmatrix of ϕ and depends on the domain Ω. With
the lower quadratic bound (3.7) for the Hessian matrix D2ũ in hand, by choosing the
constant κ suõciently large as in [9, Section 4], we can obtain

(3.8) ∣Dũ∣ ≤ C ,
from (3.6), at x0, where the constant C depends on µ0, σ and Ω. We then conclude
a global gradient estimate from (3.8) and the construction of ũ, ∣Du∣ ≤ C , where C
depends on µ0, Ω, σ , and sup ∣u∣.

We remark that by taking more careful account of the constant dependence in the
proof of Lemma 3.2, we infer a sharper estimate

(3.9) ∣Du∣ ≤ C(1 + σ),
where C depends on µ0, Ω and sup ∣u∣.

Note that the gradient estimate (3.4) in Lemma 3.2 and the sharper gradient esti-
mate (3.9) hold for any solution u satisfying the weak convexity condition (3.2) and
the lower bound condition (3.3) for normal derivative on the boundary. We now ap-
ply Lemma 3.2 to obtain the gradient estimate for A-convex solutions of the Neu-
mann problem (1.1)–(1.2) with A satisfying the lower quadratic bound (1.15). From
the A-convexity of the solution u and the quadratic structure condition (1.15), the
solution u satisûes the weak convexity condition (3.2). _e Neumann boundary con-
dition (1.2) provides us a lower bound Dνu ≥ inf ∂Ω φ(x , u). Applying Lemma 3.2,
we then obtain the global gradient estimate for Neumann problem (1.1)–(1.2); that is,
∣Du∣ ≤ C for C depending on µ0, Ω, φ, and sup ∣u∣.

Since we now have obtained the derivative estimates up to second order, we can
use the continuity method to prove our existence theorem.

Proof of_eorem 1.2. From the second derivative estimate, _eorem 1.1, and the
preceding solution and gradient estimates, we can derive a global second derivative
Hölder estimate

(3.10) ∣u∣2,α ;Ω ≤ C ,
for elliptic solutions u ∈ C4(Ω)∩C3(Ω) of the semilinear Neumann boundary value
problem (1.1)–(1.2) for 0 < α < 1. _e estimate (3.10) is obtained in [16, _eorem 3.2]
(see also [15, 23]). With this C2,α estimate, we can use the method of continuity, [5,
_eorems 17.22 and 17.28], to derive the existence of a solution u ∈ C2,α(Ω), using the
supersolution u as an initial solution. To be rigorous, we should assume that A and
B are C2,α smooth, φ is C3,α smooth, and Ω ∈ C4,α for some α > 0 to get a solution
u ∈ C4,α(Ω) by the Schauder theory, (see [5, Section 6.7]), and then by approxima-
tion get a solution u ∈ C3,α(Ω). Alternatively we can use the Aleksandrov–Bakel’man
maximum principles (see [5, _eorems 9.1 and 9.6]) to carry over the proof of _e-
orem 1.1 to solutions u ∈ W4,n(Ω) ∩ C3(Ω) and use Lp regularity as well ([5, Sec-
tion 9.5]) to improve C2,α(Ω) solutions with 0 < α < 1 to be in the Sobolev spaces
W4,p(Ω) ∩ C3,δ(Ω) for all p < ∞, 0 < δ < 1.

In the rest of this section we will consider more explicit conditions for solution
bounds. Here we consider the oblique boundary value problems (1.4)–(1.5) with F
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deûned by (1.6) and G deûned by (1.13), that is, the Monge–Ampère type equation
(1.1) together with the oblique boundary condition

(3.11) Dβu = φ(x , u), on ∂Ω.

First, we note that we also obtain bounds for solutions u of (1.1)–(1.2) if u and u are
only assumed to be supersolutions and subsolutions, without any assumed bound-
ary conditions, provided we strengthen the monotonicity of φ. In particular, we can
assume, as in [17], that there exists a positive constant γ0 such that

(3.12) φz(x , z) ≥ γ0

for all (x , z) ∈ ∂Ω ×R. In the light of Lemma 3.1, we can interpret a supersolution as
satisfying (1.10) only at points of ellipticity. Since A and B are non-decreasing, super-
solutions and elliptic subsolutions are preserved under addition and subtraction re-
spectively of positive constants. Accordingly, by subtracting a positive constant from
u and using (3.12), we can assume Dβu ≥ φ(x , u) on ∂Ω, whence u ≥ u in Ω. Simi-
larly, by adding a positive constant to u we obtain Dβu ≤ φ(x , u) on ∂Ω, so that u ≤ u
in Ω. Note that for this argument we can replace (3.12) by the weaker conditions

(3.13) (sign z)φ( ⋅ , z) → ∞, as ∣z∣ → ∞.

_e conditions (3.12), (3.13) can be further weakened when constants are subsolu-
tions or supersolutions. We ûrst consider the bound from below, under the following
conditions:

A(x , z, 0) ≤ 0, det[−A(x , z, 0)] > B(x , z, 0), for all x ∈ Ω, z < −K ,(3.14)
φ(x , z) < 0, for all x ∈ ∂Ω, z < −K ,(3.15)

whereK is a positive constant. Under assumptions (3.14) and (3.15), we can readily ob-
tain the solution bound as follows. Suppose u attains itsminimumover Ω at a point x0
and u(x0) < −K. If x0 ∈ Ω, we have Du(x0) = 0, D2u(x0) ≥ 0. From equation (1.1),
we have det[−A(x0 , u(x0), 0)] − B(x0 , u(x0), 0) ≤ 0 so that by (3.14), we must have
u(x0) ≥ −K. If x0 ∈ ∂Ω,wehaveDβu(x0) ≥ 0. From the oblique boundary condition,
we have φ(x0 , u(x0)) ≥ 0. By (3.15), we again have u(x0) ≥ −K. Note that condition
(3.14) implies suõciently small constants are subsolutions of the oblique boundary
value problem (1.1) with (3.11), thereby providing lower solution bounds, by the com-
parison principle, Lemma 3.1. _erefore, the subsolution assumption in _eorem 1.2
can be replaced by the structure conditions (3.14) and (3.15), with minu replaced by
−K in I. We also remark that condition (3.14) follows from a uniform monotonicity
condition on A, namely DzA i j(x , z, p)ξ i ξ j ≥ γ1∣ξ∣2, for all (x , z, p) ∈ Ω × R × Rn ,
ξ ∈ Rn and some γ1 > 0, which is a stronger form of the A4w condition used for
generated prescribed Jacobian equations in geometric optics in [7, 28], together with
B being non-decreasing in z.

In this sense, condition (3.14) is a weakening of the uniform monotonicity of A,
while condition (3.15) is a weakening of the uniform monotonicity of φ. On the other
hand, condition (3.14) is restrictive in that it excludes the case when A is independent
of z, which occurs in optimal transportation.
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Corresponding conditions also provide bounds from above. Here though, the ana-
logue of (3.14) is more general; namely,

(3.16) det[−A(x , z, 0)] < B(x , z, 0), for all x ∈ Ω, z > K , A(x , z, 0) < 0,

while instead of (3.15), we have

φ(x , z) > 0, for all x ∈ ∂Ω, z > K ,
where K is a positive constant. Note that condition (3.16) extends the condition in
[9, Section 4], namely that the maximum eigenvalue of A(x , z, 0) is non-negative for
all x ∈ Ω, z > K for some positive constant K and implies that constants larger than
K will be supersolutions, where they are elliptic.

To complete this section, we derive a lower bound for optimal transportation equa-
tions and present the corresponding existence result.

Optimal Transportation Equations

In the optimal transportation case, we can replace the existence of a subsolution in
_eorem 1.2 by an extension of the sharp conditions [17, (1.4), (1.5)] through an ex-
tension of the Aleksandrov–Bakel’man estimate in [17, _eorem 2.1]. Optimal trans-
portation equations are special cases of prescribed Jacobian equations where themap-
pingY is generated by a cost function c deûned on a domainD ⊂ Rn×Rn . We assume
Ω×Λ ⊂D for some domain Λ ⊂ Rn , and c ∈ C2(D) satisûes the following conditions
(from [22]):
A1 For each x ∈ Ω, the mapping cx(x , ⋅ ) is one-to-one in

y ∈D∗

x = {y ∈ Rn ∣ (x , y) ∈D};
A2 det cx ,y /= 0 on D.
_en the mapping Y is given by

(3.17) Y(x , p) = c−1
x (x , ⋅ )(p)

and is well deûned for p ∈ Ux = {p ∈ Rn ∣ p = cx(x , y) for some y ∈ D∗

x}. In the
resultant Monge–Ampère type equation, we then have from (1.17),

A(x , z, p) = A(x , p) = cxx(x ,Y(x , p)) , B = ∣det cx ,y ∣ψ,
and equation (1.1) is well deûned for solutions u that areA-convex and satisfyDu(x) ∈
Ux for each x ∈ Ω. We call such solutions admissible. In the optimal transportation
case, c-aõne functions, that is, functions of the form u = c(x , y) + c0, for constant c0
and (Ω, {y}) ⊂D are automatically supersolutions, as they satisfy the homogeneous
equation

det(D2u − A(x ,Du)) = 0,

and hence provide upper bounds for solutions of (weakly) oblique boundary value
problems,

Dβu = φ(x , u), on ∂Ω,
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where β ⋅ ν ≥ 0 on ∂Ω, under a uniform monotonicity condition (3.12). For lower
bounds we impose a structure condition

(3.18) ψ(x , z, p) ≤ f (x)
f ∗ ○ Y(x , p)

for all x ∈ Ω, z ≤ m0, Y(x , p) ∈ Λ, where f ≥ 0, ∈ L1(Ω), f ∗ > 0, ∈ L1
l oc(Λ) satisfy

(3.19) ∫
Ω
f < ∫

Λ
f ∗

and m0 is a constant.
We now have the lower solution bound in the optimal transportation case.

Lemma 3.3 Let u ∈ C2(Ω) ∩ C1(Ω) be an admissible solution of equation (1.16),
in the optimal transportation case (3.17), with cost function c satisfying A1 and A2.
Suppose that ψ satisûes (3.18) and

(3.20) Dβu ≤ γ0u + φ0 on ∂Ω,

for u ≤ m0, where β ∈ L∞(∂Ω), β ⋅ ν ≥ 0 on ∂Ω and γ0 > 0 and φ0 ≥ 0 are constants.
_en we have the lower bound u ≥ −C, in Ω, where C is a positive constant depending
on Ω, f , f ∗ , β, γ0 , φ0 and c.

Proof Our proof is adapted from the second author’s 2004 Singapore Institute of
Mathematical Sciences lectures and the case where c(x , y) = x ⋅ y, that is, Y = p and
A = 0, in [17]. First, we note that if we have a global support from below at a point
x0 ∈ Ω, that is,

(3.21) u(x) ≥ u(x0) + c(x , y0) − c(x0 , y0)

for all x ∈ Ω, then we must have y0 = Y(x0 ,Du(x0)). Deûning T = Y( ⋅ ,Du), we
have by (1.16), (3.18), and the change of variable formula

∫
Ω
f ≥ ∫

Ω
∣detDT ∣ f ∗ ○ T ≥ ∫

T(Ω0)
f ∗

where Ω0 = {x ∈ Ω ∣ u(x) < m0}. Hence, by our condition (3.19) on f and f ∗, there
exists a point y0 ∈ Λ − T(Ω0). It then follows by upward vertical translation of a
c-aõne lower bound, that there exists a point x0 ∈ ∂Ω0 such that

u(x) ≥ u(x0) + c(x , y0) − c(x0 , y0)

for all x ∈ Ω. If x0 ∈ ∂Ω, we must also have

Dβu(x0) ≥ Dβc(x0 , y0)

whence by the boundary inequality (3.20), we obtain

u(x0) ≥
1
γ0

[Dβc(x0 , y0) − φ0].
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If x0 /∈ ∂Ω, then we must have u(x0) = m0. Hence by (3.21), we obtain the following
for x0 ∈ ∂Ω:

u(x) ≥ u(x0) + c(x , y0) − c(x0 , y0)

≥ 1
γ0

[Dβc(x0 , y0) − φ0] + c(x , y0) − c(x0 , y0)

≥ −φ0

γ0
− ( ∣β∣

γ0
+ diamΩ) sup

Ω
∣cx( ⋅ , y0)∣,

(3.22)

while for x0 /∈ ∂Ω, we obtain

(3.23) u(x) ≥ m0 − (diamΩ) sup
Ω

∣cx( ⋅ , y0)∣.

To remove the dependence on y0 in (3.22) and (3.23), we can consider an exhaustion
of Λ, say by deûning subdomains

ΛR = { y ∈ Λ ∣ ∣y∣ < R, dist(y, ∂Λ) > 1
R }

for R ≥ 1. _en by (3.19), we have

∫
Ω
f < ∫

ΛR
f ∗

for some suõciently large R, and we obtain from (3.22) and (3.23), the estimate,

u(x) ≥ min{m0 ,−
φ0

γ0
} − ( ∣β∣

γ0
+ diamΩ) sup

Ω×ΛR

∣Dc∣.

_is completes the proof of Lemma 3.3.

As a corollary of Lemma 3.3 and the proof of_eorem 1.2, we then have the follow-
ing variant of _eorem 1.2 in the optimal transportation case. For this purpose, we
note that the boundary condition (1.2) and the monotonicity condition (3.12) imply
(3.20) with β = ν and

φ0 = −γ0m0 + sup
∂Ω

φ( ⋅ ,m0).

Corollary 3.1 Suppose that equation (1.1) is a prescribed Jacobian equation of the
form (1.16) generated by a cost function c ∈ C2(D) satisfying conditions A1 and A2
and Ux = Rn for all x ∈ Ω, with ψ satisfying the structure conditions (3.18) and (3.19).
Let A, B, φ, and Ω satisfy the hypotheses of _eorem 1.2 except for the existence of an
elliptic subsolution, with φ satisfying (3.12) and Ω assumed to be uniformly A-convex
with respect to φ and −C; that is (1.8) holds for p ⋅ ν ≥ φ(⋅,−C) on ∂Ω, where C is the
constant in Lemma 3.3. _en the Neumann boundary value problem (1.1)–(1.2) has a
unique elliptic solution u ∈ C3,α(Ω) for any α < 1.

We remark that as in [17], condition (3.19) is necessary for an elliptic solution u ∈
C2(Ω) ∩ C0,1(Ω) of (1.16), with Du(x) ∈ Ux for all x ∈ Ω.

In accordance with our remarks following the statement of _eorem 1.2, pertain-
ing to the special case (1.14), and using the argument at the end of Section 2, we can
remove the supersolution condition in Corollary 3.1 for convex domains. To apply
the argument at the end of Section 2 (before Remark on Lemma 2.1), we also need to
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use the existence of an elliptic function, as provided by [7, Lemma 2.1]. In this way,
we obtain an extension of [17, _eorem 1.1], which corresponds to the special case
c(x , y) = x ⋅ y, (or equivalently, the case c(x , y) = −∣x − y∣2/2). Note that the matrix
A = A(p) satisûes (1.14) when the cost function c = c(x− y). Examples of regular and
strictly regular cost functions are given in [18, 30]. However, most of these examples
do not satisfy Ux = Rn , and in general we need additional controls on gradients to
prove classical existence theorems.

We also remark that Lemma 3.3 andCorollary 3.1 are readily extended to generated
prescribed Jacobian equations [28].

4 Oblique Boundary Value Problems

In this section we consider more general oblique boundary value problems for
Monge–Ampère type equations under the hypothesis that the matrix function A is
strictly regular. As remarked in Section 1, this condition also leads to a much simpler
proof in the Neumann case. Also, we do not need to restrict to semilinear problems
of the form (1.13) but can consider nonlinear boundary conditions of the general form
(1.5), where G is also concave with respect to p. Our approach is already indicated in
[30, Section 4], and we will carry over some of the basic details from there. Moreover,
our results can also be seen as special cases of those for general augmented Hessian
equations in [8]. For second derivative estimates, we will assume that the function
G ∈ C2(∂Ω ×R ×Rn) is oblique with respect to a solution u; that is, from (1.19),

(4.1) Gp( ⋅ , u,Du) ⋅ ν ≥ β0 , on ∂Ω,

for a positive constant β0, and is concave in p, with respect to u, in the sense that

(4.2) Gpp( ⋅ , u,Du) ≤ 0, on ∂Ω.

We now have the following extension and improvement of _eorem 1.1 in the strictly
regular case.

_eorem 4.1 Let u ∈ C4(Ω) ∩ C3(Ω) be an elliptic solution of the boundary value
problem (1.1)–(1.5) in a C3,1 domain Ω ⊂ Rn , which is uniformly A-convex with respect
to G and u, where A ∈ C2(Ω×R×Rn) is strictly regular in Ω, B > 0, ∈ C2(Ω×R×Rn),
and G ∈ C2,1(∂Ω ×R ×Rn) satisûes (4.1) and (4.2). _en we have the estimate

(4.3) sup
Ω

∣D2u∣ ≤ C ,

where C is a constant depending on n,A, B,G , Ω, β0, and ∣u∣1;Ω .

Proof As in the proof of_eorem 1.1, we ûrst consider the estimation of the nontan-
gential second derivatives. In the semilinear case (1.13), we can simply replace ν by β
there and deduce in place of (2.11), the estimate

(4.4) ∣Dβξu∣ ≤ C(1 +M2)
n−2
n−1 , on ∂Ω,

for any direction ξ, where as in Section 2, M2 = supΩ ∣D2u∣. In the general case, we
have the same estimate (4.4) from [30, estimate (4.4)], where now β = Gp( ⋅ , u,Du).
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Now, diòerentiating the boundary condition (1.5) twice with respect to a tangential
C2 vector ûeld τ we obtain as in the estimate (4.10) in [30],

(4.5) uττβ ≥ −Dpk p lGukτu l τ − C(1 +M2) ≥ −C(1 +M2), on ∂Ω,
by virtue of the concavity ofGwith respect to p. For convenience, wewriteu iτ = u i jτ j ,
uττ = u i jτ iτ j , uττβ = u i jkτ iτ jβk . To handle the pure tangential derivatives we extend
the C2 vector ûeld τ to all of Ω and set

v = wττ − K(1 +M2)ϕ,
whereas in the proof of _eorem 1.1, ϕ ∈ C2(Ω) is a negative deûning function for Ω
satisfying Dνϕ = −1 on ∂Ω and K is a constant such that

Dβ(w i jτ iτ j) > −K(1 +M2)β0 , on ∂Ω.

In particular we can ûx τ with τ i = x i − (x ⋅ ν)ν i , i = 1, . . . , n, where as in Section 2, ν
is a smooth extension of the inner normal ν to Ω. It then follows that Dβv > 0 on ∂Ω
so that v must take its maximum on Ω at an interior point x0 ∈ Ω, with Lv(x0) ≤ 0.
Now we can adapt the proof of the interior second derivative estimate in [22, 29],
diòerentiating the equation (1.1), in the form (2.1), twice with respect to τ and using
also the concavity of the function “log det”, togetherwith (4.5) to controlK, to estimate
at x0,
(4.6) w i jA i j,klukτu l τ ≤ C[(1 +M2)w i i + ∣Duτ ∣2] ,
where the last term ∣Duτ ∣2 is from the twice diòerentiation of B. We remark that
if B is convex with respect to p, then the term ∣Duτ ∣2 is not present in (4.6). We
note that when we twice diòerentiate (1.1) with respect to a variable vector ûeld τ, to
calculate Lv, we encounter terms arising from derivatives of τ that are not present
in the constant case (2.17). Apart from the terms in third derivatives these can be
directly estimated by C(1 + M2)w i i . Retaining the third derivative terms, we would
supplement the right-hand side of (4.6), by

−w ikw j lDτw i jDτwkl − 4w i jD iτkDτw jk

= −w ikw j lDτw i jDτwkl − 4w ikw j lw jsD iτsDτwkl

≤ −w ikw j l(Dτw i j + 2w jsD iτs)(Dτwkl + 2w l tDkτt)
+ 4w ikw j lw jsw l tD iτsDkτt

≤ 4w i jwklD iτkD jτ l ≤ C(1 +M2)w i i ,

(4.7)

so that estimate (4.6) is unaòected. To use the strictly regular condition,

A i j,kl ξ i ξ jηkη l ≥ c0∣ξ∣2∣η∣2 ,
for all ξ, η ∈ Rn satisfying the orthogonality ξ ⊥ η, where c0 is a positive constant
depending on A and ∣u∣1;Ω , we choose coordinates so that w is diagonalised at x0, so
that

w i jA i j,klwkτw l τ = w i iA i i ,klwkkw l l τkτ l ≥ ∑
k , l /=i

w i iA i i ,klwkkw l l τkτ l − CM2

≥ c0w i i ∑(wkkτk)2 − CM2 .

(4.8)
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Hence, we obtain the following from (4.6), (4.8), and (2.7):

(4.9) Dττu(x0) ≤ C(1 +M2)
1
2 .

At this point we need to return to our choice of ϕ to ensure that inf ϕ ≥ −є for some
small positive constant є. _is can be done, for example, by molliûcation of the func-
tion− inf{d , є} for suõciently small є, where the constantC = Cє in (4.9) will depend
also on є. Alternatively, we may simply restrict to a boundary strip Ωє = {ϕ > −є}
and use the interior second derivative estimates [22, 30] to estimate v on the inner
boundary {ϕ = −є}. Accordingly, we obtain the following from (4.9):

v(x0) ≤ Cє(1 +M2)
1
2 + єM2 ,

and hence we get an estimate

(4.10) Dττu ≤ Cє(1 +M2)
1
2 + єM2 on ∂Ω.

Since for any direction ξ, we have,
uξξ = uττ + b(uτβ + uβτ) + b2uββ ,

where
b = ξ ⋅ ν

β ⋅ ν , τ = ξ − bβ,

we then obtain a boundary estimate in the form,

sup
∂Ω

∣D2u∣ ≤ єM2 + Cє ,

for any suõciently small є > 0, by combining (4.4) and (4.10). _e global second
derivative estimate (4.3) now follows from the global second derivative estimates in
[29, 30] by choosing є suõciently small.

_e details in the proof of_eorem 4.1 can be further varied. For example, we can
replace v by
(4.11) v = (1 − Kϕ)wττ

for a suõciently large constant K, where ϕ is the same negative deûning function as
in the proof of_eorem 4.1. As remarked in Section 1, we also obtain a much simpler
proof of _eorem 1.1 in the strictly regular case without need for the supersolution
and monotonicity hypotheses. Moreover, by �attening the boundary ∂Ω in a neigh-
bourhood N of a ûxed point x1 ∈ ∂Ω, we can localise the second derivative estimate
by modifying (4.11):

v = η(1 − Kϕ)wττ ,

where η is a suitable cut-oò function satisfying Dνη = 0 on N ∩ ∂Ω. Accordingly, we
obtain for any ball B = BR(x0) of radius R > 0 and centre x0, the local estimate

(4.12) ∣D2u(x0)∣ ≤
C
R2 ,

for elliptic solutions u ∈ C4(B ∩ Ω) ∩ C3(B ∩ Ω) of (1.1) satisfying (1.2) on B ∩ ∂Ω,
where B ∩ ∂Ω is uniformly A-convex with respect to G and u in the sense that

(D iν j − DpkA i j( ⋅ , u,Du)νk)τ iτ j ≤ −δ0
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on B∩∂Ω forG(x , u,Du) ≥ 0 and any unit tangential vector τ and a positive constant
δ0. _e constant C in (4.12) depends on n,A, B, Ω, δ0 , ϕ, and ∣u∣1;Ω . We also point
out that comparability of diòerentiation with respect to a general vector ûeld and a
constant vector ûeld in the proof of _eorem 4.1, which follows from the identity
(4.7), is special to the Monge–Ampère case. A diòerent and more detailed proof of
the critical tangential estimate (4.10) is provided for more general augmentedHessian
equations in [8, Lemma 2.3].

Returning to the example from conformal geometry in Section 1, namely (1.21),
(1.22) with M = Ω ⊂ Rn , the A-convexity condition also simpliûes in that Ω is
A-convex (uniformly A-convex) with respect to G and u if and only if

κ1 ≥, (>),−ce−u + h∂Ω on ∂Ω,

where κ1 denotes theminimum curvature of ∂Ω, and_eorem 4.1 extends the second
derivative estimates in [11] for this special case with c > 0. We remark though that
the strictly regular case in _eorem 4.1 also extends to general augmented Hessian
equations, and corresponding second derivative estimates for (1.21) for general f are
proved in [8].
From _eorem 4.1, we can obtain existence theorems, which also extend _eo-

rem 1.2 and Corollary 3.1 in the strictly regular case. First, we prove an appropriate
extension of the gradient bound Lemma 3.2.

Lemma 4.1 Let u ∈ C2(Ω) satisfy (3.2) in a C2 domain Ω ⊂ Rn and let

(4.13) ∣Dβu∣ ≤ σ0 , β ⋅ ν ≥ β0

on ∂Ω, where β ∈ L∞(∂Ω), ∣β∣ = 1 and σ0 and β0 are positive constants. _en we have
the estimate

(4.14) ∣Du∣ ≤ C ,

where C depends on µ0 , σ0 , β0 , Ω, and sup ∣u∣.

Proof Invoking the tangential gradient δu, we have the formula

(4.15) Dνu = 1
β ⋅ ν (Dβu − β ⋅ δu)

so that we can estimate

∣Du∣ ≤ 1
β0

(∣δu∣ + σ0) + ∣δu∣

on ∂Ω, whence from (3.2), we obtain

(4.16) D2u ≥ −µ1(1 + ∣δu∣2)I

on ∂Ω, for a further constant µ1, depending on µ0, β0, and σ0. Now we consider in
place of (3.5), the function

(4.17) w = eκu ∣δu∣2 ,
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so that at a point x0 ∈ ∂Ω where w is maximised we have

0 = δu ⋅ δw = eκu(κ∣δu∣4 + 2δ iuδ juδ iδ ju)
= eκu[κ∣δu∣4 + 2δ iuδ ju(D i ju − Dνuδ iν j)]
≥ eκu[κ∣δu∣4 − 2µ1∣δu∣2(1 + ∣δu∣2) − C∣δu∣2] ,

from (4.15) and (4.16), where C is a constant depending on β0, σ0, and ∂Ω. By choos-
ing κ suõciently large we conclude the estimate (4.14) on ∂Ω and the estimate in all
of Ω then follows from [9] or Lemma 3.2.

Lemma 4.1 provides an extension of [17, _eorem 2.2] to the weaker convexity
condition (3.2). If we assume a stronger quadratic control from below on the Hessian,
namely

(4.18) D i juξ i ξ j ≥ −µ0(1 + ∣Dξu∣2)
for some constant µ0 and any unit vector ξ, we can reduce to _eorem 2.2 and the
corresponding remark in [17] as condition (4.18) implies that the function eκu is semi-
convex for large κ. We also remark that the gradient estimates in Lemmas 3.2 and 4.1
have local versions. In particular, if we ûx any ball B = BR(x0) of radius R and centre
x0 ∈ Ω, and suppose u ∈ C2(Ω ∩ B) ∩ C1(Ω ∩ B) satisûes (3.2) in Ω ∩ B and (4.13) in
∂Ω ∩ B. _en we have an estimate

(4.19) ∣Du(x0)∣ ≤
C
R
,

where C depends on µ0 , σ0 , β0 , Ω, and sup ∣u∣. To prove (4.19) we modify our proof
of the global estimate Lemma 4.1 by maximizing in place of the auxiliary functions in
[9] and (4.17) above, the functions

w1 = η2eκu ∣Du∣2 , w2 = η2eκu ∣δu∣2

over Ω ∩ B, ∂Ω ∩ B respectively, where η ∈ C1
0(B) is a cut-oò function chosen so that

0 ≤ η ≤ 1, η(x0) = 1 and ∣Dη∣ ≤ 2/R.
Note that (4.18) is satisûed in the special case (1.22), so we obtain, for solutions of

(1.21), (1.22), both local and global, gradient and second derivative estimates in terms
of Ω, h∂Ω , and sup ∣u∣.

In order to apply Lemma 4.1, we also need to assume that G is uniformly oblique
in the sense that

(4.20) Gp(x , z, p) ⋅ ν ≥ β0 , ∣Gp(x , z, p)∣ ≤ σ0 on ∂Ω,
for all x ∈ Ω, ∣z∣ ≤ M0, p ∈ Rn and positive constants β0 and σ0, depending on the
constant M0. Using the mean value theorem, we can thus write G in the semilin-
ear form (1.13) so that Lemma 4.1, as well as the solution estimates in Section 3, are
applicable.

We then have the following analogue of_eorem 1.2 with a much weaker superso-
lution condition.

_eorem 4.2 Suppose that A, B,G, and Ω satisfy the hypotheses of _eorem 4.1 with
G uniformly oblique satisfying (4.20), and concave in p for all (x , z, p) ∈ ∂Ω×R×Rn .
Assume also that Aand B are non-decreasing in z, G is strictly decreasing in z, A satisûes
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(1.15) and that there exists a supersolution u and an elliptic subsolution u of equation
(1.1) in C2(Ω) ∩ C1(Ω) satisfying G[u] ≤ 0 and G[u] ≥ 0 respectively on ∂Ω with Ω
uniformly A-convex with respect to G and I = [u, u]. _en the boundary value problem
(1.1)-(1.5) has a unique elliptic solution u ∈ C3,α(Ω) for any α < 1.

Analogously to Corollary 3.1, we also have from Lemma 3.3 an existence theorem
in the optimal transportation case. Here we may also extend the condition (3.12) by
assuming there exists a positive constant γ0 such that

(4.21) Gz(x , z, p) ≤ −γ0

for all (x , z, p) ∈ ∂Ω ×R ×Rn .

Corollary 4.1 Suppose that equation (1.1) is a prescribed Jacobian equation of the
form (1.16) generated by a cost function c ∈ C2(D) satisfying conditions A1 and A2
and Ux = Rn for all x ∈ Ω, with ψ satisfying the structure conditions (3.18) and (3.19).
Suppose also that A, B,G, andΩ satisfy the hypotheses of_eorem 4.1with G uniformly
oblique satisfying (4.20), uniformly monotone satisfying (4.21) and concave in p for all
(x , z, p) ∈ ∂Ω×R×Rn , A satisfying (1.15), B non-decreasing andΩ uniformly A-convex
with respect to G and −C, where C is the constant in Lemma 3.3. _en the boundary
value problem (1.1)–(1.5) has a unique elliptic solution u ∈ C3,α(Ω) for any α < 1.

As with Corollary 3.1, the applicability of Corollary 4.1 is limited by the admis-
sibility condition Ux = Rn , as well as the boundary A-convexity conditions. Since
the function G( ⋅ , u,Du) itself satisûes an elliptic Dirichlet problem with vanishing
boundary values, geometric conditions of the latter type will be necessary for classi-
cal solvability; see [5]. _is situation is explored further in the context of regularity of
generalized solutions in conjunction with [8].
Finally, we remark that when G is assumed nonnegative and uniformly concave in

pwith respect to u in some boundary neighbourhoodN, we only need A to be regular
in _eorems 4.1, 4.2, and Corollary 4.1, and the global second derivative estimates
follow exactly as in [30, Section 4]; see also [33]. Also the proof of_eorem 4.1 would
carry over to the cases whenG is non-increasing and A is non-decreasing, with either
Gz suõciently small orDzA suõciently large andA again only assumed regular (using
in the ûrst case the existence of an elliptic function and Lemma 2.1). _ese aspects are
treated in part II of [8] for general augmented Hessian equations.
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