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Using a dynamical scaling analysis of the flow variables and their evolution due to
bubble bursting, here we predict the size and speed of ejected droplets for the whole
range of experimental Ohnesorge and Bond numbers where ejection occurs. The transient
ejection, which requires the backfire of a vortex ring inside the liquid to preserve physical
symmetry, shows a delicate balance between inertia, surface tension and viscous forces
around a critical Ohnesorge number, akin to an apparent singularity. Like in other natural
phenomena, this balance makes the process extremely sensitive to initial conditions. Our
model generalizes or displaces other recently proposed ones, impacting on, for instance,
the statistical description of sea spray.
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1. Introduction

Everyday experience teaches that radially convergent flows close to a liquid surface
produce vigorous transient liquid ejections in the form of a jet perpendicular to the surface,
as those seen after bubble bursting (Kientzler et al. 1954), droplet impact on a liquid
pool (Yarin 2006) or cavity collapse (Ismail et al. 2018). The mechanical energy of the
flow comes from the free surface energy of the initial cavity. Among these processes,
bubble bursting can be considered the parametrically simplest and most ubiquitous
one: just two non-dimensional parameters, namely the Ohnesorge (Oh) and Bond (Bo)
numbers, determine the physics and the outcome (Oh and Bo, weighting the viscous and
gravity forces with surface tension, respectively). It has received special attention in the
scientific literature due to its impact at global planetary scales (bubble bursting at the sea
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surface, e.g. Kientzler et al. (1954), Blanchard & Woodcock (1957), Veron (2015) and
Sampath et al. (2019); disease and pandemic transmission, e.g. Bourouiba (2021)) and in
more ‘indulging’ applications (e.g. Ghabache et al. 2016; Séon & Liger-Belair 2017).

Current works state that the subject is already deeply understood (Berny et al. 2020;
Sanjay, Lohse & Jalaal 2021), yet despite optimistic statements, even in the simplest case
where the liquid properties are constant and the gas-to-liquid density and viscosity ratios
are very small, unsettling but crucial questions remain open. Within an ample range of
Oh and Bo, bubble bursting exhibits a strong focusing effect due to the nearly cylindrical
collapse of a main wave at the bottom of the parent bubble. In these cases, a tiny bubble
gets trapped and an extremely thin and rapid spout emerges. That initial spout grows into
a much taller, thicker and slower transient jet that may eventually expel droplets. Their
eventual size and speed is determined by Oh and Bo. However, for an apparently critical
Oh, (Oh∗), the initial ballistic spout keeps its large speed and extremely thin radius until it
ejects a nearly invisible droplet, such that the spout momentum (proportional to its velocity
times its volume) seems to vanish. Strikingly, a nearly symmetric behaviour is observed
around that Oh∗ (Séon & Liger-Belair (2017), figure 16). Around that special parametrical
region, experiments and numerical simulations exhibit a strong dispersion attributed to
local viscous effects and interaction with the gas environment (Brasz et al. 2018; Dasouqi,
Yeom & Murphy 2021).

In general, the global streamlines of the flow resemble a dipole with its axis
perpendicular to the interface (figure 1), which is responsible for the vigorous liquid–air
transfer process characteristic of this phenomenon (Lee et al. 2011). The energy excess of
the convergent flow leads to both a fast transient capillary jet and a vortex ring in opposite
directions but equivalent effective momenta by virtue of Newton’s third law of motion.
Their radically different kinematics, due to a large density disparity across the interface,
is not an obstacle to their profound symmetry, as we will show here. We claim that this
symmetry and its scalings are the keys to determine the eventual ejected droplet size and
speed, and the appearance of singular dynamics. In this regard, some of the above cited
authors and many others (e.g. MacIntyre 1972; Duchemin et al. 2002; Thoroddsen et al.
2018) have noticed the trapping of tiny bubbles after bursting. In particular, the one trapped
at the bottom of the formed cavity is the relic of a singularity produced by the collapse
of a pilot capillary wave from the rim formed after the upper film rupture (Duchemin
et al. 2002; Thoroddsen et al. 2018). This singularity would explain why the range of Oh
numbers where this occurs exhibits the largest ejection speeds and smaller drops.

In this work, we present: (i) a universal non-trivial scaling of the evolution of the flow
kinematic variables (characteristic lengths and velocity); (ii) a prediction of the eventual
ejected droplet size and speed, for the complete range of Oh and Bo for which ejection
occurs (which generalizes Gañán-Calvo (2017)); and (iii) an explanation why an apparently
singular value of Oh∗ appears. The existing data from prior works (e.g. those collected in
Gañán-Calvo (2017); Brasz et al. (2018), Deike et al. (2018), Gañán-Calvo (2018) and
Berny et al. (2020)) and novel numerical simulations are compared with our theoretical
results. When the droplet size and ejection velocity are properly scaled according to our
model, the data show a remarkable collapse around our model except in the vicinity of Oh∗.
A careful inspection reveals that all data from numerical simulations exhibit an enormous
degree of dispersion that experimental data do not display. In fact, while numerical series
should be independently fitted, the available experimental series appear to obey a single
universal fitting to our model. Given that it relies on just two non-dimensional parameters
alone, Oh and Bo, this has a twofold consequence: (i) it highlights the critical importance
of the artificial initial conditions after film bursting in the numerical simulations among the
different authors, which precludes universality; and (ii) it provides a proof that the natural
929 A12-2
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Figure 1. General overview of the flow development around the critical time t0 of collapse of the main pilot
wave at the bottom of the cavity, for Oh = 0.032, Bo = 0. The three instants here illustrated are t0 − t = 3.54 ×
10−3tc, t0 − t = 8.4 × 10−6tc and t − t0 = 4 × 10−4tc (with tc = (ρR3

o/σ)1/2). (a) Global flow streamlines
(similar to dipole contours at a liquid–gas surface) showing a particular one (line A–B) ending at the point
(B) just above where the collapse eventually occurs. The blue sphere of the three-dimensional rendering is the
initial bubble immediately after bursting. (b) Local details of the same instants. The stream function levels
shown are closer around the tiny trapped bubble to exhibit the vortex ring. Note that the upper axial point
of the ellipsoid defining the vortex ring coincides with the point where the surface collapsed at t = t0 and
remains at that position: observe the horizontal line connecting the three subpanels of panel (b). The main flow
velocities W (radial) and V (axial, ejection) are indicated. The dashed lines represent the instantaneous stream
tube which feeds the collapsing point or the issuing jet. In these simulations using the volume of fluid method
(VOF) ( Basilisk, Popinet 2015), the density and viscosity of the liquid is 1000 and 100 times that of the gas,
respectively, to reflect similar relations to the air–salt water ones.

process should be fundamentally universal in terms of Oh and Bo alone, as expected
from the universality of initial film drainage and rupture (Eggers & Fontelos (2015) and
references therein), which supports the universal validity of our model once the three
proposed physically relevant fitting parameters are found.

2. Formulation and dynamical scaling analysis

Consider a gas bubble of initial radius Ro very close or tangent to the free surface of
a liquid with density, surface tension and viscosity ρ, σ and μ, respectively, in static
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equilibrium under a relatively small action of gravitational acceleration g normal to
the free surface far from the bubble. The flow properties are considered constant. At a
certain instant, the thin film at the point of tangency breaks and the process of bubble
bursting starts (figure 1a). The problem is thus determined by the Ohnesorge (Oh =
μ/(ρσRo)

1/2) and Bond (Bo = ρgRo2/σ ) numbers alone (Montanero & Gañán-Calvo
2020). Alternatively, instead of Oh, some authors prefer to use the Laplace number (La),
which is simply La = Oh−2 (e.g. Duchemin et al. 2002; Lai, Eggers & Deike 2018).
Also, the Morton number, Mo = Bo Oh4, has been used as a relative measure of the
gravitational forces (e.g. Berny et al. 2020). The liquid rim that is initially formed pilots
two main capillary wavefronts, one that advances along the bubble surface towards its
bottom, and the other propagating away from the cavity. In some parametrical regions
of the domain (Oh, Bo) of interest, a significant fraction of the energy content in the
nonlinear wave spectrum of the initial surface configuration (after the bubble film burst) is
in the small-wavelength domain (wavelets). For small Oh, these wavelets may arrive first
to the bottom, but they do not produce any significant effect compared with the collapsing
main wave (Gañán-Calvo 2018) in the parametrical realm considered here. When the main
wavefront approaches the bottom, it becomes steep. If the wavefront leads to a nearly
cylindrical collapsing neck in a certain region, a tiny bubble gets trapped below the surface
once the ejection process commences. The process of radial collapse and bubble trapping
is locally described by the theory of Eggers et al. (2007), Fontelos, Snoeijer & Eggers
(2011) and Eggers & Fontelos (2015) when a strong asymmetry in the axial direction
occurs. However, the asymmetry of bubble trapping here observed leads to an extremely
rapid and thin initial ejection in the opposite direction from the trapped bubble.

Figure 1(b) shows three illustrating instants of the flow development around the critical
instant t0 at which the axial speed of the liquid surface on the axis reaches its maximum
(immediately after the tiny gas neck collapses). When t < t0, the flow is predominantly
radial (spherical) with a characteristic speed W at the interface. After collapse (t > t0),
while the main flow keeps running radially with speed W, the axial asymmetry of the
flow and the kinetic energy excess of the liquid is axially diverted in the two opposite
directions, with radically different results: (i) towards the open gas volume, producing
the liquid spout with speed V and characteristic radial length R; and (ii) towards the liquid
bulk, as a backward reaction vortex ring (figure 1b, in colours) with characteristic length L,
around the trapped microbubble. Eventually, the advancing front of the resulting capillary
jet expels a droplet or droplet train with characteristic radius R.

Obviously, all scales (W, V, R, L) are time-dependent along their evolution. Some
relevant prior works (e.g. Zeff et al. 2000; Lai et al. 2018) have analysed the time
self-similarity of the flow variables. Assuming that those time self-similarities exist,
our focus is here to obtain closed relationships among those scales and to predict the
size and speed of ejections reflected by the eventual values of R and V at the end of
the process. This approach, though, demands the identification of the key symmetries
appearing in the problem that may lead to an effective problem closure (Gañán-Calvo,
Rebollo-Muñoz & Montanero 2013). To this end, a set of relations among the radial and
axial characteristic lengths and velocities was formulated in Gañán-Calvo (2017, 2018)
on the basis that inertia, surface tension and viscous forces should be comparable very
close to the instant of collapse of the free surface. Under the light of detailed numerical
simulations, the previously proposed simplified models are put into perspective after a
rigorous derivation of the new model. Following a similar rationale to that in Gañán-Calvo
(2017), this derivation is made in two steps: (i) we obtain explicit relationships among
the four time-dependent variables along the process, verifying their validity numerically;
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Transient ejection from bubble bursting

and (ii) we close the problem identifying the critical key factors on the energy balance of
the process. The final model is compared with the ample set of experimental and numerical
available data, and its validity is extended to the whole range of Oh numbers where ejection
takes place.

2.1. Instantaneous scalings of kinematic variables along the process
The general momentum equation of the liquid can be written as

ρvt + ∇(ρv2/2 + p − Pa + ρgz) = ρv ∧ ∇ ∧ v + μ∇2v, (2.1)

where v is the velocity vector, subscript t denotes a partial derivative with time, p is the
liquid pressure, z the axial coordinate and Pa the static gas pressure. Equation (2.1) can
be multiplied by the unit vector l tangent to any instantaneous streamline, in particular the
streamline flowing through a point A where it meets the free surface to a point B at the
vicinity of the point of collapse (see figure 1a). Integrating with respect to the streamline
coordinate s from A to B yields

ρ

∫ B

A
l · vt ds + ρv2/2

∣∣∣
B

+ σ∇ · n|B + ρg�z|BA = μ

∫ B

A
l · ∇2v ds, (2.2)

since the velocity is negligible and pressure is Pa at the point A. Here, n is the unit
normal on the liquid surface, and �z is the depth of point B respect to A. As a general
consideration, the liquid velocities are very small everywhere compared with those at
distances L to the collapsing region, which may exhibit a self-similar flow structure (Zeff
et al. 2000; Duchemin et al. 2002; Lai et al. 2018). The length scale L also characterizes
the inverse of the mean local curvature of the liquid surface around the region of collapse,
for any given time t. Thus, L obviously changes with time around the instant of collapse. To
look for symmetries around t0, let us consider two situations, one for t < t0 and the other
for t > t0 such that their characteristic length scales L are the same (see figure 1). Then,
one may estimate the characteristic values of each term of (2.2) for both t < t0 and t > t0.
In any case, the first two terms of (2.2) are always of the same order for this unsteady
problem.

For t < t0, both the left-hand integral and the kinetic energy term at B in (2.2) should
scale as ρW2. The surface tension term at B should be proportional to σ/L, and the gravity
term to ρgRo. Finally, the curvature of streamlines suggests that the viscous stresses
should scale as μW/L, which fixes the scale of the right-hand side term of (2.2). This
is so because boundary layers cannot be thinner than the scale L of the collapsing main
wave, as shown by Gañán-Calvo (2018): due to the near-zero tangential viscous stress at
the free surface, boundary layers cannot be maintained by other means than the internal
inertia. In effect, at the vicinity of the surface, there are no other sources of momentum
and no other concentrated sources for viscous diffusion than the internal flow, whose fate
is dictated by the free surface geometry and, consequently, its energy content. Since that
characteristic length L is fixed by the collapsing main wave, this should be the minimum
(if any) characteristic length of viscous diffusion as well. Thus, the overall scaling balance
of (2.2) can be expressed as

ρ(W2 + β1g Ro) ∼ σ L−1 + α1μ W L−1, (2.3)

where prefactors α1 and β1 should be universal constants reflecting the dominance
or subdominance of the corresponding terms. Using the natural length and velocity,
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�μ = μ2/(ρσ) and vμ = σ/μ, respectively, and defining ζ = L/�μ, ω = W/vμ = and
ε1 = β1Oh2Bo, this equation can be written as

ω2 + ε1 ∼ (1 + α1ω) ζ−1. (2.4)

When t > t0, the vigorous ejection in the axial direction generates the new characteristic
velocity V and radial size R scales of the liquid jet. The physical symmetry around to
should keep the scale of the radial velocity W in the bulk and the spatial scale L (including
the axial scale of the jet) the same: see the central subpanel in figure 1(b) for Oh = 0.032,
Bo = 0. Even before collapse, the flow develops a stagnant region in the liquid just below
the collapsing point. From this point, a vortex ring of characteristic (growing) size L and
speed W like those beautifully described by Maxworthy (1972) develops; see figure 4 of
his work (dissecting absolute and relative speeds is not trivial in these flows, as Maxworthy
showed). By virtue of total energy preservation and assuming that the trapped microbubble
is much smaller than the vortex, the mechanical energy of the vortex, ρW2L3, should
mirror that of the vigorous microjet, ρV2R2L. Furthermore, the streamlines below the jet
form a feeding stream tube coming from deep in the liquid domain (surrounding the vortex
ring, see figure 1b, right-hand subpanel), which should ultimately originate far away from
the bubble at the free surface. In contrast, Gordillo & Rodriguez-Rodriguez (2019) ignores
such a vortex and proposes a simplified radial (cylindrical) flow model, which hampers the
correct identification of the local flow scales.

In summary, one can write

ρV2R2L ∼ ρW2L3 =⇒ V R ∼ W L =⇒ υ χ ∼ ω ζ, (2.5)

where χ = R/�μ and υ = V/vμ. As a secondary consequence, the incoming conical flow
raises the conical surface at characteristic speed W.

One can now estimate the scaling of the different terms of (2.2) for a streamline ending
at a point B at the surface of the jet (see figure 1a), and write the following balance:

ρ(V2 + β2g Ro) ∼ σ R−1 + α2μW L−1, (2.6)

where, again, prefactors α2 and β2 should be universal constants at the end of the process.
Using natural scales and defining ε2 = β2Oh2Bo, (2.6) reads

υ2 + ε2 ∼ χ−1 + α2ωζ−1. (2.7)

As in Gañán-Calvo (2017), (2.4), (2.5) and (2.7) define three relationships between the
time dependent scales (χ, υ, ζ, ω). In effect, an explicit relationship between ω and ζ is
easily derived after rewriting (2.4):

(ωζ )2 − α1(ωζ ) + ζ(ε1ζ − 1) ∼ 0 ⇒ ωζ ∼ ϕ ≡ α1

2
+
[(α1

2

)2 + ζ(1 − ε1ζ )

]1/2

.

(2.8)

Also, introducing (2.5) and (2.8) in (2.7), the following relationship between υ and ζ

results:

(ϕυ)2 − (ϕυ) + ϕ2(ε2 −α2ϕζ−2)∼ 0 ⇒ ϕυ ∼φ ≡ 1
2

+
[

1
4

+ ϕ2
(

α2ϕ

ζ 2 − ε2

)]1/2

.

(2.9)
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Figure 2. Numerical data (momentum-conserving VOF, Basilisk, minimum cell size 3 × 10−4Ro for this
figure) compared with prediction (2.10a–c). The Oh numbers of the different series are given at the right-hand
side of the figure. (a) Plot of χ versus ζ . Black dashed line (χ ∼ ζ ) shows the essential proportionality
between both spatial variables along the whole process as predicted, consistently with prior analyses (Zeff
et al. 2000). (b) Plot of υ versus ω. Black dashed line (υ ∼ ω) also shows the proportionality between both
variables for υ below 20; the deviation above that value reflects the very high initial velocity acquired by the
spout front at its inception for Oh around Oh∗ (focusing effect). (c) Plot of χ versus υ. The black dashed line
is the theoretical prediction for t − to > tμ (α1,2 → 0), which yields χ ∼ υ−2. The blue dashed line would
correspond to 0 < t − to < tμ, with α1,2 	 1, yielding χ ∼ υ−1. Observe the visible change of regime in the
case Oh = 0.038 around χ 
 0.65, i.e. around R 
 0.65�μ. The scaling law proposed by Gañán-Calvo (2017),
χ ∼ υ−5/3, is also plotted as a red dashed line.

In summary, the following explicit relationships hold:

χ ∼ ϕ2φ−1, υ ∼ ϕ−1φ, ω ∼ ϕ/ζ, (2.10a–c)

which can be tested against numerical simulations. For α1 → 0, α2 	 1 and ε1,2 = 0,
(2.10a–c) yields χ ∼ υ−5/3, ζ ∼ υ−4/3 and ω ∼ υ2/3, as predicted by Gañán-Calvo
(2017). However, given that the ejection is fundamentally a ballistic (inertial) process, one
may expect two possible regimes in the evolution of the ejection.

(i) When |t − t0| < tμ = μ3/(ρσ 2), the inertia and viscous forces should be dominant
(α1,2 	 1). In this case, for Bo = 0, χ ∼ ζ ∼ υ−1 ∼ ω−1.

(ii) For |t − to| > tμ, inertia and surface tension forces should prevail (α1,2 � 1). Here,
if Bo = 0, one obtains χ ∼ ζ ∼ υ−2 ∼ ω−2, consistently with Zeff et al. (2000).

Observe that χ ∼ ζ and υ ∼ ω always hold.
Testing the validity of (2.10a–c) involves showing that the two limits (i) and (ii)

and their corresponding scaling relationships are indeed reached as the time-dependent
characteristic scales (χ, ζ, υ, ω) evolve along the process. To do so, we analyse their
evolution from numerical simulation (momentum-conserving VOF, Basilisk code). We
have recorded the time-dependent values of the maximum radius of curvature in the
meridional plane at the point of maximum radial velocity of the interface, and the radius
of curvature and velocity of the jet front on the jet axis to represent the time-dependent
characteristic values of L, R and V , respectively, for t > t0 (no scales of R and V appear
before ejection, i.e. for t < t0). Since (2.10a–c) does not provide the time dependencies of
the variables, in figure 2(a–c) we plot the non-dimensional evolving values of χ versus ζ ,
ω versus υ and χ versus υ, respectively, for a detailed range of Oh numbers.

Firstly, figure 2(a) demonstrates the fundamental proportionality between ζ and χ along
the whole process, as anticipated. In this regard, the small constant of proportionality
between both scales, χ 
 0.03ζ , should be noticed. The importance of this observation
will be apparent after the global assessment of the energy balance of the process in § 2.2.
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D2

D1

Ω(t)

Figure 3. The control volume Ω(t) bounded by the free surface D1 and the fixed hemispherical surface D2,
considered for the integral representation of the mechanical energy balance, close to t0.

Secondly, the remarkable collapse of the curves of χ versus υ in figure 2(c) reveals
the two clear regimes as anticipated: viscosity-dominated (α1,2 	 1) when χ � 1 (R �
�μ) and surface tension-dominated (α1,2 → 0) when χ � 1 (R � �μ), corresponding to
χ ∼ υ−1 and χ ∼ υ−2, respectively. The robustness of the results is thus confirmed: the
formation and pinch-off of a droplet is expected to take place once surface tension becomes
important, resulting in a dependency as observed. The relatively small deviations from the
theoretical prediction (2.10a–c) for the smallest and largest values of υ in figure 2(c) reflect
the vibrations of the droplet about pinch-off and ejection (not considered here) and the very
initial evolution just after t = t0, respectively.

2.2. Energy balance
For a given Bo that fixes the initial static geometry of the bubble, droplet ejection is
prevented by the loss of mechanical energy above a certain Oh threshold value. In the
absence of gravitational forces (Bo 
 0), a reported value of that threshold is Ohth = 0.052
(Lee et al. 2011). Below that threshold, the finest and fastest jets and droplets are observed
for a certain value Oh∗ < Ohth. Therefore, to close the problem, a key question which is not
resolved by (2.10a–c) is the mechanical energy available to perform the ballistic ejection
close to to. One can express the mechanical energy equation in a sufficiently ample fluid
volume Ω(t) around the initial bubble from the instant of bubble bursting (t = 0) up to
the point of collapse to. The fluid volume Ω(t) can be formed by the free surface and a
hemisphere around the cavity with a radius approximately twice or three times larger than
Ro (see figure 3):∫

Ω(t′)
ρ
(
v2/2 + gz

)
dΩ

∣∣∣∣
t0

t=0
=
∫ t0

t=0

∫
S(t′)

v · (τ ′ − pI
) · n dA dt′, (2.11)

where τ ′ is the viscous stress and I the identity matrix. The surface of the integral
domain is S(t) = D1(t) + D2, where D2 is a hemisphere with a fixed radius. We define the
capillary velocity as Vo = (σ/ρRo)

1/2, which is the global expected value of the average
velocities along the process.

Observing the geometric configuration of streamlines in figure 1, the most relevant
feature is a stream tube which ends up at the collapse point, coming from below (figure 1b –
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Transient ejection from bubble bursting

subsequently also shown in figure 6). This stream tube, with velocity W and cross-sectional
area proportional to L2, would ultimately feed the ejection. The global view of the
streamlines’ configuration in figure 1(a) reveals that the characteristic length of that
stream tube is indeed Ro, since its configuration remains practically unaltered along the
process sufficiently far from the collapse region. Thus, the kinetic energy term should be
proportional to ∫

Ω(t′)
(ρv2/2) dΩ

∣∣∣∣
t

t=0
∼ ρW2 × L2 Ro. (2.12)

Note that the initial kinetic energy is zero. If one neglects viscous and gravity works,
expression (2.11) suggests the scaling

ρW2L2Ro ∼ σR2
o ∼ ρV2

o R3
o = const. ⇒ WL ∼ VoRo, (2.13)

which together with the scaling previously obtained as WL ∼ VR after collapse, it would
suggest VR ∼ VoRo. This relationship was already observed by Duchemin et al. (2002)
and Ghabache et al. (2014), among others, for negligible viscosity and gravity. However,
it does not faithfully describe the nonlinear behaviour observed for Oh around Oh∗: note
that in the vicinity of Oh∗ the product VR becomes much smaller than VoRo (Duchemin
et al. 2002; Walls, Henaux & Bird 2015; Ghabache & Séon 2016; Gañán-Calvo 2017; Séon
& Liger-Belair 2017; Deike et al. 2018). There is not a general consensus around the value
of Oh∗ and the origin of this behaviour. Naturally, Oh∗ depends on the Bond number
through the initial shape of the bubble before bursting, since that shape determines the
detailed dynamic path of the process. Reducing that geometry to a sphere, i.e. Bo 
 0,
the simulations presented here and those of Berny et al. (2020) and Deike et al. (2018)
agree on Oh∗ 
 0.03; in contrast, Gañán-Calvo (2017) suggests Oh∗ 
 0.043, in the range
that would roughly point to Duchemin’s data. Therefore, a detailed analysis of the process
of collapse is needed, in particular the effects of microbubble trapping and the onset of
ejection at the time singularity represented by t0 (if such a singularity occurs).

2.2.1. The nonlinear behaviour around Oh∗: focusing, bubble trapping and the start of
ejection

Previous works (Duchemin et al. (2002), Ghabache et al. (2014) and Deike et al. (2018),
among others) have postulated that the origin of these ballistic ultrafast jets is a finite-time
singularity event at Oh∗. In reality, a true singularity followed by an instantaneous ultrafast
jet occurs in all instances where a capillary wave collapses nearly cylindrically at the
bottom of the cavity, locally resembling the bubble collapse phenomenon described by
Eggers & Fontelos (2015). However, given the geometrical asymmetry of that collapse in
the axial direction (see figure 4a), its consequences are twofold.

(i) A microbubble gets trapped. The dependence of its size on Oh is summarized in
figure 4 for an ample range of Oh numbers.

(ii) More importantly, an extremely thin ligament of vanishing radial size and very large
speed is ballistically emitted in the opposite axial direction from the tiny trapped
bubble, as illustrated in figure 5. As discussed in § 2, a vortex ring (usually much
larger than the tiny trapped bubble) with a global mechanical energy equivalent to
that of the ejected liquid spout is emitted towards the liquid bulk (see figure 1) to
keep the overall neutrality of the initial axial momentum (which can be termed a
bazooka effect).
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Figure 4. (a) Bubble trapping about collapse for an ample range of Oh numbers. The origin of the axial scale
has been arbitrarily located 0.001 times Ro above the point where collapse occurs in all cases. (b) Length Lb of
the trapped bubble at collapse, as a function of Oh. Numerical results performed with a spatial precision below
0.02�μ. Interestingly, the reported Oh∗ values correspond to the range where the growth in size of the trapped
bubble as a function of Oh becomes maximum (i.e. Oh around 0.033).
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Figure 5. Initial instants after collapse and the start of ejection for Oh = 0.03, in steps �t = 0.74 tμ. The
axes length scale is Ro to show the smallness of the region analysed. The left-hand inset shows the spout
geometry (front radius of curvature approximately 0.15�μ) at t − t0 = 0.2tμ, showing the recoiling trapped
microbubble. The right-hand inset illustrates the competing effects of ballistic ejection and recoil. Numerical
results performed with a spatial precision below 0.02�μ.

The described phenomenon of microbubble entrapment and initial ejection can even
occur with smaller collapsing waves before the main wave generates the more energetic
dominant ejection that eventually overwhelms the former ones (Duchemin et al. 2002;
Deike et al. 2018; Gañán-Calvo 2018). However, the total mechanical energy of that
initial singular spout is quite small, and surface tension together with axial dissipation
immediately blunts it (figure 5) in a self-similar fashion described by Eggers’s theory
(Eggers 1993). This blunting is equivalent to the ultrafast recoil of a liquid ligament
after pinch-off, as observed from a framework moving axially with a large ballistic
convective velocity from the pinching point (see figure 5 for Oh = 0.03). As far as

929 A12-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

79
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.791


Transient ejection from bubble bursting

–0.3
–2.0

–1.9

–1.8

–1.7

–1.6

–1.5

–1.4

–1.3

–1.2

–0.2 –0.1 0.1 0.2 0.30 –0.3
–2.0

–1.9

–1.8

–1.7

–1.6

–1.5

–1.4

–1.3

–1.2

–0.2 –0.1 0.1 0.2 0.30 –0.3
–1.9

–1.8

–1.7

–1.6

–1.5

–1.4

–1.3

–1.2

–1.1

–0.2 –0.1 0.1 0.2 0.30

–1.80

–1.75

–1.70

–1.65

–1.60

–1.55

–1.50

–0.08 –0.04 0.04 0.080
–1.80

–1.75

–1.70

–1.65

–1.60

–1.55

–1.50

–0.08 –0.04 0.04 0.080
–1.80

–1.75

–1.70

–1.65

–1.60

–1.55

–1.50

–0.08 –0.04 0.04 0.080

Oh = 0.026 Oh = 0.033 Oh = 0.047
(b)(a) (c)

(e)(d ) ( f )

Figure 6. Focusing effect: configuration of streamlines just after collapse (a–c) and when the jet is around
0.27Ro in length, for the three illustrative Oh numbers indicated. The stream tube that meets vertically (zero
radial velocity) the free surface is highlighted as a red thick line.

sufficient mechanical energy is left after collapse, the spout will grow in size (scaling as
χ ) and decrease in speed (scaling as υ), while keeping the scaling relationships (2.10a–c)
previously analysed. This growth continues until a droplet is formed by surface tension at
the front of the spout.

What happens at Oh∗ has been termed a focusing effect (Deike et al. 2018) of the
global evolution around collapse. However, its physical understanding requires further
consideration. Figure 6 shows the cases Oh = 0.026, 0.033 and 0.047 just at the onset
of ejection (figure 6a–c) and when the length of the liquid ligament is a fixed fraction
of Ro (approximately 0.27Ro, figure 6d–f ). The stream tube that meets the free surface
with zero radial velocity is highlighted as a red thick line. This figure shows that the size
of the vortex ring just after collapse is much larger when Oh is around Oh∗. A detailed
observation of the streamlines reveals that the presence of the trapped cavity is associated
with the formation of the vortex ring even before collapse when Oh is around Oh∗: note
that the vortex streamlines originate at the front of the advancing trapped cavity and flow
backward, terminating at the rear of the cavity (see figure 6b). As a consequence of the
early formation of that backward vortex ring of maximum size, the energy left for ejection
immediately after collapse when Oh = Oh∗ is the minimum on the whole Oh range.

929 A12-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

79
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.791


A.M. Gañán-Calvo and J.M. López-Herrera

R1

Ro

hr

Figure 7. Initial geometry of the surface rim in our numerical simulations. The initial assumed film thickness
is h = 0.1Ro, and the hole radius R1 = 0.15Ro, which results in an initial meridional rim radius of curvature
r = 0.055Ro. This determines the initial surface energy content and the capillary wave spectrum of the process.

The detailed phenomenon just described does not hamper the overall maintenance of
the axial momentum balance. In fact, a vortex ring is always formed (see figure 6d–f ).
However, as explained, the total mechanical energy left for raising the ejected liquid
column becomes minimized for Oh around Oh∗. This is consistent with the fact that the
cross-section of the stream tube which feeds the liquid column keeps smaller along the
process when Oh is around Oh∗ (see figure 6e). However, the fact that the total remaining
mechanical energy is minimal does not imply that the local mechanical energy per unit
volume in the ejected ligament must also be minimal. Quite on the contrary, that energy
per unit volume is maximized, since the cross-sectional size and thus the total volume
of liquid to be pushed is markedly minimized. Consequently, the initial pilot spout can
remain ballistic for a longer time just after collapse. The radial scale of that pilot spout,
comparable to that of the front of the stream tube responsible for the ejection feed, should
be �μ, which is the natural spatial scale selected when inertial, viscous and surface tension
forces dominate locally (Eggers 1993). All this is confirmed by our numerical simulations,
where we use a spatial precision an order of magnitude smaller than �μ to adequately
resolve the finest details of the ejection.

When Oh > Oh∗, though, viscous dissipation takes over, which causes the widening of
the emitted spout. Besides, for very small Oh numbers when no bubble trapping occurs,
the sheer curvature reversal of the bubble bottom and the appearance of a stagnation
point below the surface guarantee the ejection. This occurs even in the absence of bubble
trapping and the initial vigorous pilot emission just described, due to the large overall
excess energy remaining in the absence of any significant viscous dissipation.

2.2.2. Final energy balance including viscous dissipation
The observed deviation of VR from its expected (inviscid) value VoRo can be quantified
expressing the counterpart of (2.11) after collapse as∫

Ω(t′)
ρ
(
v2/2 + gz

)
dΩ

∣∣∣∣
t

t0

=
∫ t

t0

∫
S(t′)

v · (τ ′ − pI
) · n dA dt′. (2.14)
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Transient ejection from bubble bursting

The control volume remains the same as that used for (2.11), considering now the highly
deformed free surface due to the ejection and possible bubble trapping. While gravity is
simply volumetric, proportional to (ρgRo)R3

o and reflecting the effect of gravity on the
initial bubble shape, i.e. ∫

Ω(t′)
(ρgz) dΩ

∣∣∣∣
t

t=0

 −β3(ρgRo) × R3

o, (2.15)

the viscous terms should be proportional to the dominant one, as∫ t

t=0

∫
S(t′)

v · τ ′ · n dA dt′ 
 −α′
3(μVo/Ro) × R2

o × Ro, (2.16)

where constant α′
3 should be a universal constant at the end of the process, like α1,2.

Note that the average total displacement of fluid particles that this term retains should
be proportional to vtc 
 Ro, being v ∼ Vo and tc = (ρR3

o/σ)1/2. This is so because the
main contribution to the integral comes from the larger side D2 of the control volume (see
figure 3) since the normal viscous stresses on the free surface are at most comparable to the
surface tension, which is maximum at the front of the growing spout. Moreover, viscosity
is, on the one hand, an energy sink that lowers the energy available for ejection, and on
the other, it modifies the interface shape at the instant of collapse, favouring or preventing
bubble trapping and overall focusing of the flow as described previously in § 2.2.1.

Finally, the surface tension term can be estimated as

−
∫ t

t=0

∫
S(t′)

v · pI · n dA dt′ ∼ kσR2
o × Votc = kσR3

o. (2.17)

Given that the integral in (2.17) is in reality the difference between the available surface
energy between the instant of collapse and any time after that (in particular, at the end
of ejection), one should expect the constant k to be quite small, since the main energy
conversion from the initially available surface energy to kinetic energy has already been
performed from t = 0 to t0, implying ρW2L2R3

o ∼ σR2
o. To this end, one should bear two

important considerations in mind: (i) figure 2(b) shows that υ/ω 
 O(1) at the points
where these variables have been evaluated, suggesting υ to be comparable in size to ω

as expected from basic conservation of momentum at the collapse; and (ii) χ/ζ 
 0.03.
Interestingly, this number is rather comparable to the experimentally observed Oh∗ values.
Therefore, from (2.12) and (2.17) one may expect υ2χ2/(ω2ζ 2) 
 k ∼ Oh∗2, which is
justified by the relative size between the initial bubble and the ejected droplet.

2.3. Problem closure
While μV/R stays comparable to ρV2 at the start of ejection, viscous forces decelerate the
spout until σ/R becomes strong enough to form a droplet at its tip. Hence, the size of that
minimum drop should reflect the ultimate balance between inertia, viscosity and surface
tension forces:

ρV2 ∼ μV/R ∼ σR ⇒ R ∼ �μ. (2.18)

Thus, a minimum surface tension energy proportional to (σ/�μ)�2
μ × Ro should

necessarily remain available along the process for the emission and formation of that
droplet, consistent with experimental observations. In conclusion, keeping that in mind
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together with (2.17), one can formulate the following scaling of (2.11) at the end of the
ejection, when the droplet of radius R forms:

ρ
(

V2R2 + β3gR3
o

)
Ro ∼ σR2

o(Oh∗2 + �μ/Ro) − α′
3μVoR2

o, (2.19)

where prefactors Oh∗, α′
3 and β3 should be universal positive constants for very small

gas-to-liquid density and viscosity ratios. Equation (2.19) is equivalent to the energy
equation in Gañán-Calvo (2017), with the exception of the minimum contribution of the
surface tension at the natural limit scale �μ. Dividing (2.19) by ρRo�μvμ = μ2Ro/ρ one
gets

υ2χ2 + β3
Bo

Oh2 ∼
[(

Oh∗

Oh

)2

+ 1

]
− α′

3
Oh

. (2.20)

2.3.1. Scalings of the ejected droplet size and speed
The right-hand side of (2.20) is a quadratic expression for Oh with a minimum at Oh =
2Oh∗2/α′

3. Observe that this minimum is located exactly at Oh = Oh∗ if α′
3 = 2Oh∗. Thus,

if one defines

α3 = 2Oh∗ − α′
3, (2.21)

this parameter would measure both the deviation of the location of the minimum from
Oh = Oh∗ and the value of the energy left for ejection. In effect, using definition (2.21),
(2.20) reads

υ2χ2 ∼
(

Oh∗

Oh
− 1

)2

+ α3

Oh
− β3

Bo

Oh2 = ϕ2. (2.22)

From (2.22) the value of Oh where R is minimum and V maximum is given by

Ohc = Oh∗2 − β3Bo
Oh∗ − α3/2

, (2.23)

around which the dependence is nearly symmetric. When Bo = 0, if α3 is sufficiently
small, Ohc 
 Oh∗. Therefore, α3 constitutes not only a fitting parameter but also a key
indicator of the degree of focusing that a certain set of experiments (either physical
or numerical) achieve around Oh∗, as shown in the next section. As we will see next,
experiments reveal that α3 � Oh∗, confirming our hypothesis. This fundamental finding
explains and justifies the experimental observations by many authors (Duchemin et al.
(2002), Walls et al. (2015), Ghabache & Séon (2016), Séon & Liger-Belair (2017), Brasz
et al. (2018), Deike et al. (2018) and Berny et al. (2020), among others), but not only
this: experiments confirm the continuous validity of (2.22) for the whole Oh range where
droplet ejection occurs.

In addition, one can assume α1,2 = β1,2 = 0 for simplicity since (i) α1,2 → 0 is a very
good approximation, consistent with the fact that surface tension should become dominant
when droplet formation and ejection occurs, as previously demonstrated, and (ii) the role
of gravity in the expressions (2.4) and (2.7) is expected to be very small compared with
inertia and surface tension forces. This is subsequently confirmed by experiments. With
these justified simplifications, (2.9) simply reduces to φ = 1. This finally reduces the
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scalings (2.8)–(2.10a–c) together with (2.22) to explicit expressions in terms of Oh and
Bo as follows:

χ ∼
(

Oh∗

Oh
− 1

)2

+ α3

Oh
− β3

Bo

Oh2 ,

υ ∼
((

Oh∗

Oh
− 1

)2

+ α3

Oh
− β3

Bo

Oh2

)−1/2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (2.24)

For convenience, one may write (2.24) in terms of the initial bubble radius Ro and the
capillary velocity Vo as

R/Ro = krΨ, V/Vo = kvΨ
−1/2, (2.25a,b)

where
Ψ = Oh2ϕ2 = (Oh∗ − Oh)2 + α3Oh − β3Bo (2.26)

and kr,v are prefactors that will be obtained from the experimental fittings.

2.4. Experimental verification
To verify our model and obtain the relevant scaling constants for the whole Oh range
experimentally explored, 600 experimental and numerical measurements of first ejected
droplets and approximately 100 of their corresponding initial velocities have been collected
from the literature (Garner, Ellis & Lacey 1954; Hayami & Toba 1958; MacIntyre 1972;
Tedesco & Blanchard 1979; Blanchard 1989; Sakai 1989; Spiel 1995; Duchemin et al.
2002; Ghabache & Séon 2016; Séon & Liger-Belair 2017; Brasz et al. 2018; Deike et al.
2018; Berny et al. 2020). In addition, to appraise the predictive value of (2.25a,b) in the
range Oh ∈ (0.026, 0.052), where the maximum variation among the published results
is found, additional extensive numerical simulations using a momentum-conserving VOF
scheme (Basilisk) have been performed.

2.4.1. General verification: the constants (Oh∗, α3, β3)

Numerical simulations have been made with gas-to-liquid viscosity and density ratios
equal to 0.01 and 0.001, respectively, up to a minimum cell size 1.5 × 10−4Ro
(approximately 0.17�μ) around the point of collapse and ejection, equivalent to
approximately 2 nm for a gas bubble in water for Oh = Oh∗ = 0.03.

For a general verification of our model, the best first option is to obtain the values
(Oh∗, α3, β3) that minimize the normalized standard deviation of the non-dimensional
first ejected droplet radius R/Ro from all available experimental and numerical data sets,
divided by Ψ , according to the scalings (2.25a,b). This shows a very robust minimum
of 24 % and a prefactor kr = 0.18Oh∗−2 for Oh∗ = 0.0288, α3 = 0.00308 and β3 =
−0.000205 (best fitting), with α1 = α2 = β1 = β2 = 0. The sensitivity of these results
to small variations around α1 = α2 = β1 = β2 = 0 is rightly inappreciable, as expected,
which confirms the negligible role of gravity and viscous forces compared with inertia
and surface tension forces when the droplet is ejected. We can use these optimal values of
(Oh∗, α3, β3) in a representable two-dimensional plot of the data against the model to test
its goodness of fit.

Since the data show a stronger variability with Oh, this is the parameter usually
employed as the abscissa in this kind of study. Thus, to produce a two-dimensional plot,
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Figure 8. Experimental and numerical measurements of the radius of the first ejected droplet from different
literature sources (see Gañán-Calvo (2017) for additional information). The WR and TR in Duchemin’s data
denote ‘wide rim’ and ‘thin rim’ initial conditions, respectively. Dashed lines are the curves 0.18((Oh/Oh∗ −
1)2 + α3Oh/Oh∗2). The Oh range covers seawater bubbles in the range from 8 μm to 2 mm. (Note that while
the model curves use different Oh∗ and α3, data are represented using fixed values Oh∗ = 0.033 and α3 =
10−3.55.)

we can define a variable ξ−1R/Ro and represent it as a function of Oh, where ξ is a function
derived from (2.26) which tends to 1 for very small Oh and Bo, given by

ξ = Ψ ((Oh∗ − Oh)2 + α3Oh)−1 ≡ 1 − β3Bo((Oh∗ − Oh)2 + α3Oh)−1. (2.27)

That plot is given in figure 8, where we represent the variable ξ−1R/Ro (calculated with
the fixed values (Oh∗, α3, β3) of the best fitting) as a function of Oh.

This first representation shows a strong variability of data in the vicinity of Oh∗.
However, this variability does not seem entirely stochastic: one may observe that despite
that the data have been made non-dimensional with fixed values of (Oh∗, α3, β3), the
closeness of some data sets to curves corresponding to different values of these
parameters suggests that those data sets could be independently fitted to our model, as
the dashed curves reveal. Intriguingly, the data sets showing largest variability are the
ones corresponding to numerical simulations.

2.4.2. Experimental data sets: universality in terms of Oh and Bo
The above observations lead to the imperative need to analyse the origin of the deviations
in the numerical data sets. In fact, a careful examination of the nature of the different data
sources reveal an apparently paradoxical finding: if one separately fits all the experimental
data, i.e. excluding all data from numerical simulations, one obtains a robust best fit
around our model for Oh∗ = 0.0296, α3 = 0.00405 and β3 = −0.000158. This yields
a minimum normalized standard deviation of 9 % (significantly smaller than the 24 %
obtained including numerical simulations) and a prefactor kr = 0.186 Oh∗2. Figure 9
shows the resulting optimum fitting, and the distribution of data around the model
compared with a normal distribution. Observe that the data of Brasz et al. (2018), and
of Ghabache et al. (2016) and Séon & Liger-Belair (2017), provide very valuable resources
for comparison around Oh∗ despite the experimental errors and the particular difficulty of
that region due to the droplet smallness.
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Figure 9. The radius of the first emitted droplet, expressed as Oh∗2Ψ −1R/Ro: (a) experimental data; (b) the
whole set of experimental and numerical data; (c) probability density function (black line) of data in panel (a)
around the fitting, compared with a normal distribution with average 0.186 and standard deviation of 9 % (blue
dashed line), this distribution is nearly invariant with Oh; (d) probability density function of data in panel (b)
around the fitting. The deviation from an approximate normal (average 0.185, standard deviation 11.1 %) shows
a very large deviation on the tails of the distribution.

In contrast, when the whole set of available data is compared with our model, the
dispersion around Oh∗ explodes as anticipated in figure 8: this is illustrated in figure 9(b).
The statistics of both fittings are also given, noting that the distributions are nearly
invariant along the Oh range except at the vicinity of Oh∗. This finding highlights once

929 A12-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

79
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.791


A.M. Gañán-Calvo and J.M. López-Herrera

more the strong sensitivity of the focusing effect on the geometry and the initial conditions:
(i) the artificial shape of the initial rim after bursting, which critically determines the initial
surface energy content as the pioneering work of Duchemin et al. (2002) revealed; (ii)
initial bubble shape; and (iii) the absence or presence of gravity along the evolution. In
addition, the numerical accuracy as well as the models for free surface and surface tension
reconstruction, etc., also affect the results. Note that the precision of our simulations does
not avoid their maximum deviation: the fact that we used an initial edge shape thickness
(initial minimum film thickness) equal to 0.1Ro and initial hole radius 0.15Ro, leads to the
largest initial meridional radius of curvature among the published initial geometries (see
figure 7), which shifts Oh∗ from 0.03 to 0.034.

In contrast, the actual initial surface energy content after film bursting in real
experiments is expected to be fixed by a self-similar process (Eggers & Fontelos 2015,
and references therein) with a universal result only in terms of Oh and Bo alone. In
effect, despite the relative paucity of data around Oh∗ and the fact that all the experiments
available in this work have been performed with air at atmospheric pressure, naturally
including interaction with the gaseous environment, gas compressibility, surface effects
(presence of contaminants, surfactants, particles, etc.) and nonlinear breakdown and local
detachment of the first droplet, the scatter compared with that of the numerical data
is minimal. This supports the general assumption that this problem is fundamentally
determined in nature by two non-dimensional parameters only: Oh and Bo.

On the other hand, the considerably less numerous data available for the ejection
velocity V could be similarly represented in the form ξ1/2V/Vo, which tends to V/Vo
for very small Oh and Bo. However, since our model predicts the ejection velocity at
the droplet formation point, while the available data correspond to the ejection velocity
measured at a fixed point in space (usually, the initial level of the free surface), a direct
comparison with our model predictions is not possible. To compensate for the effect of the
different measurement point, which necessarily implies the additional action of viscous
dissipation and the work of gravity, we propose a simple velocity correction of the form

V/Vo = kvΨ
−1/2 (1 + k1Bo + k2Oh)−1 , (2.28)

which, under the same approach as the droplet size approach, provides an optimal fit to the
experimental data of (Ghabache et al. 2016) for k1 = 2.27 and k2 = 16, with a minimum
normalized standard deviation below 10 % and a prefactor kv = 0.39 (see figure 10a).
Including the entire data set available for ejection velocity (numerical data from Berny
et al. (2020) and our own), we observe the same drastic increase of the normalized standard
deviation for droplet size.

3. Concluding statements

Figure 9(a) provides the most robust basis for quantitatively and continuously representing
the size of the ejected droplet for the whole range of Oh and Bo where droplet emission
occurs. For the convenience of the reader, that universal size can be ultimately written,
with typical errors below 10 %, as

R = 0.18Ro

((
Oh
Oh∗ − 1

)2

+ 4.44Oh + 0.19Bo
)

; Oh∗ = 0.03. (3.1)

The statistical distribution of experimental data around our model, with an
approximately normal distribution and a standard deviation below 10 %, provides solid
statistical grounds (i.e. the null hypothesis is virtually excluded) for its consistency and
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Figure 10. The velocity of the first emitted droplet, expressed as Ψ 1/2(1 + k1Bo + k2Oh)V/Vo, with k1 =
2.27, with k2 = 16, for (a) the experimental data of Ghabache et al. (2016) and Duchemin et al. (2002), after
optimal data collapse according to (2.28) and (b) the whole set of available experimental and numerical data,
using the same fitting as in panel (a).

correctness: our model agrees with the available experimental data for the whole (Oh, Bo)

range. We emphasize that (3.1) is not a fitting polynomial expression: it reflexes the
physics of the phenomenon as described in this work using just two non-dimensional
parameters. The main advantage of (3.1) compared with other proposed models which
provide good results but are not valid beyond Oh∗ (Gañán-Calvo 2017, 2018; Gordillo
& Rodriguez-Rodriguez 2019) is its uniform validity and continuity along the whole
(Oh, Bo) range. Among an ample variety of applications, this provides a fundamental tool
to describe the statistical distribution of the sea spray as a function of the observed bubble
size distribution near the sea surface.

A similarly accurate expression for the ejection velocity is not currently possible from
available data, due to its strong dependency on the point where it is measured. Based on
data at the level of the unperturbed free surface, we propose the following expression from
an optimum fitting:

V = 0.39Vo

((
Oh − Oh∗)2 + 0.004Oh + 0.00017Bo

)−1/2
(1 + 2.27Bo + 16Oh)−1 .

(3.2)
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Of course, the complexity of the phenomenon can be augmented including surface
viscosity (Ponce-Torres et al. 2017), Marangoni and non-Newtonian effects (Sanjay et al.
2021), the presence of immiscible liquids (Yang, Tian & Thoroddsen 2020) or the statistics
of the emitted droplets following the first one. In this regard, Berny et al. (2020) presented
a detailed analysis of all issued droplets from the scaling analysis of the first. Despite these
are topics of subsequent studies, our results entirely capture the physics needed to describe
this phenomenon.
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