PARABOLIC HIGGS BUNDLES AND Γ-HIGGS BUNDLES
 INDRANIL BISWAS, SOURADEEP MAJUMDER ${ }^{\boxtimes}$ and MICHAEL LENNOX WONG

(Received 31 August 2012; accepted 5 June 2013; first published online 19 August 2013)

Communicated by D. Chan

Abstract
We investigate parabolic Higgs bundles and Γ-Higgs bundles on a smooth complex projective variety.
2010 Mathematics subject classification: primary 14D23; secondary 14H60.
Keywords and phrases: parabolic Higgs bundle, root stack, Γ Higgs bundle.

1. Introduction

Let X be a compact connected Riemann surface and E a holomorphic vector bundle on X. The infinitesimal deformations of E are parametrized by $H^{1}(X$, End $E)$, where End $E=E \otimes E^{*}$ is the sheaf of endomorphisms of the vector bundle E. By Serre duality, we have $H^{1}(X \text {, End } E)^{*}=H^{0}(X$, (End $E) \otimes \Omega_{X}^{1}$), where Ω_{X}^{1} is the holomorphic cotangent bundle of X. A Higgs field on E is defined to be a holomorphic section of (End $E) \otimes \Omega_{X}^{1}$; they were introduced by Hitchin [Hi87a, Hi87b]. A Higgs bundle is a holomorphic vector bundle equipped with a Higgs field. Hitchin proved that stable Higgs bundles of rank r and degree zero on X are in bijective correspondence with the irreducible flat connections on X of rank r [Hi87a]. He also proved that the moduli space of Higgs bundles on X of rank r is a holomorphic symplectic manifold, and the space of holomorphic functions on this holomorphic symplectic manifold gives it the structure of an algebraically completely integrable system [Hi87b]. Simpson arrived at Higgs bundles via his investigations of variations of Hodge structures [Si88]. He extended the results of Hitchin to Higgs bundles over higher dimensional complex projective manifolds.

A parabolic structure on a holomorphic vector bundle E on X is roughly a system of weighted filtrations of the fibers of E over some finitely many given points. A parabolic vector bundle is a holomorphic vector bundle equipped with a parabolic

[^0]structure; parabolic vector bundles were introduced by Mehta and Seshadri [MS80]. Parabolic vector bundles with Higgs structure were introduced by Yokogawa [Yo95].

Our aim here is to investigate the parabolic vector bundles equipped with a Higgs structure. More precisely, we study the relationship between the parabolic Higgs bundles and the Higgs vector bundles on a root stack.

Root stacks are important examples of smooth Deligne-Mumford stacks; see [Cad07, Bo07] for root stacks.

Let Y be a smooth complex projective variety on which a finite group Γ acts as a group of automorphisms satisfying the condition that the quotient $X=\Gamma \backslash Y$ is also a smooth variety. There is a bijective correspondence between the parabolic Higgs bundles on X and the Γ-Higgs bundles on Y. We prove that the parabolic Higgs bundles on X are identified with the Higgs bundles on the associated root stack.

The organization of the paper is as follows. In Section 3 we review the notions of parabolic bundle and Γ-vector bundle and define the parabolic Higgs bundle and Γ-Higgs bundles. As was done for parabolic vector bundles in [Bi97] we describe an equivalence between the category of Γ-Higgs bundles on Y and parabolic Higgs bundle on X.

Section 4.1 describes the construction of a root stack as done in [Cad07]. In Section 4.2, we investigate vector bundles on root stacks. Section 4.3 generalizes Theorem 3.5 to the case of the root stack over the base space.

2. Preliminaries

Let Y be a smooth complex projective variety of dimension m endowed with the action $\lambda: \Gamma \times Y \longrightarrow Y$ of a finite group Γ such that:
(1) $X:=\Gamma \backslash Y$ is also a smooth variety; and
(2) the projection map $\pi: Y \longrightarrow X$ is a Galois covering with Galois group Γ.

The closed subset of Y consisting of points with nontrivial isotropy subgroups for the action of Γ is a divisor $\widehat{D} \subset Y$ [Bi97, Lemma 2.8]. Let $D \subset X$ be its (reduced) image under π and $D=D_{1}+\cdots+D_{h}$ its decomposition into irreducible components. We will always be working with the assumption that the $D_{\mu}, 1 \leq \mu \leq h$, are smooth, and D is a normal crossing divisor; this means that all the intersections of the irreducible components of D are transversal. For an effective divisor D^{\prime} on Y, by $D_{\text {red }}^{\prime}$ we will denote the corresponding reduced divisor. So $D_{\text {red }}^{\prime}$ is obtained from D^{\prime} by setting all the multiplicities to be one. We set

$$
\widetilde{D}_{\mu}:=\left(\pi^{*} D_{\mu}\right)_{\mathrm{red}}, \quad 1 \leq \mu \leq h, \quad \widetilde{D}:=\sum_{\mu=1}^{h} \widetilde{D}_{\mu}
$$

There exist $k_{\mu}, r \in \mathbb{N}$ for $1 \leq \mu \leq h$ such that $\pi^{*} D_{\mu}=k_{\mu} r \widetilde{D}_{\mu}$; with this,

$$
\pi^{*} D=r \sum_{\mu=1}^{h} k_{\mu} \widetilde{D}_{\mu}
$$

It should be clarified that there are many choices of k_{μ} and r. We will write $\bar{D}:=$ $\sum_{\mu=1}^{h} k_{\mu} \widetilde{D}_{\mu}$, so that $\pi^{*} D=r \bar{D}$.
Lemma 2.1. With the assumption that D is a normal crossing divisor with smooth components, given a point $y \in Y$ with $\pi(y) \in \bigcap_{1}^{l} D_{\mu}$, one can choose coordinates w_{1}, \ldots, w_{m} in an analytic neighborhood of y and z_{1}, \ldots, z_{m} in an analytic neighborhood of $\pi(y)$ such that D_{μ} is defined by z_{μ} for $1 \leq \mu \leq l, \widetilde{D}_{\mu}$ is defined by w_{μ} for $1 \leq \mu \leq l$ and π is given in the local coordinates by

$$
z_{1}=w_{1}^{k_{1} r}, \ldots, z_{l}=w_{l}^{k_{l} r}, \quad z_{l+1}=w_{l+1}, \ldots, z_{m}=w_{m}
$$

Proof. This is proved in [Na, page 11, Theorem 1.1.14].
Recall [Del70, Section II.3] that the sheaf $\Omega_{X}^{1}(\log D)$ of logarithmic differentials with poles at D is the locally free sheaf on X, a basis for which in the neighborhood of a point in $\bigcap_{1}^{l} D_{\mu}$ with coordinates chosen as in the lemma is given by

$$
\frac{d z_{\mu}}{z_{\mu}}, 1 \leq \mu \leq l, \quad d z_{\mu}, l+1 \leq \mu \leq m
$$

Therefore, the dual $\Omega_{X}^{1}(\log D)^{*}$ is the subsheaf of the holomorphic tangent bundle $T X$ given by the sheaf of vector fields that preserve $O_{X}(-D) \subset O_{X}$.

We have the following analogue of Hurwitz's theorem.
Lemma 2.2. With $\pi: Y \longrightarrow X$ as above, one has

$$
\Omega_{Y}^{1}(\log \widetilde{D}) \cong \pi^{*} \Omega_{X}^{1}(\log D)
$$

Proof. This follows immediately from [EV92, page 33, Lemma 3.21].
Observe that we have inclusions of sheaves

$$
\begin{aligned}
\Omega_{X}^{1} \subseteq \Omega_{X}^{1}(\log D) \subseteq \Omega_{X}^{1}(D) & :=\Omega_{X}^{1} \otimes O_{X}(D), \\
\Omega_{Y}^{1} \subseteq \Omega_{Y}^{1}(\log \widetilde{D}) \subseteq \Omega_{Y}^{1}(\widetilde{D}) & :=\Omega_{Y}^{1} \otimes O_{Y}(\widetilde{D}) .
\end{aligned}
$$

Fixing an irreducible component D_{μ} of D, there is a residue map (see [Del70, Section II.3.7])

$$
\operatorname{Res}_{D_{\mu}}: \Omega_{X}^{1}\left(\log D_{\mu}\right) \longrightarrow \mathscr{O}_{D_{\mu}} .
$$

In local coordinates z_{1}, \ldots, z_{m} on X where D_{μ} is defined by $z_{\mu}=0$, if ω is a section of $\Omega_{X}^{1}\left(\log D_{\mu}\right)$ with local expression

$$
\omega=f_{1} d z_{1}+\cdots+f_{\mu} \frac{d z_{\mu}}{z_{\mu}}+\cdots+f_{m} d z_{m}
$$

where the $f_{i}, 1 \leq i \leq m$, are holomorphic functions, then the residue has the local expression

$$
\operatorname{Res}_{D_{\mu}} \omega=\left.f_{\mu}\right|_{z_{\mu}=0}
$$

3. Parabolic Higgs bundles and Γ-Higgs bundles

3.1. Parabolic Higgs bundles. Let E be a torsion-free coherent sheaf on X. We recall that a parabolic structure on E with respect to the divisor D is the data of a filtration

$$
E=E_{\alpha_{1}} \supset E_{\alpha_{2}} \supset \cdots \supset E_{\alpha_{l}} \supset E_{\alpha_{l+1}}=E(-D)
$$

where $0 \leq \alpha_{1}<\cdots<\alpha_{l}<1$ are real numbers called weights (see [MY92, Definition 1.2]). The α_{j} will be chosen without redundancy in the sense that if $\epsilon>0$, then $E_{\alpha_{j}+\epsilon} \neq E_{\alpha_{j}}$. We will often shorten $E_{\alpha_{j}}$ to E_{j}. The sheaf E together with a parabolic structure is called a parabolic sheaf and is often denoted by E_{*}. If E is a locally free sheaf, then we will call E_{*} a parabolic vector bundle. See [MY92] for more on parabolic sheaves.

We will always assume that the parabolic weights are rational numbers whose denominators all divide $r \in \mathbb{N}$, that is, $\alpha_{j} \in(1 / r) \mathbb{Z}$, for $1 \leq j \leq l$; this way, we may write $\alpha_{j}=m_{j} / r$ for some integers $0 \leq m_{j} \leq r-1$. It should be clarified that there are many choices for r. Further, we will make the same assumptions as in [Bi97, Assumptions 3.2].

A parabolic Higgs field, respectively strongly parabolic Higgs field, will be defined as a section $\phi \in H^{0}\left(X,(\operatorname{End} E) \otimes \Omega_{X}^{1}(\log D)\right)$ satisfying

$$
\phi \wedge \phi=0
$$

and

$$
\begin{equation*}
\left.\left(\operatorname{Res}_{D_{\mu}} \phi\right)\left(\left.E_{j}\right|_{D_{\mu}}\right) \subseteq E_{j}\right|_{D_{\mu}}, \text { respectively }\left.\left(\operatorname{Res}_{D_{\mu}} \phi\right)\left(\left.E_{j}\right|_{D_{\mu}}\right) \subseteq E_{j+1}\right|_{D_{\mu}}, \tag{3.1}
\end{equation*}
$$

for $1 \leq j \leq l, 1 \leq \mu \leq h$. By a parabolic Higgs bundle we will mean a pair ($\left.E_{*}, \phi\right)$ consisting of a parabolic vector bundle E_{*} and a strongly parabolic Higgs field ϕ.

Remark 3.1. Observe that this definition of a parabolic Higgs field differs from that given in [Yo95, Definition 2.2], where one takes $\phi \in H^{0}\left(X,(\right.$ End $\left.E) \otimes \Omega_{X}^{1}(D)\right)$.
3.2. Γ-Higgs bundles. Let W be a vector bundle on Y admitting an action Λ : $\Gamma \times W \longrightarrow W$ compatible with the action λ on Y. If we think of W as a space with projection $r: W \longrightarrow Y$, then this means that

commutes. Alternatively, if we think of W as a locally free sheaf then this means that there is an isomorphism

$$
L: \lambda^{*} W \xrightarrow{\sim} p_{Y}^{*} W
$$

of sheaves on $\Gamma \times Y$ satisfying a suitable cocycle condition. When such an action exists, we will call W a Γ-vector bundle. In this realization, if W^{\prime} is another Γ-vector
bundle with $L^{\prime}: \lambda^{*} W^{\prime} \longrightarrow p_{Y}^{*} W^{\prime}$ giving the action on W^{\prime}, then compatible actions on $W \oplus W^{\prime}$ and $W \otimes W^{\prime}$ are readily defined since direct sums and tensor products commute with pullbacks.

For each $\gamma \in \Gamma$, the restrictions $L_{\{\gamma\} \times Y}: \lambda_{\gamma}^{*} W \xrightarrow{\sim} W$ yield isomorphisms $L_{\gamma}: W \longrightarrow$ $\lambda_{\gamma^{*}} W$ (by adjunction) satisfying

$$
L_{e}=\mathbb{1}_{W} \quad \text { and } \quad \lambda_{\gamma *} L_{\delta} \circ L_{\gamma}=L_{\gamma \delta}
$$

for all $\gamma, \delta \in \Gamma$. In our case, since Γ is discrete, knowledge of the L_{γ} is enough to reconstruct L.

Example 3.2. There are three examples of Γ-bundles that will be of particular interest to us.
(a) The action λ on Y induces a natural action on the sheaf of differentials Ω_{Y}^{1} which will be compatible with λ.
(b) Since $X=\Gamma \backslash Y$, we have $\pi \circ \lambda=\pi \circ p_{Y}$ as maps $\Gamma \times Y \longrightarrow X$. Thus, if E is any vector bundle on X, there is a canonical isomorphism $\lambda^{*} \pi^{*} E \xrightarrow{\sim} p_{Y}^{*} \pi^{*} E$. Hence the pullback $\pi^{*} E$ carries a Γ-action for which the action on the fibers is induced by the action on Y.
(c) By the previous example, $\mathscr{O}_{Y}\left(\pi^{*} D\right)=\pi^{*} \mathscr{O}_{X}(D)$ carries a compatible Γ-action. Since $\widetilde{D} \subseteq \pi^{*} D$ is a Γ-invariant subset we have an induced action on the line bundle $\mathscr{O}_{Y}(\widetilde{D})$ making it into a Γ-line bundle.

Let W, W^{\prime} be as above. A homomorphism $\Phi: W \longrightarrow W^{\prime}$ is said to commute with the Γ-actions or is a Γ-homomorphism if the diagram

commutes.
If $\Phi \in H^{0}(Y$, (End $W) \otimes \Omega_{Y}^{1}$) is a Higgs field on W, that is, $\Phi \wedge \Phi=0$, then we will call it a Γ-Higgs field if as a map $W \longrightarrow W \otimes \Omega_{Y}^{1}$ it commutes with the Γ-actions, where $W \otimes \Omega_{Y}^{1}$ has the tensor product action. Thus, for every $\gamma \in \Gamma$, there is a commutative diagram.

If Φ is a Γ-Higgs field, the pair (W, Φ) will be referred to as a Γ-Higgs bundle.
3.3. From Γ-Higgs bundles to parabolic Higgs bundles. We now begin with a Γ-Higgs bundle (W, Φ) and from it construct a parabolic Higgs bundle $\left(E_{*}, \phi\right)$. The underlying vector bundle E is defined as $E:=\pi_{*} W^{\Gamma}$, the sheaf of Γ-invariant sections of $\pi_{*} W$, and as in [Bi97, Section 2c], the parabolic structure on E is defined by

$$
E_{j}:=\pi_{*} W\left(\sum_{\mu=1}^{h}\left\lfloor-k_{\mu} r \alpha_{j}\right\rfloor \widetilde{D}_{\mu}\right)^{\Gamma} .
$$

Suppose $\Phi \in H^{0}(Y$, (End $W) \otimes \Omega_{Y}^{1}$) is a Γ-Higgs field on W. We will think of Φ as a homomorphism $\Phi: W \longrightarrow W \otimes \Omega_{Y}^{1}$. Since $\Omega_{Y}^{1} \subseteq \Omega_{Y}^{1}(\log \widetilde{D})$,

$$
\pi_{*}\left(W \otimes \Omega_{Y}^{1}\right) \subseteq \pi_{*}\left(W \otimes \Omega_{Y}^{1}(\log \widetilde{D})\right)=\pi_{*}\left(W \otimes \pi^{*} \Omega_{X}^{1}(\log D)\right)=\pi_{*} W \otimes \Omega_{X}^{1}(\log D),
$$

where the first equality is due to Lemma 2.2 and the last step by the projection formula. Therefore, $\phi:=\pi_{*} \Phi$ may be considered as a map $\pi_{*} W \longrightarrow \pi_{*} W \otimes \Omega_{X}^{1}(\log D)$, and we have a candidate for a parabolic Higgs field.

Let $U \subseteq X$ be open and let s be an invariant section of $\pi_{*} W$ over U, so that we may think of s as a section \widehat{s} of W over $\pi^{-1}(U)$ with $L_{\gamma} \widehat{s}=\widehat{s}$ for all $\gamma \in \Gamma$. Then by definition $\phi s:=\Phi \widehat{s}$, and for $\gamma \in \Gamma$, using (3.2),

$$
\widetilde{L}_{\gamma}(\phi s)=\widetilde{L}_{\gamma}(\Phi \widehat{s})=\Phi\left(L_{\gamma} \widehat{s}\right)=\Phi \widehat{s}=\phi s
$$

so ϕs is a Γ-invariant section, and hence $\phi: E \longrightarrow E \otimes \Omega_{X}^{1}(\log D)$.
Proposition 3.3. To a Γ-Higgs bundle (W, Φ) there is a naturally associated parabolic Higgs bundle (E_{*}, ϕ).

Proof. We have constructed $\left(E_{*}, \phi\right)$. We must prove that ϕ is strongly parabolic. This is a condition on the residues of ϕ along the components of the divisor D, so we may concentrate on those points of D_{μ} that do not belong to any other component of D. Therefore, we may assume that we are in the neighborhood of a point y of \widetilde{D}_{1} that lies on no other \widetilde{D}_{μ}. In this neighborhood, for $1 \leq j \leq l$,

$$
E_{j}=\pi_{*} W\left(-m_{j} k_{1} \widetilde{D}_{1}\right)^{\Gamma} .
$$

We now choose coordinates on Y and X as in Lemma 2.1, so that the divisor \widetilde{D}_{1} is defined by w_{1} and the divisor D_{1} is defined by z_{1}; we will write $p:=k_{1} r$ so that π is given in these coordinates by

$$
z_{1}=w_{1}^{p}, \quad z_{2}=w_{2}, \ldots, z_{m}=w_{m} .
$$

In these coordinates, near y, we may write

$$
\Phi=A_{1} d w_{1}+\cdots+A_{m} d w_{m}
$$

for some holomorphic sections A_{i} of End W. We may then consider $A_{1} d w_{1}=$ $(1 / p) A_{1} w_{1} d z_{1} / z_{1}$ as a locally defined map $W \longrightarrow W \otimes \mathscr{O}_{Y}\left(-\widetilde{D}_{1}\right) \otimes \pi^{*} \Omega_{X}^{1}\left(\log D_{1}\right)$, or more generally, as a map

$$
W\left(-m_{j} k_{1} \widetilde{D}_{1}\right) \longrightarrow W\left(-\left(m_{j} k_{1}+1\right) \widetilde{D}_{1}\right) \otimes \pi^{*} \Omega_{X}^{1}\left(\log D_{1}\right)
$$

for $1 \leq j \leq l$. It is easily verified that $W\left(-\left(m_{j} k_{1}+1\right) \widetilde{D}_{1}\right) \subseteq W\left(-r k_{1}\left(\alpha_{j}+\epsilon\right) \widetilde{D}_{1}\right)$, where $0 \leq \epsilon \leq 1 / r k_{1}$. So taking invariants we see that $\pi_{*} A_{1} d w_{1}=(1 / p) A_{1} w_{1} d z_{1} / z_{1}$ gives a locally defined map

$$
E_{j} \longrightarrow E_{\alpha_{j}+\left(1 / r k_{1}\right)} \otimes \Omega_{X}^{1}\left(\log D_{1}\right)=E_{j+1} \otimes \Omega_{X}^{1}\left(\log D_{1}\right)
$$

Since, by definition,

$$
\operatorname{Res}_{D_{1}} \phi=\left.\frac{1}{p} w_{1} A_{1}\right|_{z_{1}=0}
$$

and noting that $\left.\left(\operatorname{Res}_{D_{\mu}} \phi\right)\left(\left.E_{j}\right|_{D_{1}}\right) \subseteq E_{j+1}\right|_{D_{1}}$, it follows that the strong parabolicity condition (3.1) is satisfied.

That $\phi \wedge \phi=0$ is easily seen, since if s is any section of E, then

$$
(\phi \wedge \phi) s=(\Phi \wedge \Phi) \widehat{s}=0
$$

since $\Phi \wedge \Phi=0$.
3.4. From parabolic Higgs bundles to $\boldsymbol{\Gamma}$-Higgs bundles. Recall that we are working under assumptions as in [Bi97, Assumptions 3.2], hence we can use the construction from [Bi97, Section 3b] in the following proposition.

Proposition 3.4. Given a parabolic Higgs bundle $\left(E_{*}, \phi\right)$ on X, we can associate a Γ-Higgs bundle (W, Φ) on Y.
Proof. We will begin by constructing a parabolic vector bundle on X of rank m. The holomorphic vector bundle underlying the parabolic vector bundle is Ω_{X}^{1}. To define the parabolic structure, take any irreducible component D_{i} of D. Let $\iota: D_{i} \hookrightarrow X$ be the inclusion map. We have a short exact sequence of vector bundles on D_{i}

$$
0 \longrightarrow N_{D_{i}}^{*} \longrightarrow \iota^{*} \Omega_{X}^{1} \longrightarrow \Omega_{D_{i}}^{1} \longrightarrow 0
$$

where $N_{D_{i}}$ is the normal bundle of D_{i}. Note that the Poincaré adjunction formula says that $N_{D_{i}}=\iota^{*} O_{X}\left(D_{i}\right)$. The quasiparabolic filtration over D_{i} is the above filtration

$$
N_{D_{i}}^{*} \subset \iota^{*} \Omega_{X}^{1}
$$

The parabolic weights are 0 and $\left(r k_{i}-1\right) / r k_{i}$. More precisely, $N_{D_{i}}^{*}$ has parabolic weight $\left(r k_{i}-1\right) / r k_{i}$ and the parabolic weight of the quotient $\Omega_{D_{i}}^{1}$ is zero. Note that the nonzero parabolic weight $\left(r k_{i}-1\right) / r k_{i}$ has multiplicity one. This parabolic vector bundle will be denoted by $\widetilde{\Omega}_{X}^{1}$.

The action of Γ on Y induces an action of Γ on the vector bundle Ω_{Y}^{1} making it a Γ-bundle. From the construction of $\widetilde{\Omega}_{X}^{1}$ it can be deduced that the parabolic vector
bundle corresponding to the Γ-bundle Ω_{Y}^{1} is $\widetilde{\Omega}_{X}^{1}$. To prove this, first note that if $U_{0} \subset X$ is a Zariski open subset such that the complement U_{0}^{c} is of codimension at least two, and V, W are two algebraic vector bundles on X that are isomorphic over U_{0}, then V and W are isomorphic over X; using Hartog's theorem, any isomorphism $\left.\left.V\right|_{U_{0}} \longrightarrow W\right|_{U_{0}}$ extends to a homomorphism $V \longrightarrow W$, and similarly, we have a homomorphism $W \longrightarrow V$, and these two homomorphisms are inverses of each other because they are so over U_{0}. Next note that

$$
\left(\pi_{*} \Omega_{Y}^{1}\right)^{\Gamma}=\Omega_{X}^{1}
$$

because $\left(\pi_{*} \Omega_{Y}^{1}\right)^{\Gamma}=\Omega_{X}^{1}$ over the complement of the singular locus of D. Therefore, Ω_{X}^{1} is the vector bundle underlying the parabolic bundle corresponding to the Γ-bundle Ω_{Y}^{1}. It is now straightforward to check that the parabolic weights are of the above type.

Let W be the Γ-bundle on Y corresponding to the parabolic vector bundle E_{*} on X (using [Bi97, Section 3b]). Let ϕ be a strongly parabolic Higgs field on E_{*}. It is straightforward to check that ϕ defines a homomorphism of parabolic vector bundles

$$
\phi^{\prime}: E_{*} \longrightarrow E_{*} \otimes \widetilde{\Omega}_{X}^{1}
$$

where $E_{*} \otimes \widetilde{\Omega}_{X}^{1}$ is the parabolic tensor product of E_{*} and $\widetilde{\Omega}_{X}^{1}$.
Since the correspondence between parabolic bundles and Γ-vector bundles is compatible with the operation of tensor product, we conclude that the parabolic tensor product $E_{*} \otimes \widetilde{\Omega}_{X}^{1}$ corresponds to the Γ-bundle $W \otimes \Omega_{Y}^{1}$. Therefore, the above homomorphism ϕ^{\prime} pulls back to a Γ-equivariant homomorphism Φ from W to $W \otimes$ Ω_{Y}^{1}.

Theorem 3.5. We have an equivalence of categories between Γ-Higgs bundles on Y and parabolic Higgs bundles on X which satisfy the assumptions as in [Bi97, Assumptions 3.2].

Proof. Proof is clear from Propositions 3.3 and 3.4 and [Bi97, Sections 2c, 3b].
Remark 3.6. In Borne's formalism, the parabolic bundle E_{*} may be considered as a functor $((1 / r) \mathbb{Z})^{\text {op }} \longrightarrow \mathfrak{V e c t}(X)$, with

$$
\frac{j}{r} \longmapsto E_{j}(D)
$$

and composing with $\pi^{*}: \mathfrak{V e c t}(X) \longrightarrow \mathfrak{V e c t}(Y)$, we get a functor $((1 / r) \mathbb{Z})^{\mathrm{op}} \longrightarrow$ $\mathfrak{V e c t}(Y)$. We also have a covariant functor $(1 / r) \mathbb{Z} \longrightarrow \mathfrak{V e c t}(Y)$ given by

$$
\frac{j}{r} \longmapsto \mathscr{O}_{Y}\left(m_{j-1} \bar{D}\right) .
$$

Therefore, we obtain a functor $((1 / r) \mathbb{Z})^{\mathrm{op}} \times \frac{1}{r} \mathbb{Z} \longrightarrow \mathfrak{V e c t}(Y)$

$$
\frac{j}{r} \longmapsto \pi^{*} E_{j}(D) \otimes \mathscr{O}_{Y}\left(m_{j-1} \bar{D}\right)
$$

An end for this functor [Ma98, Section IX.5] consists of a vector bundle $V \in$ $\operatorname{ObVect}(Y)$ and diagrams for $i \leq j$

such that the diagram is terminal among all such diagrams. It is not difficult to check that W is a universal end for the functor defined above, that is, it is an end, and given an end V as in the diagram, there is a unique morphism $V \longrightarrow W$ which yields the appropriate commuting diagrams.

4. Root stacks

The notion of a root stack is something of a generalization of the notion of an orbifold with cyclic isotropy groups over a divisor. Of course, our main interest in this construction is in the case when X is a smooth complex projective variety, but giving the definition for an arbitrary \mathbb{C}-scheme imposes no further conceptual or technical difficulties, so we will give the definition and describe some of the basic properties in this generality. We largely follow the presentations of [Bo07] and [Cad07] here (as well as [The], [Vis08] for generalities), so we direct the reader requiring further illumination on issues raised below to these references.
4.1. Definition and construction. We fix a \mathbb{C}-scheme X, an invertible sheaf L on X and $s \in H^{0}(X, L)$, so that if s is nonzero, it defines an effective divisor D on X. We will also fix $r \in \mathbb{N}$. Let $\mathfrak{X}=\mathfrak{X}_{(L, r, s)}$ denote the category whose objects are quadruples

$$
\begin{equation*}
(f: U \longrightarrow X, N, \phi, t), \tag{4.1}
\end{equation*}
$$

where U is a \mathbb{C}-scheme, f is a morphism of \mathbb{C}-schemes, N is an invertible sheaf on $U, t \in H^{0}(U, N)$ and $\phi: N^{\otimes r} \xrightarrow{\sim} f^{*} L$ is an isomorphism of invertible sheaves with $\phi\left(t^{\otimes r}\right)=f^{*} s$. A morphism

$$
(f: U \longrightarrow X, N, \phi, t) \longrightarrow(g: V \longrightarrow X, M, \psi, u)
$$

consists of a pair (k, σ), where $k: U \longrightarrow V$ is a \mathbb{C}-morphism making

commute and $\sigma: N \xrightarrow{\sim} k^{*} M$ is an isomorphism such that $\sigma(t)=k^{*}(u)$. Moreover, the following diagram must commute:

If

$$
(g: V \longrightarrow X, M, \psi, u) \xrightarrow{(l, \tau)}(h: W \longrightarrow X, J, \rho, v)
$$

is another morphism, then the composition is defined as

$$
\begin{equation*}
(l, \tau) \circ(k, \sigma):=\left(l \circ k, k^{*} \tau \circ \sigma\right), \tag{4.2}
\end{equation*}
$$

using the canonical isomorphism $(l \circ k)^{*} J \cong k^{*} l^{*} J$.
We will often use the symbols $\mathfrak{f}, \mathfrak{g}$ to denote objects of \mathfrak{X}. If it is understood that $\mathfrak{f} \in \mathfrak{X}_{U}$, then by \mathfrak{f} we will denote the quadruple $\mathfrak{f}=\left(f: U \longrightarrow X, N_{\mathfrak{f}}, \phi_{\mathfrak{f}}, t_{\mathfrak{f}}\right)$.

The category \mathfrak{X} comes with a functor $\mathfrak{X} \longrightarrow \mathfrak{G c h} / \mathbb{C}$ which simply takes \mathfrak{f} to U and (k, σ) to h.

Proposition 4.1 [Cad07, Theorem 2.3.3]. The morphism of categories $\mathfrak{X} \longrightarrow \mathfrak{G c h} / \mathbb{C}$ makes \mathfrak{X} a Deligne-Mumford stack.

Remark 4.2. The previous statement implies that $\mathfrak{X} \longrightarrow \mathbb{S}_{\mathfrak{c} h} / \mathbb{C}$ is a category fibered in groupoids. Let $\mathfrak{f} \in \mathrm{Ob} \mathfrak{X}_{U}$ be an object of \mathfrak{X} lying over U as given in (4.1) and let $g: V \longrightarrow U$ be a morphism of schemes. A choice of pullback $g^{*} \dot{f} \in \mathrm{Ob} \mathfrak{X}_{V}$ can easily be described by the tuple

$$
\left(g \circ f: V \longrightarrow X, g^{*} N_{\mathrm{f}}, g^{*} \phi_{\mathrm{f}}, g^{*} t_{\mathrm{f}}\right)
$$

and the Cartesian arrow $g^{*} \mathfrak{f} \longrightarrow \mathfrak{f}$ is given by $\left(g, \mathbb{1}_{g^{*} N_{\mathfrak{~}}}\right)$.
Example 4.3 [Cad07, Example 2.4.1]. Suppose $X=\operatorname{Spec} A$ is an affine scheme, $L=$ \mathscr{O}_{X} is the trivial bundle and $s \in H^{0}\left(X, \mathscr{O}_{X}\right)=A$ is a function. Consider $U=\operatorname{Spec} B$, where $B=A[t] /\left(t^{r}-s\right)$. Then U admits an action of the group of r th roots of unity (more precisely, of the group scheme of the r th roots of unity) $\boldsymbol{\mu}_{r}$ of order r, where the induced action of $\zeta \in \boldsymbol{\mu}_{r}$, a generator, is given by

$$
\zeta \cdot a=a, a \in A, \quad \zeta \cdot t=\zeta^{-1} t
$$

In this case, the root stack $\mathfrak{X}_{\left(\mathscr{O}_{X}, s, r\right)}$ coincides with the quotient stack $\left[U / \boldsymbol{\mu}_{r}\right]$. Thus, as a quotient by a finite group (scheme), the map $U \longrightarrow \mathfrak{X}$ is an étale cover.

Remark 4.4. If X is any \mathbb{C}-scheme, and L, s are as before, we may take an open affine cover $\left\{X_{i}=\operatorname{Spec} A_{i}\right\}$ such that $\left.L\right|_{X_{i}} \cong \mathscr{O}_{X_{i}}$ and $\left.s\right|_{X_{i}}$ corresponds to $s_{i} \in A_{i}$. Then by the example above,

$$
\coprod_{i} U_{i} \longrightarrow \mathfrak{X}
$$

is an étale cover, where $U_{i}=\operatorname{Spec} A\left[t_{i}\right] /\left(t_{i}^{r}-s_{i}\right)$.
There is also a functor $\pi: \mathfrak{X} \longrightarrow \mathbb{G}_{\mathrm{ch}} / X$, whose action on objects and morphisms is given by

$$
\mathfrak{f} \longmapsto f: U \longrightarrow X, \quad(k, \sigma) \longmapsto k ;
$$

this yields a 1-morphism over $\mathfrak{S c h}^{(h} \mathbb{C}$, which we will often simply write as $\pi: \mathfrak{X} \longrightarrow X$.
4.2. Vector bundles and differentials on a root stack. Recall (for example [G01, Definition 2.50], [LM00, Lemme 12.2.1], [Vis89, Definition 7.18]) that a quasicoherent sheaf \mathscr{F} on \mathfrak{X} consists of the data of a quasi-coherent sheaf $\mathscr{F}_{\mathfrak{F}}$ for each étale morphism $\mathfrak{f}: U \longrightarrow \mathfrak{X}$ along with isomorphisms $\alpha_{k}=\alpha_{k}^{\mathscr{F}}: \mathscr{F}_{\mathfrak{f}} \longrightarrow k^{*} \mathscr{F}_{\mathfrak{g}}$ for any commutative diagram

such that for a composition $U \xrightarrow{k} V \xrightarrow{h} W \longrightarrow \mathfrak{X}$ one has

$$
\begin{equation*}
\alpha_{h \circ k}=k^{*} \alpha_{h} \circ \alpha_{k} \tag{4.4}
\end{equation*}
$$

A (global) section $\mathfrak{s} \in H^{0}(\mathfrak{X}, \mathscr{F})$ of \mathscr{F} over \mathfrak{X} is the data of a global section $\mathfrak{s}_{\mathfrak{f}} \in H^{0}\left(U, \mathscr{F}_{\mathfrak{f}}\right)$ for each étale morphism $\mathfrak{f}: U \longrightarrow \mathfrak{X}$ such that for a diagram (4.3) as above, one has

$$
\alpha_{k}\left(\mathfrak{s q}_{\mathfrak{f}}\right)=k^{*} \mathfrak{s}_{\mathfrak{g}} .
$$

A quasi-coherent sheaf \mathscr{F} on \mathfrak{X} is a subsheaf of a quasi-coherent sheaf \mathscr{G} if $\mathscr{F}_{\dagger} \subseteq \mathscr{G}_{\dagger}$ for all étale $\mathfrak{f}: U \longrightarrow \mathfrak{X}$.

Lemma 4.5. In the situation of Example 4.3, where $X=$ SpecA is affine, $U:=$ $\operatorname{Spec} A[t] /\left(t^{r}-s\right)$ and $\mathfrak{X}=[U / \mu]$, then for a quasi-coherent sheaf \mathscr{F} on $\mathfrak{X}, \mathscr{F}_{U}$ admits a $\boldsymbol{\mu}_{r}$-action compatible with that on U.

Proof. We have $U \times_{\mathfrak{X}} U \cong U \times \mu$ and under this isomorphism, the two projection maps from $U \times_{\mathfrak{X}} U$ correspond to the maps $p_{U}, \lambda: U \times \boldsymbol{\mu} \longrightarrow U$, where p_{U} is the projection onto U and λ is the action on U. Then the required action is defined by the composition

$$
p_{U}^{*} \mathscr{F}_{U} \xrightarrow{\alpha_{p U}^{-1}} \mathscr{F}_{U \times_{*} U} \xrightarrow{\alpha_{\lambda}} \lambda^{*} \mathscr{F}_{U} .
$$

This concludes the proof.
4.2.1. The sheaf of differentials on \mathfrak{X}. The sheaf of differentials $\Omega_{\mathfrak{X}}^{1}=\Omega_{\mathfrak{X} / \mathbb{C}}^{1}$ can be defined as follows. If $\mathfrak{f}: U \longrightarrow \mathfrak{X}$ is an étale map, then we simply set

$$
\Omega_{\mathfrak{x}, \mathfrak{f}}^{1}:=\Omega_{U / \mathbb{C}}^{1}
$$

If we are given a diagram (4.3), then from the composition $U \xrightarrow{k} V \longrightarrow$ Spec \mathbb{C}, one obtains a sequence

$$
0 \longrightarrow k^{*} \Omega_{V / \mathrm{C}} \longrightarrow \Omega_{U / \mathrm{C}} \longrightarrow \Omega_{U / V} \longrightarrow 0
$$

which is left exact [The, More on Morphisms, Ch. 33, Lemma 9.9] and whose last term is zero since k is necessarily étale. This defines isomorphisms α_{k}. The requirement (4.4) will be met because of the universal properties these morphisms possess.
4.2.2. The tautological invertible sheaf on \mathfrak{X}. The root stack \mathfrak{X} possesses a tautological invertible sheaf \mathscr{N}. For an étale morphism $\mathfrak{f}: U \longrightarrow \mathfrak{X}$, we simply take

$$
\mathscr{N}_{\uparrow}:=N_{\mp} .
$$

Given a diagram (4.3), one has an isomorphism $\left(\mathbb{1}_{U}, \sigma\right): \mathfrak{f} \longrightarrow k^{*} \mathfrak{g}$ and one may take

$$
\alpha_{k}^{\mathscr{N}}:=\sigma: N_{\mathrm{f}} \longrightarrow k^{*} N_{\mathrm{g}} .
$$

The expression in the second component of (4.2) implies that (4.4) is satisfied. This defines the invertible sheaf \mathscr{N} on \mathfrak{X}. Furthermore, by definition, we also get a tautological section t of \mathscr{N} over \mathfrak{X} by simply taking

$$
\mathrm{t}_{\mathrm{f}}:=t_{\mathrm{f}} .
$$

4.3. Higgs fields on root stacks. Let X be as in Section 2, so that it is a smooth complex projective variety; D will be a normal crossing divisor with smooth components. Let $s \in H^{0}\left(X, \mathscr{O}_{X}(D)\right)$ be a section with $(s)=D$. We also fix $r \in \mathbb{N}$. In all that follows $\mathfrak{X}=\mathfrak{X}_{\left(\mathscr{O}_{X}(D), r, s\right)}$ will be the associated root stack as constructed in Section 4.1.

Remark 4.6. Consider the fuller situation of Section 2, where $\pi: Y \longrightarrow X$ be a Galois cover of smooth complex projective varieties and there is a divisor \bar{D} on Y such that $\pi^{*} D=r \bar{D}$. Then there is an isomorphism $\phi: \mathscr{O}_{Y}(\bar{D})^{\otimes r} \xrightarrow{\sim} \pi^{*} \mathscr{O}_{X}(D)$ and a section $t \in H^{0}\left(Y, \mathscr{O}_{Y}(\bar{D})\right)$ such that $\phi\left(t^{\otimes r}\right)=\pi^{*} s$. Therefore, the quadruple $(\pi: Y \longrightarrow$ $\left.X, \mathscr{O}_{Y}(\bar{D}), \phi, t\right)$ defines a morphism

$$
\widehat{\pi}: Y \longrightarrow \mathfrak{X} .
$$

4.3.1. Higgs fields. Let \mathcal{V} be a vector bundle on \mathfrak{X}. A Higgs field Φ on \mathcal{V} is a homomorphism $\Phi: \mathcal{V} \longrightarrow \mathcal{V} \otimes \Omega_{\mathfrak{x}}^{1}$. This means that for each étale morphism $\mathfrak{f}: U \longrightarrow$ \mathfrak{X} we have a homomorphism $\Phi_{\mp}: \mathscr{V}_{\dot{f}} \longrightarrow \mathcal{V}_{\dot{f}} \otimes \Omega_{U}^{1}$ such that given a diagram (4.3), we
obtain a commutative square.

Theorem 4.7. There is an equivalence of categories of Higgs bundles on \mathfrak{X} and parabolic Higgs bundles on X.

Proof. We remark that a parabolic structure is given locally, so we may assume that $X=\operatorname{Spec} A$ is affine and that the parabolic divisor D is defined by $s \in A$. Then as in Example 4.3, we may take $U=\operatorname{Spec} B$ where $B=A[t] /\left(t^{r}-s\right)$, so that $\mathfrak{X}=[U / \mu]$. In this case, the map $\mathfrak{f}: U \longrightarrow \mathfrak{X}$ is étale; we will write $f: U \longrightarrow X$ for the underlying map induced from $A \longrightarrow B$. Given a vector bundle \mathcal{V}, by Lemma 4.5, the bundle \mathcal{V}_{f} on U carries a compatible μ-action. The fact that Φ_{\mp} commutes with this action comes from the existence of the diagram (4.5) for the two projection morphisms $U \times_{\mathfrak{X}} U \longrightarrow U$. Thus, we are reduced to the case of Γ-bundles when $\Gamma=\boldsymbol{\mu}$, which comes from Propositions 3.3 and 3.4.

Acknowledgement

We are very grateful to the referee for helpful comments to improve the exposition.

References

[Bi97] I. Biswas, 'Parabolic bundles as orbifold bundles', Duke Math. J. 88(2) (1997), 305-325.
[Bo07] N. Borne, 'Fibrés paraboliques et champ des racines', Int. Math. Res. Not. 2007(16) (2007), Article ID rnm049, 38 pages.
[Cad07] C. Cadman, 'Using stacks to impose tangency conditions on curves', Amer. J. Math. 129(2) (2007), 405-427.
[Del70] P. Deligne, Equations Différentielles à Points Singuliers Réguliers, Lecture Notes in Mathematics, 163 (Springer, Berlin, 1970).
[EV92] H. Esnault and E. Viehweg, Lectures on Vanishing Theorems, DMV Seminar, 20 (Birkhäuser, Basel, 1992).
[G01] T. L. Gómez, 'Algebraic stacks', Proc. Indian Acad. Sci. Math. Sci. 111(1) (2001), 1-31.
[Hi87a] N. J. Hitchin, 'The self-duality equations on a Riemann surface', Proc. Lond. Math. Soc. 55 (1987), 59-126.
[Hi87b] N. J. Hitchin, ‘Stable bundles and integrable systems', Duke Math. J. 54(1) (1987), 91-114.
[LM00] G. Laumon and L. Moret-Bailly, Champs Algébriques (Springer, Berlin, 2000).
[Ma98] S. Mac Lane, Categories for the Working Mathematician, 2nd edn. Graduate Texts in Mathematics, 5 (Springer, New York, 1998).
[MY92] M. Maruyama and K. Yokogawa, 'Moduli of parabolic stable sheaves', Math. Ann. 293 (1992), 77-99.
[MS80] V. Mehta and C. Seshadri, 'Moduli of vector bundles on curves with parabolic structures', Math. Ann. 248 (1980), 205-239.
[Na] M. Namba, Branched Coverings and Algebraic Functions, Pitman Research Notes in Mathematics, 161 (Longman Scientific \& Technical, Harlow, 1987).
[Si88] C. T. Simpson, 'Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization', J. Amer. Math. Soc. 1 (1988), 867-918.
[The] The stacks project authors, Stacks Project, http://math.columbia.edu/algebraic_geometry/ stacks-git.
[Vis89] A. Vistoli, 'Intersection theory on algebraic stacks and on their moduli spaces', Invent. Math. 97 (1989), 613-670.
[Vis08] A. Vistoli, Notes on Grothendieck topologies, fibrered categories and descent theory, http://homepage.sns.it/vistoli/descent.pdf, 2008.
[Yo95] K. Yokogawa, 'Infinitesimal deformations of parabolic Higgs sheaves’, Internat. J. Math. 6 (1995), 125-148.

INDRANIL BISWAS, School of Mathematics,
Tata Institute of Fundamental Research, Homi Bhabha Road,
Mumbai 400005, India
e-mail: indranil@math.tifr.res.in
SOURADEEP MAJUMDER, School of Mathematics,
Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
e-mail: souradip@math.tifr.res.in
MICHAEL LENNOX WONG, Chair of Geometry,
Mathematics Section, Ecole Polytechnique Fédérale de Lausanne, Station 8, 1015 Lausanne, Switzerland
e-mail: michael.wong@epfl.ch

[^0]: MLW would like to express his gratitude to the Fonds québécois de la recherche sur la nature et les technologies for the support of a Bourse de recherche postdoctorale (B3).
 (C) 2013 Australian Mathematical Publishing Association Inc. 1446-7887/2013 \$16.00

