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COEFFICIENT QUIVERS, F1-REPRESENTATIONS, AND EULER
CHARACTERISTICS OF QUIVER GRASSMANNIANS

JAIUNG JUN and ALEXANDER SISTKO

Abstract. A quiver representation assigns a vector space to each vertex, and

a linear map to each arrow of a quiver. When one considers the category

Vect(F1) of vector spaces “over F1” (the field with one element), one obtains

F1-representations of a quiver. In this paper, we study representations of a

quiver over the field with one element in connection to coefficient quivers. To

be precise, we prove that the category Rep(Q,F1) is equivalent to the (suitably

defined) category of coefficient quivers over Q. This provides a conceptual way

to see Euler characteristics of a class of quiver Grassmannians as the number

of “F1-rational points” of quiver Grassmannians. We generalize techniques

originally developed for string and band modules to compute the Euler

characteristics of quiver Grassmannians associated with F1-representations.

These techniques apply to a large class of F1-representations, which we call

the F1-representations with finite nice length: we prove sufficient conditions for

an F1-representation to have finite nice length, and classify such representations

for certain families of quivers. Finally, we explore the Hall algebras associated

with F1-representations of quivers. We answer the question of how a change in

orientation affects the Hall algebra of nilpotent F1-representations of a quiver

with bounded representation type. We also discuss Hall algebras associated with

representations with finite nice length, and compute them for certain families

of quivers.

§1. Introduction

Mathematics over the field with one element F1 is a recent area of research that draws

primarily from considerations in algebraic geometry, number theory, and combinatorics.

The term field of characteristic one was originally coined by J. Tits. In [31], Tits observed

that incidence geometries over a finite field Fq have a combinatorial counterpart1 which

could be interpreted as incidence geometries defined over the field of characteristic one.

In [26], Soulé first introduced the notion of algebraic varieties over the field with one

element (denoted by F1) by taking the functor of points approach, and suggested several

research directions to pursue. Soulé also asked whether or not Chevalley group schemes G

could be defined over F1 in such a way as to relate the set G(F1) of F1-rational points to

the Weyl group WG of G. In [3], Connes and Consani provided a positive answer to the

question posed by Soulé. This question was further studied by Lorscheid [19] by using the

algebraic structure of a blueprint (see [18] for blueprints).

One heuristic idea of F1-geometry is that when an algebraic variety X over Z has an F1-

model XF1 , then the number of F1-rational points of XF1 should be the Euler characteristic
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2 J. JUN AND A. SISTKO

of X(C).2 The heuristic is essentially based on the relation between the counting function of

X(Fq) and the Euler characteristic of X(C) for a smooth projective scheme X. For example,

the cardinality of the set of Fq-rational points of the Grassmannian Gr(k,n) is given by the

q-binomial coefficients:

|Gr(k,n)(Fq)|=
[
n

k

]
q

, (1.1)

and by evaluating (1.1) at q = 1, we obtain(
n

k

)
= χ(Gr(k,n)(C)), (1.2)

the Euler characteristic of Gr(k,n)(C).3 We refer the reader to [18, §4] for more details.

Quiver Grassmannians are projective varieties whose points parameterize certain

subrepresentations of a given quiver representation. The usual Grassmannians can be

recovered by taking the quiver to have a single vertex and no arrows. In [23], Reineke

showed that any projective variety is a quiver Grassmannian. In particular, the class of

quiver Grassmannians is not just a special class of projective varieties, but they are all

projective varieties. What is more surprising is the result of Ringel [25], which shows that

there exists a single quiver Q (independent of a projective variety) such that for a given

projective variety X, one can find a representation M of Q and a dimension vector e such

that X =GrQe (M), the quiver Grassmannian of e-dimensional subrepresentations of M :

GrQe (M) := {N ≤M | dim(N) = e}.

We refer the reader to [2] for further results.

Let Q be a finite quiver throughout. Lorscheid has proved that if M admits a basis in

which the arrows of Q act via integer matrices, then GrQe (M) admits an F1-model [18].

If M is a tree module, it can be proved that the Euler characteristic of GrQe (M) counts the

number of F1-rational points. Cerulli Irelli computes the Euler characteristic of GrQe (M)

when M is a string module in [1]. Haupt extends this work to tree modules, and produces

results of a similar flavor for band modules [7]. For some tree modules and modules over

certain tame quivers, Lorscheid and Weist develop techniques for computing Schubert

decompositions of quiver Grassmannians which can be used to compute their Euler

characteristics [16], [17], [20]–[22]. It is therefore natural to pose the following questions,

following Lorscheid.

Question 1.1 (cf. [18])

1. If M is such that GrQe (M) admits an F1-model, what conditions on M guarantee that the

Euler characteristic of GrQe (M) counts its number of F1-rational points?

2. If the number of F1-rational points of GrQe (M) is given by its Euler characteristic, can

one find an efficient combinatorial formula for computing it?

In this paper, we partially provide an affirmative answer to Question 1.1. We begin with

the F1-representations of Q, first introduced by Szczesny in [27] and studied further by

2 There are several (non-equivalent) definitions for an F1-model of X and F1-rational points.
3 Note that for a Chevalley group G and its Weyl group WG, the cardinality |WG| can be computed from

the counting function of G(Fq) at q = 1 after removing zeroes at q = 1.
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F1 -REPRESENTATIONS AND EULER CHARACTERISTICS 3

the authors in [10] using the coefficient quivers of Ringel [24]. Using the combinatorial

techniques developed in [7], we describe a class of F1-representations whose associated

quiver Grassmannians admit filtrations by locally closed subsets, each of which is the

fixed point set of a torus action on the previous one, and whose last piece is finite. We

show that this class, which we call the F1-representations with finite nice length, contains

many of the representations considered in [1], [7] as well as new ones. In addition to

exhibiting new representations, we show that the class of F1-representations with finite nice

length includes representations whose coefficient quivers have first homology groups with

arbitrarily high rank. Taken together, this demonstrates that the basic techniques of [1],

[7] can be successfully applied to a broad class of representations beyond those previously

considered in the literature.

Szczesny explored several aspects of representation theory over F1 in [11], [28]–[30]. In

particular, he introduced a notion of quiver representations over F1 based on an idea that

vector spaces over F1 are finite pointed sets. To be precise, to define an F1-representation

of a quiver Q, one may replace vector spaces with finite pointed sets (F1-vector spaces)

and linear maps with pointed functions satisfying an injectivity condition (F1-linear maps).

This defines the category Rep(Q,F1) of F1-representations of Q, which can be considered

as a degenerate combinatorial model of the category Rep(Q,Fq). In fact, Szczesny’s main

observation was that the Hall algebra HQ,F1 of Rep(Q,F1) behaves in some ways like the

specialization at q = 1 of the Hall algebra HQ,Fq of Rep(Q,Fq).
4 This line of ideas was

further pursued with the first named author in [11] to compute the Hall algebra of coherent

sheaves on P2 by using its degenerate combinatorial model of monoid schemes.

In our recent work [10], we stratified quivers according to the asymptotic growth of their

indecomposable nilpotent F1-representations. To this end, we defined the growth function

NIQ : N→ Z≥0 such that

NIQ(n) := #{isoclasses of n-dimensional nilpotent indecomposables in Rep(Q,F1)}.

Then we used the growth function to define an order relation among quivers: for two quivers

Q and Q′, write Q≤nil Q
′ if there exists a natural number C such that NIQ =O(NIQ′ ◦μC)

in big-O notation, where μC is a multiplication function by C. This order relation induces

an equivalence relation ≈nil on quivers as follows:

Q≈nil Q
′ ⇐⇒ Q≤nil Q

′ and Q′ ≤nil Q.

In [10], we proved the following:

Theorem [10]. Let Ln be the quiver with one vertex and n-loops, and let Q be connected.

(i) L0,L1,L2 are not equivalent to each other, and Lm ≈nil Ln whenever min{m,n} ≥ 2.

(ii) Q≈nil L0 if and only if Q is a tree quiver.

(iii) Q≈nil L1 if and only if Q is a cycle quiver.

(iv) For any quiver Q, one has Q≤nil L2.

When S is a coefficient quiver of Q, one naturally obtains a quiver map F : S → Q

satisfying some conditions. The class of quiver maps satisfying this condition, called

4 The Hall algebra HQ,F1
can be constructed directly by mimicking the construction of HQ,Fq

. One may
also directly appeal to the framework of Dyckerhoff and Kapranov [5].
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4 J. JUN AND A. SISTKO

windings, was studied by Gabriel [6], Crawley-Boevey [4], Krause [15], and Haupt [7]. More

explicitly, a winding is a morphism of quivers F : S →Q consisting of a pair of functions5

F0 : S0 →Q0, F1 : S1 →Q1

satisfying the following condition:

F1(α) = F1(β) implies s(α) 	= s(β) and t(β) 	= t(β),

where s(α) (resp. t(α)) is the source (resp. target) of an arrow α. We consider the category

CQ of quivers over a quiver Q as follows: Let CQ be the category whose objects are windings

of quivers F : S →Q. A morphism φ : (S,F )→ (S′,F ′) is an ordered triple φ= (Uφ,Dφ, cφ)

satisfying some technical conditions, where Uφ is a full subquiver of S, Dφ is a full subquiver

of S′, and cφ : Uφ → Dφ is a quiver isomorphism. We first upgrade the correspondence

between coefficient quivers and F1-representations in [10] to the categorical equivalence as

follows.

Theorem A (Proposition 3.7). The categories Rep(Q,F1) and CQ are equivalent. This

restricts to an equivalence between Rep(Q,F1)nil and the full subcategory of CQ whose objects

are windings F : S →Q with S acyclic.

The above theorem also provides a conceptual framework to compute the Euler

characteristic of a quiver Grassmannian through a base-change functor. To be precise, one

always obtains a representation of Q over C from a representation of Q over F1 functorially

as follows: a finite pointed set V defines a vector space VC whose basis is V −{0V }. This
induces a functor for quiver representations:

C⊗F1 − : Rep(Q,F1)→ Rep(Q,C), M �→MC.

This functor is always faithful, but generally not full (cf. the example at the end of [15]).

The methods of Cerulli Irelli and Haupt to compute Euler characteristics of quiver

Grassmannians are based on the following idea: that when a projective variety X is equipped

with a torus action admitting a finite number of fixed points, one may compute the Euler

characteristic χ(X) of X as the number of fixed points by the torus action. To ensure the

existence of a torus action, Cerulli Irelli introduced a certain condition for string modules.

This idea was generalized by Haupt by introducing a notion of gradings on representations.

We show that Haupt’s definition applies to F1-representations of quivers.

For an F1-representation M of Q and its corresponding winding ΓM → Q (from

Theorem A), we define a nice sequence on M to be a collection ∂ = (∂i)i≥0 of functions

∂i : (ΓM )0 → Z satisfying the following two conditions:6

1. ∂0 is a nice grading.

2. For all i > 0, ∂i is a (∂0, . . . ,∂i−1)-nice grading.

See §4 or [7] for the terminology on gradings. If there exists a nice sequence ∂ = (∂i)i≥0 on

M with the property that for all distinct x,y ∈ (ΓM )0, ∂i(x) 	= ∂i(y) for some i ≥ 0, then

Haupt proves in [7] that the following formula holds for all dimension vectors e:

χQ
e (MC) = |{N ≤M | dim(N) = e}|, (1.3)

5 For a quiver Q, Q0 is the vertex set of Q and Q1 is the arrow set of Q.
6 For the precise definition, see Definition 4.1.
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F1 -REPRESENTATIONS AND EULER CHARACTERISTICS 5

where χQ
e (MC) is the Euler characteristic of GrQe (MC). In other words, the Euler

characteristics of the associated quiver Grassmannians can all be computed by counting

F1-subrepresentations of M, which is a combinatorial task. See Proposition 5.2 below

for more details. We say that M has finite nice length in this case: specifically, we say

nice(M) = n if there exists a nice sequence ∂ for M such that each pair of vertices in

ΓM can be distinguished by the first n+1 gradings (and nice(M) = ∞ otherwise). More

generally, if (1.3) holds for all dimension vectors e, we say that M is nice. Our task is then

to identify all nice F1-representations of a given quiver, or at least the F1-representations

with finite nice length.

In Construction 4.12, we generalize notions from [7] to test for the existence of nice

sequences with prescribed properties. To any indecomposable F1-representation M, we

construct a sequence of finitely generated free abelian groups V(i)
M . For each i, we then

define a function

X(i) : (ΓM )0 →V(i)
M

v �→X(i)
v

called the universal i-nice grading on M. The image of v under X(i) is called the i-nice

variable associated with v. The universal i -nice grading is only unique up to translation,

but this is easily dealt with by specifying a basepoint b ∈ (ΓM )0. The name of this function

is justified by the following theorem.

Theorem B (Theorem 4.19). Let M be an indecomposable F1-representation of Q, with

associated winding c : Γ→Q and basepoint b∈ Γ0. Let ∂ = (∂i)
∞
i=0 be a nice sequence for M.

Then, for each i, there exists a unique affine map

ev(i)(∂) : V(i)
M → Z

such that ∂i = ev(i)(∂)◦X(i). We write X(i)(∂) := ev(i)(∂)◦X(i) and call it the evaluation

of X(i) at ∂. Conversely, any such sequence of affine maps defines a nice sequence on M.

As a consequence, we have ∂i(u) 	= ∂i(v) for some nice sequence ∂ if and only if

X
(i)
u 	=X

(i)
v .

In §5, we apply the machinery of §4 to identify representations with finite nice length.

To begin, we prove several sufficient conditions for M to have finite nice length (see §§4
and 5 for all associated terminology):

Theorem C (Propositions 5.7 and 5.8). Let Q be a quiver and M an indecomposable

F1-representation of Q with associated winding c : Γ → Q. Then the following statements

hold:

1. Suppose that M admits a positive or negative nice grading, and that Q has no loops.

If for each α ∈Q1, ∂ restricts to an injection on the set {s(β) | β ∈ Γ1, c(β) = α}, then
nice(M)≤ 1 and M is nice.

2. Suppose that M admits a non-degenerate grading, and that for all α ∈Q1, the minimal

subquiver of Γ containing the arrows {β ∈Γ1 | c(β) =α} is connected. Then nice(M)≤ 1.

3. Suppose that N is another indecomposable representation of Q, with associated winding

c′ : Γ′ → Q. Suppose that c(Γ) and c′(Γ′) have disjoint arrow sets, and that there exist

vertices u ∈ Γ0 and v ∈ Γ′
0 with c(u) = c′(v). If nice(M)<∞ and nice(N)<∞, then the
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6 J. JUN AND A. SISTKO

F1-representation associated with the amalgam c�u∼v c
′ : Γ�u∼v Γ

′ →Q has finite nice

length.

We then exhibit a nontrivial class of representations which satisfy nice(M)≤ 1. In general,

this class of representations will have nice length 1, and coefficient quivers that are neither

trees nor affine Dynkin quivers of type Ã. In particular, this class contains representations

different than the cases considered in [1], [7]:

Theorem D (Proposition 5.9). Let M be a nilpotent F1-representation of a quiver Q

with associated winding c : Γ→Q. Suppose that c−1(α) is connected for all α ∈Q1, and that

Γ contains a set of Z-linearly independent cycles {X1, . . . ,Xn} with the following properties:

(i) The cycles [ι ◦H1(c)](X1), . . . , [ι ◦H1(c)](Xn) form a Q-basis for Q⊗Z Im(ι ◦H1(c)),

where ι◦H1(c) is as in (4.15).

(ii) For all i, we can write Xi = pi−qi, where pi and qi are directed paths of positive length

in Γ with common source and target, but no interior vertices in common.

(iii) For each i≤ n, either c(pi) or c(qi) consists of arrows that do not appear in c(Xj) for

j 	= i, where we consider c(Xj) as a subquiver of Q.

Then nice(M)≤ 1 and M is nice.

We illustrate the above results with several examples. Furthermore, we patch apparent

gaps in the proofs of Lemmas 6.3 and 6.4 in [7], at least for the case of F1-representations.

We outline the gaps we believe we have uncovered in the Appendix to this article, and

explain how our results resolve them. It should be noted that the class of F1-representations

with finite nice length contains representations which have been previously studied in the

literature, in addition to the new ones described above. Special cases include the following:

the F1-representations satisfying the conditions of Theorem 1 in [1], which are recovered as

the F1-representations with nice length 0; the F1-representations whose coefficient quiver

is a tree, correcting the proof of [7, Lem. 6.3]; and the F1-representations whose coefficient

quiver is a primitive affine Dynkin quiver of type Ã, recovering a special case of [7, Lem.

6.4]. These cases cover all F1-representations with finite nice length when Q is a pseudotree,

but not in general. We summarize these remarks with the following theorem.

Theorem E (cf. [1, Th. 1], [7, Lems. 6.3 and 6.4]). Let Q be a quiver, and for each

n∈N, let InQ,nil denote the set of isomorphism classes of finite-dimensional indecomposable,

nilpotent F1-representations of Q with nice length n. Furthermore, let IniceQ,nil =
⋃

n∈N
InQ,nil.

Then the following hold:

1. M ∈ I0Q,nil if and only if M admits a nice grading ∂ that restricts to an injection on

c−1
M (v), for all v ∈Q0.

2. If the coefficient quiver of M is a tree, then M ∈ IniceQ,nil. In general, M 	∈ I0Q,nil.

3. If the coefficient quiver of M is an affine Dynkin quiver of type Ã, then M ∈ IniceQ,nil if and

only if the associated winding cM : ΓM →Q is primitive. In general, M 	∈ I0Q,nil.

If Q is a (not necessarily proper) pseudotree, then every M ∈ IniceQ,nil belongs to at least one of

the three cases described above. If Q=Ln with n≥ 2, then IniceQ,nil contains F1-representations

that do not belong to any of the these three cases.

Case (1) is discussed in Example 5.5. Case (2) is discussed in Corollary 5.18, and case

(3) is discussed in Theorem 5.20. Examples of representations with strictly positive nice
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F1 -REPRESENTATIONS AND EULER CHARACTERISTICS 7

length are discussed throughout §§4 and 5. The results on pseudotrees follow readily from

Corollary 6.11 and the classification of nilpotent indecomposable F1-representations for

bounded type given in [10]. Finally, explicit examples for L2 and L3 are computed in §5.
In §6, we turn our attention to the Hall algebras HQ and HQ,nil of Rep(Q,F1) and

Rep(Q,F1)nil. Recall that HQ and HQ,nil are graded, connected, cocommutative Hopf

algebras: by the Milnor–Moore theorem, they are isomorphic to the universal enveloping

algebras of their Lie subalgebras of primitive elements. Throughout, we denote the Lie

algebra of HQ,nil by nQ. Motivated by a question from [27], in §6.1, we study how a change

in the orientation of Q affects HQ,nil. We obtain the following results for quivers of bounded

representation type.

Theorem F. Let Q be a quiver, with nQ the Lie algebra of primitive elements in HQ,nil.

Let Q′ be a quiver with the same underlying graph as Q.

1. (Proposition 6.3) If Q and Q′ are trees, then nQ
∼= nQ′ as Lie algebras.

2. (Proposition 6.7) Suppose that Q′ is an equioriented affine Dynkin quiver of type Ãn.

Then nQ is a central extension of nQ′ .

Note that Szczesny computed nQ in the case that Q is an equioriented Ãn in [27]. Finally,

in §6.2, we construct Hall algebras associated with representations of finite nice length and

identify them in specific instances. Indeed, consider the full subcategories Rep(Q,F1)
nice

and Rep(Q,F1)
nice
nil of Rep(Q,F1) and Rep(Q,F1)nil whose objects M satisfy nice(M)<∞.

These categories are finitary and proto-exact, and so one can associate Hall algebras Hnice
Q

and Hnice
Q,nil. We prove the following theorem, which relates HQ (resp. HQ,nil) to Hnice

Q (resp.

Hnice
Q,nil).

Theorem G (Proposition 6.8). Let Q be a quiver. Then the C-subspaces

I = 〈[M ] | nice(M) =∞〉,

Inil = 〈[M ] |M is nilpotent and nice(M) =∞〉

are Hopf ideals in HQ and HQ,nil, respectively. We have Hopf algebra isomorphisms HQ/I ∼=
Hnice

Q and HQ,nil/Inil ∼=Hnice
Q,nil.

This allows us to identify Hnice
Q,nil in the case that Q is a (not-necessarily proper)

pseudotree. Specific formulas can be found in Corollaries 6.10 and 6.12. We can also give the

following, more conceptual interpretation to our results. We say that an F1-representation

M is absolutely indecomposable if k⊗F1 M is indecomposable for every algebraically closed

field k.

Theorem H (Corollaries 6.10–6.12). Let Q be a (not-necessarily proper) pseudotree.

Then the following statements hold.7

1. Let Q be of bounded representation type over F1. Then Hnice
Q,nil has a generating set that

may be naturally identified with the absolutely indecomposable F1-representations of Q.

2. Let Q be a proper pseudotree with central cycle C. Then Hnice
Q,nil has a generating set

that may be naturally identified with the indecomposable F1-representations M such that

ResC(M) is absolutely indecomposable.

7 See [10, §5.2] for the notion of bounded representation type over F1.
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8 J. JUN AND A. SISTKO

§2. Preliminaries

2.1 Representations of quivers over F1

In this section, we review basic definitions and properties of representations of quivers

over F1. We first recall the definition of F1-vector spaces and F1-linear maps.

Definition 2.1. The category Vect(F1) of finite-dimensional vector spaces over F1

consists of the following:

1. Objects are finite pointed sets (V,0V ), called F1-vector spaces.

2. Morphisms are pointed functions ϕ : V → W such that ϕ|V−ϕ−1(0W ) is an injection,

called F1-linear maps.

For an F1-vector space V, the dimension of V, denoted by dimF1(V ), is the number of

nonzero elements of V. In other words, dimF1(V ) = |V |−1.

Definition 2.2. Let V and W be F1-vector spaces.

1. The direct sum V ⊕W is the following F1-vector space: V ⊕W := V �W/〈0V ∼ 0W 〉.
2. A unique F1-linear map 0 : V →W sending any element in V to 0W is said to be the

zero map.

3. W is said to be a subspace of V if W is a subset of V containing 0V and 0W = 0V .

4. For a subspace W of V, the quotient space V/W is defined as V − (W −{0V }).
5. For an F1-linear map ϕ : V → W , the kernel (resp. cokernel) of ϕ is defined to be

ker(ϕ) := ϕ−1(0W ) (resp. coker(ϕ) :=W/ϕ(V )).

Definition 2.3. A quiver Q is a finite directed graph, where we allow multiple arrows

and loops. To be precise, a quiver Q consists of a quadruple Q= (Q0,Q1, s, t) as follows:

1. Q0 (resp. Q1) is the finite set of vertices (resp. arrows).

2. s and t are functions

s, t :Q1 →Q0

assigning to each arrow in Q1 its source and target in Q0.

A quiver Q is connected if its underlying undirected graph is connected. A quiver is acyclic if

it does not contain any directed cycles. By a subquiver S of Q, we mean a quiver S = (S0,S1)

such that Si ⊆Qi for i= 0,1.

Example 2.4. For a nonnegative integer n, we let Ln be the quiver with one vertex

and n loops. L1 is called the Jordan quiver.

Throughout this paper, we will simply denote a quiver by Q and the underlying

undirected graph of a quiver Q by Q. We will also use the basic terminology of undirected

graphs to Q ; when we say some graph-theoretic property holds for Q, it means that it holds

for Q. For example, when we say Q is a tree, it means that Q is a tree.

Definition 2.5. Let S and Q be quivers.

1. A quiver map F : S →Q consists of a pair of functions

Fi : Si →Qi, i= 0,1,
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F1 -REPRESENTATIONS AND EULER CHARACTERISTICS 9

which satisfy the following conditions: for all α ∈ S1,

s(F1(α)) = F0(s(α)), t(F1(α)) = F0(t(α)).

2. A quiver map F is said to be injective (resp. surjective) if and only if F0 and F1 are

both injective (resp. surjective).

With the notion of quiver maps, we can identify a subquiver S of Q with the image of

the inclusion map S ↪→Q. A subquiver S is said to be full if for any u,v ∈ S0, any arrow α

in Q1 such that u= s(α) and v = t(α) (or u= t(α) and v = s(α)) is also in S1.

Definition 2.6. Let Q be a quiver with underlying graph G = Q. Recall that a walk

in G is a sequence of edges w = (e1, . . . , ed) such that ei and ei+1 share an endpoint. In

other words, it is a sequence of vertices (v1,v2, . . . ,vd,vd+1) together with a specification of

an edge ei between vi and vi+1 for all i≤ d. Let αi be the arrow in Q corresponding to the

edge ei of G. Define εi =+1 if s(αi) = vi and t(αi) = vi+1, and εi =−1 if s(αi) = vi+1 and

t(αi) = vi. Then we will write a walk of Q as follows:

w = αε1
1 · · ·αεd

d .

A path is a directed walk in the sense that all εi have the same sign.

Definition 2.7. Let Q be a quiver with underlying graph Q. Then Q is a 1-simplex,

whose 0-simplices can be identified with Q0 and whose 1-simplices can be identified with Q1.

We then obtain a chain complex

0→ ZQ1
∂−→ ZQ0 → 0,

where ZQ1 and ZQ0 denote the free abelian groups generated by arrows and vertices,

respectively, with ∂ defined via the formula ∂(α) = t(α)− s(α), for α ∈ Q1. The (integral)

cycle space is defined to be the first homology group H1(Q,Z) = ker(∂). Note that the cycle

space is a finitely generated free abelian group, and a basis for H1(Q,Z) is called a (integral)

cycle basis for Q. Note that the cycle space does not depend on the choice of orientation

of Q: indeed, the orientation functions simply as a device for writing elements of ker(∂) as

Z-linear combinations of 1-simplices.

Example 2.8. Consider the following quiver:

Q=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v2

v1 v4

v3

α1 α3

α2 α4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then, we obtain the following chain complex:

0→ Z4 ∂−→ Z4 → 0,
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10 J. JUN AND A. SISTKO

where ∂ is given by the following matrix:

∂ =

⎡
⎢⎢⎣

1 1 0 0

−1 0 −1 0

0 −1 0 −1

0 0 1 1

⎤
⎥⎥⎦ .

Then, ker(∂) is generated by

⎡
⎢⎢⎣

1

−1

−1

1

⎤
⎥⎥⎦, or (α1 −α2 −α3 +α4) corresponding to the unique

cycle of Q.

Definition 2.9. Let Q be a connected quiver. We say that Q is a pseudotree if

rank(H1(Q,Z)) ≤ 1. If Q is not a tree or an affine Dynkin quiver of type Ãn, we say

that Q is a proper pseudotree. Any proper pseudotree contains a unique subquiver C that

is an affine Dynkin quiver of type Ãn: we call C the central cycle of Q.

Definition 2.10. [27, Def. 4.1]. Let Q be a quiver.

1. A representation of Q over F1 (or an F1-representation of Q) is the collection of data

V= (Vi,fα) consisting of an F1-vector space Vi for each vertex i ∈Q0 and an F1-linear

map fα ∈Hom(Vs(α),Vt(α)) for each arrow α ∈Q1.

2. By a subrepresentation W = (Wi,gα) of V = (Vi,fα), we mean an F1-representation

such that each Wi is a subspace of Vi and gα is a restriction of fα. When W is a

subrepresentation of V, we write W≤ V.

Definition 2.11 [27, Def. 4.3]. Let Q be a quiver, and let V = (Vi,fα) be an

F1-representation of Q.

1. The dimension of V is defined to be the sum of dimensions of Vi:

dim(V) =
∑
i∈Q0

dimF1(Vi).

2. The dimension vector of V is an element of N|Q0|:

dim(V) = (dimF1(Vi))i∈Q0 .

An F1-representation V= (Vi,fα) is nilpotent if there exists a positive integer N such that

∀ n≥N and any path α1α2 . . .αn in Q (left-to-right in the order of traversal), one has

fαnfαn−1 · · ·fα1 = 0 (zeromap).

Definition 2.12. Let V=(Vi,fα) andW=(Wi,gα) be F1-representations of a quiverQ.

A morphism Φ : V → W is a collection of F1-linear maps {φi : Vi → Wi}i∈Q0 making the

following diagram commute:

Vs(α) Ws(α)

Vt(α) Wt(α)

φs(α)

fα gα

φt(α)

(2.1)
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We denote by Rep(Q,F1) the category whose objects are F1-representations of Q and whose

morphisms are defined as above. We let Rep(Q,F1)nil be the full subcategory of Rep(Q,F1)

consisting of nilpotent representations.

We note that each morphism Φ ∈Hom(V,W) has a kernel and cokernel obtained from a

kernel and cokernel at each vertex. Similarly, one obtains the notions of subrepresentations

and quotient representations. We refer the reader to [27, Def. 4.3] for details.

Remark 2.13. Recall that an F1-representation V of a quiver Q is indecomposable if V

cannot be written as a nontrivial direct sum of subrepresentations. In [27], Szczesny proves

that the Krull–Schmidt theorem holds for the category Rep(Q,F1). To be precise, any

F1-representation M can be written uniquely (up to permutation) as a finite direct sum of

indecomposable representations.

Let k be a field and Vect(k) be the category of finite-dimensional vector spaces over k.

Then, one may define “the base change functor” as follows:8

k⊗F1 − : Vect(F1)→Vect(k), (2.2)

where any F1-vector space V goes to the vector space whose basis is V −{0V }.
Note that representations of a quiver can be defined in a more categorical way. Let

Q be a quiver. One can consider a discrete category Q: objects are vertices of Q and

morphisms are directed paths. Then, a representation M of Q over F1 is nothing but a

functor M :Q→ Vect(F1). In particular, Rep(Q,F1) is equivalent to the functor category

Vect(F1)
Q. In fact, the same description holds for representations of Q over a field k.

Therefore, from the base-change functor k⊗F1 −, one has the following base-change functor,

which is faithful (but not full in general):

k⊗F1 − : Rep(Q,F1)→ Rep(Q,k), M →Mk. (2.3)

The base-change functor will be considered in §5 to compute Euler characteristic of quiver

Grassmannians associated with a class of quiver representations.

2.2 Hall algebras for Rep(Q,F1)

There are two (equivalent) ways to construct the Hall algebra HQ of Rep(Q,F1). The

first way is to appeal to some categorical interpretation of F1-representations of Q. As

we mentioned above, Rep(Q,F1) is equivalent to the functor category Vect(F1)
Q. Since

Vect(F1) is proto-exact in the sense of Dyckerhoff and Kapranov [5], where they also

prove that for a small category I, the functor category CI is proto-exact for a proto-exact

category C. The construction of HQ then follows from a more general construction of Hall

algebras in [5].

The second construction is to mimic the classical construction of the Hall algebra of

representations of Q over Fq. To be precise, let Iso(Q) be the set of isomorphism classes

8 Tom Zaslavsky suggested to use the term “basis functor” as it does not change bases. In F1-geometry,
the functor was first introduced to define the base change from an algebraic variety over F1 to an
algebraic variety over a field. For this reason (to be compatible with already existing convention), we
use “base-change functor.”
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12 J. JUN AND A. SISTKO

of objects in Rep(Q,F1). The Hall algebra HQ of Rep(Q,F1) has the following underlying

set:

HQ := {f : Iso(Q)→ C | f([M ]) = 0 for all but finitely many [M ].}. (2.4)

For each [M ]∈ Iso(Q), let δ[M ] be the delta function in HQ supported at [M ]. In particular,

we considerHQ as the vector space spanned by {δ[M ]}[M ]∈Iso(Q) over C. To ease the notation,

we will denote the delta function δ[M ] by [M ]. One defines the following multiplication on

the elements in Iso(Q):

[M ] · [N ] :=
∑

R∈Iso(Q)

aRM,N

aMaN
[R], (2.5)

where aM = |Aut(M)| and aRM,N is the number of “short exact sequences” of the form:9

0→N →R→M → 0.

Then, one can easily check the following equality as in the classical case:

aRM,N

aMaN
= |{L≤R | L�N and R/L�M}|.

By linearly extending the multiplication (2.5) to HQ, we obtain an associative algebra HQ

over C. Moreover, one may check that HQ is also equipped with the coproduct defined as

follows:

Δ :HQ →HQ⊗CHQ, Δ(f)([M ], [N ]) = f([M ⊕N ]). (2.6)

With (2.5) and (2.6), Szczesny proves various interesting results. We refer the interested

reader to [27, §6] for details.

2.3 Coefficient quivers

Coefficient quivers10 were first introduced by Ringel [24] as a combinatorial gadget to

study representations of quivers.

Let V = (Vi,fα) be a representation of a quiver Q over C. We fix a basis B(i) for each

vector space i and let B =
⊔

i∈Q0
B(i), that is, B is a basis for the vector space

⊕
i∈Q0

Vi.

We simply call B a basis for V.

Definition 2.14. The coefficient quiver Q̃= Q̃(V,B) is a quiver defined as follows:

1. Q̃0 =B.

2. For every arrow α : v → w of Q and every element x ∈B(v), if we can write

fα(x) =
∑

cbb, b ∈B(w), cb 	= 0,

then we draw an arrow from x to b ∈B(w) in Q̃, and label it with α.

The coefficient quiver depends on a choice of a basis for a representation V of Q.

9 As in the classical case, by a short exact sequence, we mean that ker = coker.
10 We emphasize that even if we are using the same terminology “coefficient quivers,” our notion of

coefficient quivers is different from that of Ringel.
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Example 2.15.

Q=

⎛
⎜⎜⎝

v1 v2

v3

α β

γ

⎞
⎟⎟⎠ .

Consider the following representation V of Q :

V1 = C2, V2 = C, V3 = C2.

fα =

[
1 0

0 0

]
, fβ =

[
0

1

]
, fγ =

[
0 −1

0 0

]
.

Let us fix bases: B1 = {e1, e2}, B2 = {1}, and B3 = {e1 + e2, e2}. Then, we obtain the

following coefficient quiver.

• • •

• •

α
α

β

γ
γ

γ
γ

Let us change bases: B′
1 = {e1 − e2, e2}, B′

2 = 1, and B′
3 = {e1, e2}. Then, we have the

following coefficient quiver:

• • •

• •

α β

γ

§3. The slice category over Q and Rep(Q,F1)

A notion of windings of quivers was first introduced by Crawley-Boevey [4] and Krause

[15] to define morphisms between tree and band modules. Later, Haupt [7, §2.3] generalized
Krause’s definition of windings as follows.11 Let Q and S be quivers. A winding of quivers

F : S →Q is a morphisms of quivers

F0 : S0 →Q0, F1 : S1 →Q1,

satisfying the following two conditions:

1. If α,β ∈ S1 with α 	= β and s(α) = s(β), then F1(α) 	= F1(β).

2. If α,β ∈ S1 with α 	= β and t(α) = t(β), then F1(α) 	= F1(β).

For a winding map F : S →Q, it is easy to check that for an S -representation V over a

field k, the pushforward F∗(V ) is a Q-representation over k.12 In particular, F∗(1S) is said

to be a tree module if S is a tree, where 1S is the representation of S assigning k to each

11 Crawley-Boevey considered tree modules and Krause considered tree and band modules, and they have
one more condition. For instance, Krause [15] has an extra condition (W2).

12 See Remark 3.9 for the definition of the pushforward.
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vertex and the identity map to each arrow. The following lemma shows that the same is

true for F1-representations.

Lemma 3.1. Let F : S → Q be a winding map of quivers. For each v ∈ Q0, let Mv =

F−1(v)∪{0}. For each α ∈Q1, consider the following function: let v = s(α), w = t(α),

α̃ :Mv →Mw, x �→
{
y, if ∃β ∈ S1 such that s(β) = x, t(β) = y, F (β) = α,

0, otherwise.
(3.1)

Then, (Mv, α̃)v∈Q0,α∈Q1 is an F1-representation of Q. By abuse of notation, we denote this

F1-representation of Q by F∗(S).

Proof. We only have to check that α̃ is a well-defined F1-linear map. In fact, suppose

that we have β,β′ ∈ S1 and x ∈Mv such that s(β) = s(β′) = x and F (β) = F (β′) = α ∈Q1.

Since F is a winding map, this implies that β = β′, and hence α̃ is well defined.

Next, suppose that α̃(x) = α̃(z) = e 	= 0. In other words, there exist βx,βz ∈ S1 such that

s(βx) = x, s(βz) = z, t(βx) = e= t(βz), F (βx) = F (βz) = α.

But, again since F is a winding map, this implies that βx = βz, showing that x= z. Hence,

α̃ is an F1-linear map.

Lemma 3.2. Let Q be a quiver, and let V = (Mv,fα) be an F1-representation of Q.

Then, there exists a winding map of quivers F : S →Q such that F∗(S)� V.

Proof. This construction is essentially the same as the one given in [10], but we include

it here for completeness. We first define the set of vertices of a quiver S as follows:

S0 :=
⊔

v∈Q0

Mv \{0}.

For each x,y ∈ S0, we draw an arrow βα : x→ y in S1 if and only if x ∈Mv, y ∈Mw and

there exist α ∈Q1 and fα such that s(α) = v, t(α) = w, and fα(x) = y. Note that if there

is another α′ ∈Q1 with the same property, then we draw two different arrows βα and βα′ .

Next, we define a winding map F : S → Q as follows: for each xv ∈ S0, xv ∈ Mv \ {0}
for some v ∈ Q0, we let F (xv) = v. We send each arrow βα ∈ S1 to α. One can easily

check that F is a quiver map. To check the winding condition, suppose βα 	= βα′ ∈ S1 and

s(βα) = s(βα′). If t(βα) = t(βα′), then βα 	= βα′ implies F (βα) = α 	= α′ = F (βα′), since

there is at most one α-labeled arrow between any two vertices of S. Now, suppose that

t(βα) 	= t(βα′). Since t(βα) = fα(s(βα)) and t(βα′) = fα′(s(βα′)), we must have α 	= α′,

which implies F (βα) 	= F (βα′) again. Hence, the first condition for F to be a winding has

been verified. The second condition is similar.

To define the category of quivers over a quiver, we first recall some definitions. Let T

be a full subquiver of S. We say that the T0 is predecessor-closed if the following condition

holds: for any oriented path in S from v to w if w ∈ T0, then v ∈ T0. Analogously T0 is

successor-closed if the following condition holds: for any oriented path in S from v to w, if

v ∈ T0, then w ∈ T0.

Remark 3.3. We caution the reader that the authors use the opposite convention for

successor- and predecessor-closed subsets in [10].
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Let Q be a fixed quiver. Let CQ be the category whose objects are windings of quivers

F : S →Q. A morphism φ : (S,F )→ (S′,F ′) is an ordered triple φ= (Uφ,Dφ, cφ), where:

1. Uφ is a full subquiver of S whose vertex set is predecessor-closed,

2. Dφ is a full subquiver of S′ whose vertex set is successor-closed, and

3. cφ : Uφ →Dφ is a quiver isomorphism such that the diagram below commutes.

Uφ Dφ

Q

cφ

F |Uφ F ′|Dφ

(3.2)

If (S,F )
φ−→ (S′,F ′) and (S′,F ′)

ψ−→ (S′′,F ′′) are two morphisms in CQ, their composition

(S,F )
ψ◦φ−−→ (S′′,F ′′) is the ordered triple

ψ ◦φ= (Uψ◦φ,Dψ◦φ, cψ◦φ) =
(
c−1
φ (Uψ ∩Dφ) , cψ (Uψ ∩Dφ) , cψ ◦ cφ

)
. (3.3)

Of course, the composition cψ ◦ cφ is understood to be restricted to c−1
φ (Uψ ∩Dφ). Loosely,

one can think of composition as gluing the top of S to the bottom of S′ in a way that respects

the mappings F and F ′. One can check CQ indeed satisfies the axioms of a category.

Let φ : (S,F )→ (S′,F ′) be a morphism in CQ. Then, φ induces a morphism φ∗ : F∗(S)→
F ′
∗(S

′) of F1-representations of Q as follows: for each v ∈Q0, we define the map

(φ∗)v : F∗(S)v → F ′
∗(S

′)v (3.4)

as

(φ∗)v(x) =

{
cφ(x), if x ∈ Uφ∩F∗(S)v,

0, otherwise.
(3.5)

Since cφ is an isomorphism, clearly (φ∗)v is an F1-linear map. Next, let α∈Q1 with v= s(α)

and w = t(α). Suppose first that x 	∈ Uφ∩F∗(S)v, in particular, (φ∗)v(x) = 0. Since x 	∈ Uφ

and Uφ is predecessor-closed, we have that α̃(x) 	∈ Uφ, where α̃ is a map defined in (3.1).

Hence, in this case, we have

α̃(φ∗)v(x) = (φ∗)wα̃(x). (3.6)

Now, suppose that x ∈ Uφ∩F∗(S)v and y = cφ(x). If α̃(y) = 0, then α̃(x) 	∈ Uφ, since cφ is

an isomorphism. In particular, (φ∗)wα̃(x) = 0, and we have (3.6) in this case. Finally, if

α̃(y) = z, then z ∈ Dφ since y ∈ Dφ and it is successor-closed. In particular, there exists an

arrow β in Dφ such that s(β) = y and t(β) = z. Since cφ is an isomorphism, this implies that

α̃(x) ∈ Uφ and (φ∗)wα̃(x) = z, showing that (3.6) is valid in this case as well. Therefore, the

following diagram commutes and φ∗ is indeed a morphism of F1-representations.

(F∗(S))v (F ′
∗(S

′))v

(F∗(S))w (F ′
∗(S

′))w

(φ∗)v

α̃ α̃

(φ∗)w

(3.7)
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Remark 3.4. Before we proceed to prove an equivalence between CQ and Rep(Q,F1),

we remark the following.

1. Our definition for morphisms in CQ generalizes the notion of maps between tree modules

in [4, §2]. We also note that the notion of admissible triple in [15] is similar to our

definition in the sense that to define a morphism φ : (S,F )→ (S′,F ′), we first assume

an isomorphism of a subquiver of S and a subquiver of S′ satisfying certain conditions,

whereas in [15], this is done by using “connecting triple” rather than directly identifying

subquivers. For details, see [15, pp. 189–191].

2. The notion of tree modules in [4, 15] is more restrictive than the notion of tree modules

given in [24] due to the “winding” conditions imposed on quiver maps.

Lemma 3.5. For an object F : S →Q in CQ, we let F(S) be the F1-representation of Q

as in Lemma 3.1. For a morphism φ : (S,F )→ (S′,F ), we let F(φ) be the morphism between

F(S) and,F(S′) which we described above. Then, F : CQ → Rep(Q,F1) defines a functor.

Proof. One can easily check that an identity map φ : (S,F )→ (S,F ) in CQ maps to the

identity map in Rep(Q,F1) since in this case Uφ =Dφ = S and cφ is the identity map.

Next, suppose that φ : (S,F ) → (S′,F ′) and ψ : (S′,F ′) → (S′′,F ′′) are two morphisms

in CQ. We want to check that F(ψφ) = F(ψ)F(φ). With the same notation as in (3.4) and

(3.5), we only have to show that

((ψφ)∗)v = ((ψ)∗)v((φ)∗)v. (3.8)

But, this is clear from (3.3).

Lemma 3.6. Let S = (S,F ),S′ = (S′,F ′) be objects in CQ, φ : F∗(S) → F ′
∗(S

′) a

morphism in Rep(Q,F1), and Uφ the full subquiver of S with the vertex set S0 \ ker(φ).
Then, φ induces a quiver map f : Uφ → S′ such that f(Uφ) is successor-closed.

Proof. This follows from Construction 3.9 and the proof of Lemma 3.10 in [10].

Proposition 3.7. The functor F : CQ → Rep(Q,F1) is an equivalence of categories.

This restricts to an equivalence between Rep(Q,F1)nil and the full subcategory of CQ whose

objects are windings F : S →Q with S acyclic.

Proof. Lemmas 3.2 and 3.5 show that F is an essentially surjective functor, and hence

we only have to prove that F is fully faithful. But this is just Lemma 3.10 of [10].13

In what follows, we often denote the winding corresponding to an F1-representation M

of a quiver Q by c : ΓM →Q. We will simply call ΓM the coefficient quiver of M.

The following example is taken from [7] and is restated in terms of F1-representation.

Example 3.8 ([7, Exam. 2.5]). Let F : S → Q be an object in CQ described in the

following picture:

F : S =

⎛
⎜⎜⎜⎜⎝

v1 v2 v3

v3′ v3′′

α β
γ

γ′

⎞
⎟⎟⎟⎟⎠−→Q=

⎛
⎜⎜⎝

v1 v2

v3′

α β

γ

⎞
⎟⎟⎠ .

13 An explicit construction showing that the functor is full is recalled in the proof of Lemma 3.6.
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Then, 1S is the following representation of S over a field k :

1S =

⎛
⎜⎜⎜⎜⎝

k k k

k k

id
id

id

id

⎞
⎟⎟⎟⎟⎠ .

Note that by definition, F∗(1S) is a tree module, given as follows:

F∗(1S) =

⎛
⎜⎜⎜⎝

k k

k3
A

B

C

⎞
⎟⎟⎟⎠ ,

where

A=

⎡
⎣01
0

⎤
⎦ , B =

⎡
⎣01
0

⎤
⎦ , C =

⎡
⎣0 0 0

1 0 0

0 1 0

⎤
⎦ ,

Now, we view S as the coefficient quiver of an F1-representation. The F1-representation

V= F∗(S) of Q is the following: at each vertex of Q, we have

Mv1 = {0,v1}, Mv2 = {0,v2}, Mv3 = {0,v3,v3′ ,v3′′}.

F1-linear maps between vertices are given as follows:

α̃ :Mv1 →Mv3 , v1 �→ v3′ ,

β̃ :Mv2 →Mv3 , v2 �→ v3′ ,

γ̃ :Mv3 →Mv3 , v3 �→ v3′ , v3′ �→ v3′′ , v3′′ �→ 0.

One can easily see that VC = F∗(1S).

Now, we depict the corresponding coefficient quiver ΓV for V. First, we consider the

following coloring:

.

We let α in green, β in purple, and γ in black. Then, the coefficient quiver ΓV is as follows:

Remark 3.9. Let f : S →Q be a quiver map (without winding condition), and let k be

a field. The map f induces a functor (pushforward)

f∗ : Rep(S,k)→ Rep(Q,k) (3.9)
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18 J. JUN AND A. SISTKO

which we briefly recall here. We refer the reader to [13], [14] for more details. For a

representation V of S over k, the pushforward f∗(V ) is defined as follows:

f∗(V )v :=
⊕

w∈f−1(v)

Vw, v ∈Q0, f∗(V )α =
∑

β∈f−1(α)

Vβ, β ∈Q1. (3.10)

Recall that by the identity representation 1S of S, we mean a representation of S over k

consisting of one-dimensional vector space at each vertex and identity map at each arrow.

In particular, each quiver map f : S →Q defines a representation of Q, namely f∗(1S).

Let DQ be the category whose objects are quiver maps f : Q′ → Q (without winding

condition) and morphisms are the same as CQ. Then, we have a faithful inclusion functor

i : CQ →DQ.

For each f : S →Q in DQ, we let 1(S) = f∗(1S). For a morphism φ : S → S′ in DQ, where

S (resp. S′) means f : S →Q (resp. f ′ : S′ →Q). In fact, the same definition as in (3.4) and

(3.5) can be used to define a functor:

1 :DQ → Rep(Q,k), (f : S →Q) �→ f∗(1S).

From the definition, one can easily check that the functor 1 is faithful. To summarize, we

have the following commutative diagram of categories.

(3.11)

Definition 3.10. Let Q be a quiver. An F1-representation M is called a tree module

if ΓM is a tree. This is equivalent to M ⊗F1 k
∼= f∗(1S) with f : S →Q a winding and S a

tree. M will be called an F1-band module if the coefficient quiver of M is an affine Dynkin

quiver of type Ã.

Remark 3.11. Let M be an F1-band. Then, ΓM is connected, so M is always

indecomposable as an F1-representation. However, since we do not require that the

associated winding map cM : ΓM → Q is primitive (see Definition 5.19), M ⊗F1 k may be

decomposable. If M is an F1-band module and cM is primitive, then M ⊗F1 k is a band

module in the usual sense, but the converse does not generally hold.

§4. Gradings on representations

In [1], Cerulli Irelli proved that when a quiver representation over C satisfies certain

conditions,14 then one can compute the Euler characteristics of quiver Grassmannians for

some special classes of quivers in a purely combinatorial way. Later, in [7], Haupt generalized

Cerulli Irelli’s results by introducing the notion of a grading on a representation of Q. The

following appear as Definitions 4.1 and 4.2 of [7].

Definition 4.1 (Haupt). LetM be an F1-representation of Q, and let (Γ, c) := (ΓM , cM )

denote the associated coefficient quiver. By a grading of M, we mean a map ∂ : Γ0 → Z.

14 To be precise, Cerulli Irelli considered the coefficient quiver of a representation in a fixed basis.
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Suppose that ∂1, . . . ,∂n and ∂ are gradings for M. Suppose further that for any two arrows

β,β′ ∈ Γ1, the equalities

∂i(s(β)) = ∂i(s(β
′)), i= 1, . . . ,n, (4.1)

∂i(t(β)) = ∂i(t(β
′)), i= 1, . . . ,n, (4.2)

c(β) = c(β′) (4.3)

imply

∂(t(β))−∂(s(β)) = ∂(t(β′))−∂(s(β′)). (4.4)

Then, we say that ∂ is a nice(∂1, . . . ,∂n)-grading. A nice ∅-grading (or nice grading for

short) is a grading such that c(β) = c(β′) implies (4.4).

Remark 4.2. Haupt’s original definition applies to representations over fields, where it

is necessary to first specify a basis for M. Since representations over F1 have a unique basis,

the definition above is unambiguous. In other words, a nice grading for an F1-representation

M is the same thing as a nice grading for MC with respect to the basis M \{0}, and so on.

Remark 4.3. An F1-representation M is completely determined by its associated

winding map cM . Hence, we will use the terms “nice grading for M ” and “nice grading for

cM : ΓM →Q” interchangeably. From Proposition 3.7, if c : Γ→Q is a winding, then there is

a unique (up to isomorphism) F1-representation of Q, call it M, such that (cM ,ΓM ) = (c,Γ).

Hence, we can also discuss a nice grading for a general winding, without explicit reference

to its associated representation.

Definition 4.4. Let F : S →Q be a winding, and let ∂ : S0 → Z be a nice grading. If

β ∈ S1 with F (β) = α, define Δ∂
α = ∂(t(β))−∂(s(β)).15 If ∂ is understood from context, we

will abbreviate Δ∂
α =Δα. We say that ∂ is:

1. nontrivial if Δα 	= 0 for some α ∈Q1,

2. non-degenerate if Δα 	= 0 for all α ∈Q1, and

3. positive (resp. negative) if Δα > 0 (resp. Δα < 0) for all α ∈Q1.

More generally, suppose that ∂ is a (∂1, . . . ,∂n)-nice grading. If β ∈ S1 with

F1(β) = α, (4.5)

(∂1(s(β)), . . . ,∂n(s(β))) = s ∈ Zn, (4.6)

(∂1(t(β)), . . . ,∂n(t(β))) = t ∈ Zn, (4.7)

then we define

Δ∂
α,s,t := ∂(t(β))−∂(s(β)). (4.8)

As before, when ∂ is understood, we abbreviate Δ∂
α,s,t = Δα,s,t. The notions of

nontrivial/non-degenerate/positive/negative (∂1, . . . ,∂n)-nice gradings are defined in the

obvious manner.

15 Δ∂
α is well defined since ∂ is a nice grading.
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20 J. JUN AND A. SISTKO

As in [7], we will be interested in building sequences of nice gradings which have certain

desirable properties. The definition below helps us formalize this process.

Definition 4.5. Let c : Γ → Q be a winding. A nice sequence for c is a sequence

∂ = (∂i)
∞
i=0 of maps Γ0 → Z such that:

1. ∂0 is a nice grading.

2. For all i > 0, ∂i is a (∂0, . . . ,∂i−1)-nice grading.

Note that any finite sequence {∂i}ni=1 satisfying the conditions above can be extended to a

nice sequence ∂ = {∂i}∞i=1 by defining ∂i = 0 for i > n (such a completion is not unique).

Definition 4.6. Let c : Γ→ Q be a winding, and let (∂i) be a nice sequence for c. If

x and y are distinct vertices of Γ, we say that (∂i) distinguishes x and y if there exists an

index i ∈ N (depending on x and y) such that ∂i(x) 	= ∂i(y). We say that (∂i) distinguishes

vertices if it distinguishes each pair of distinct vertices in Γ. Of course, if (∂i) distinguishes

vertices and Γ has finitely many vertices, then there exists an N ∈N such that for all distinct

x and y, there exists an i≤N satisfying ∂i(x) 	= ∂i(y).

Example 4.7. LetQ=L2 with arrow setQ1 = {α1,α2}. LetM be the F1-representation

whose coefficient quiver is the following:

. (4.9)

where the winding c : ΓM →Q sends the blue arrows (resp. red arrows) to α1 (resp. α2).

1. One can easily check that the following is a nice grading ∂0 on ΓM :

. (4.10)

where the numbers on the arrows are ∂0(t(β))−∂0(s(β)) for each arrow β of ΓM .

2. The following is a ∂0-nice grading ∂1 on M that is not nice:

. (4.11)

Note that with the grading ∂0 as in (4.10), we only have to consider condition (4.3)

when assigning images to the vertices. When building a ∂0-nice grading as in (4.11), no

two arrows satisfy conditions (4.1)–(4.3) simultaneously, so that any integer function on

the vertices is permissible. Note that the nice sequence ∂ = (∂0,∂1,0,0, . . .) distinguishes

vertices.

Example 4.8. Let Q=L3 with arrow set Q1 = {α1,α2,α3}. In the free group generated

by the arrows of Q, set p to be the element

p= α1[α2,α3]α
−1
1 [α3,α2]α1[α3,α2]α

−1
1 [α2,α3].
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Here, [γ,δ] = γδγ−1δ−1 is the usual commutator. We may consider p to be a walk in Q,

defining an F1-representation M whose coefficient quiver is the following:

. (4.12)

Using the notational conventions of the previous example, we can define a nice grading ∂0
on M as follows:

(4.13)

We now define a ∂0-nice grading which is not itself nice. Informally, the conditions (4.1)–

(4.3) on a ∂0-nice grading ∂1 state that whenever two arrows with the same color start at

the same number and end at the same number, their increments from the source to the

target must be equal. Clearly, all four of the α1-colored arrows require the same increment.

However, one can check that each remaining arrow is only required to share an increment

with one other arrow. For instance, the following defines a ∂0-nice grading ∂1:

(4.14)
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The function ∂1 still fails to distinguish several pairs of vertices, for instance, the first and

last vertices of the walk. However, note that any function now qualifies as a (∂0,∂1)-nice

grading. For instance, there are exactly two arrows that start at 2 and end at 3, but one is

α2-colored and the other is α3-colored: it follows that they violate Condition (4.3), so their

increments can be unequal. In particular, we may choose ∂2 to be an injective integer-valued

function on the vertices of ΓM . Then, ∂2 will distinguish each pair of vertices of ΓM , and

so the nice sequence (∂0,∂1,∂2,0,0,0, . . .) distinguishes vertices. Note that since ∂0 and ∂1
distinguish some pairs of vertices, there are non-injective choices for ∂2 which still produce a

nice sequence distinguishing vertices. However, we will show in Example 5.6 that no choice

of ∂0 and ∂1 is enough to distinguish all vertices of ΓM : we say that the nice length of M

is equal to 2.

Remark 4.9. Let M be an F1-representation of Q and F = (δi)i≥0 a nice sequence for

M which is finite, in the sense that there exists an n ∈ N such that δi = 0 for all i > n. Let

(∂i)i≥0 be any other nice sequence for M. Then, we can “weave” (δi) and (∂i) together to

create a new nice sequence (∂′
i)i≥0 as follows:

1. ∂′
i = δi for 0≤ i≤ n.

2. ∂′
i = ∂i−n−1 for i > n.

This is due to the following elementary observation: for any sequence of gradings {γ1, . . . ,γn}
on M and any subset S ⊆ {γ1, . . . ,γn} (possibly empty), an S -nice grading (defined in the

obvious way) is also (γ1, . . . ,γn)-nice.

In the following, we construct the universal i-nice gradings of a winding c : Γ→Q under

which one obtains all nice sequences (Theorem 4.19).

Construction 4.10 (Universal nice grading). Let c : Γ → Q be an indecomposable

winding (i.e., Γ is connected), with M the associated F1-representation. Then, we have a

sequence of maps

H1(Γ,Z)
H1(c)−−−→H1(Q,Z)

ι−→ ZQ1, (4.15)

where ι is the inclusion map.16 Set VM :=G/t(G), where G :=ZQ1/ Im(ι◦H1(c)) = coker(ι◦
H1(c)) and t(G) is the torsion subgroup of G. Since G is a finitely generated abelian group,

G/t(G) is a direct summand of G : by abuse of notation, we will use the coset notation of G

to denote elements of VM . Loosely, one can think of the elements of VM as formal Z-linear

combinations of arrows of Q subject to certain linear equations.

Fix a vertex b ∈ Γ0 which we call the basepoint. To each vertex v ∈ Γ0, we assign an

element X(M)v ∈ VM as follows:

1. If v = b, then X(M)v = 0.

2. If v 	= b, pick a walk p= αε1
1 · · ·αεd

d from b to v for εj ∈ {1,−1}. This is possible because

M is indecomposable. Then, set

X(M)v =
∑
i

εic(αi)+Im(ι◦H1(c)).

16 The underlying graph of Q is a 1-simplex with associated chain complex 0 → ZQ1
δ−→ ZQ0 → 0, and

H1(Q,Z) = ker(δ). Then, ι is the inclusion ker(δ)⊆ ZQ1.
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Note that X(M)v does not depend on the choice of walk. The function

X(M) : Γ0 →VM

v �→X(M)v

will be called the universal nice grading on M. The image X(M)v of v is the nice variable

associated with v. When there is no chance of confusion, we will denote X(M)v simply

as Xv.

Construction 4.11 (Iterative step). Let c : Γ → Q be an indecomposable winding,

with M the associated F1-representation. Let b ∈ Γ0 be a basepoint, and let X =X(M) be

the corresponding universal nice grading on M. We define a new quiver Q+ = Q+(M) as

follows. The vertices of Q+ are

Q+
0 = {(Xv, c(v)) | v ∈ Γ0}.

The arrows of Q+ are

Q+
1 = {(Xs(α),Xt(α), c(α)) | α ∈ Γ1}.

To ease notation, we define α+ := (Xs(α),Xt(α), c(α)). Then the source and target of α+ are

as follows:

s(α+) = (Xs(α), c(s(α))),

t(α+) = (Xt(α), c(t(α))).

Note that Q+ is connected. We have quiver maps

Γ
c+−→Q+ c−−−→Q

defined as follows: c+ is the unique quiver morphism which satisfies c+(α) = α+ for all

α ∈ Γ1. Since c+(α) = c+(β) implies c(α) = c(β), it is clear that c+ is a winding. Also, note

that c+ is surjective on arrows, so that any arrow in Q+ can be written as α+ for some

α ∈ Γ1. Then c− is defined to be the unique quiver morphism satisfying c−(α+) = c(α) for

all α ∈ Γ1. Note that c= c−c+.

It turns out that c− is also a winding, which we can see as follows. By the surjectivity of

c+ on arrows, it suffices to show that whenever α,β ∈ Γ1 satisfy c(α) = c(β) and α+ 	= β+,

they also satisfy s(α+) 	= s(β+) and t(α+) 	= t(β+). If s(α+) = s(β+), then

t(α+) = (Xt(α), c(t(α)))

= (Xs(α)+ c(α), c(t(α)))

= (Xs(β)+ c(β), c(t(β)))

= t(β+).

In turn, this implies α+ = (Xs(α),Xt(α), c(α)) = (Xs(β),Xt(β), c(β)) = β+, contrary to

hypothesis. The possibility t(α+) = t(β+) can be ruled out in a similar fashion.

Construction 4.12 (Universal i -nice grading). Let w : Γ→Q be an indecomposable

winding, with R the corresponding F1-representation of Q.17 Let b∈Γ0 be a basepoint, with

17 The change of notation is purely cosmetic, to allow us to think of c and M in Constructions 4.10 and
4.11 as “variables” into which we can plug other windings/representations.
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X =X(R) the universal nice grading of R as in Construction 4.10. Then, Construction 4.11

yields a new indecomposable winding w+ : Γ → Q+, whose universal nice grading can be

constructed with the same basepoint b. Iterating this process indefinitely yields a sequence

of maps that will play a fundamental role in proving the existence (or non-existence) of nice

sequences distinguishing the vertices of a given F1-representation. More precisely, consider

the following algorithm:

1. Set σ(0) = w, M (0) =R, Q(0) =Q, and τ (0) = idQ (the identity quiver morphism of Q).

2. Suppose that for a fixed i ∈ N, an indecomposable winding σ(i) : Γ → Q(i) with

corresponding F1-representation M (i) has been defined. Apply Construction 4.10 with

c= σ(i) and M =M (i) to define

V(i)
R := VM(i) ,

X(R)(i) :=X(M (i)).

3. Use Construction 4.11 with c= σ(i) and M =M (i) to define

Q(i+1) :=Q(i)+,

σ(i+1) := σ(i)+,

τ (i+1) := σ(i)−.

Furthermore, define M (i+1) to be the indecomposable F1-representation corresponding

to σ(i+1).

4. Replace i with i+1 and go back to Step 2.

When no confusion will arise, we abbreviate X(R)(i) to X(i). The image of v ∈ Γ0 under

X(i) will be denoted X
(i)
v . The function

X(i) : Γ0 →V(i)
R

is called the universal i-nice grading of R. Note that the universal 0-nice grading of R is

simply the universal nice grading of R. To summarize, this algorithm takes the data (w,R,b)

and constructs each of the following (in no particular order):

1. A sequence of finitely generated torsion free abelian groups: V(0)
R ,V(1)

R ,V(2)
R , . . ..

2. A function X(i) : Γ0 →V(i)
R for each i ∈ N, called the universal i -nice grading of R.

3. A sequence of connected quivers Q=Q(0),Q(1),Q(2), . . .. We also define Q(−1) :=Q for

what follows below.

4. An indecomposable winding σ(i) : Γ→Q(i) for each i ∈ N, with σ(0) = w.

5. A winding τ (i) :Q(i) →Q(i−1) for each i ∈ N, satisfying σ(i) = τ (i+1)σ(i+1) for all i.

Remark 4.13. The quiver Q+ in Construction 4.11 is adapted directly from the quiver

Q′ defined in Proposition 6.1 of [7]. The key difference is that Q′ depends on a specific nice

grading, whereas Q+ only depends on the universal nice grading defined in Construction

4.10. This means that Q+ is a general enough object to study the existence of nice gradings

for the associated representation, as we shall see in Theorem 4.19.

Remark 4.14. Use the notation of Construction 4.12. We have now recursively defined

X(i), Q(i), σ(i) : Γ → Q(i), and τ (i) : Q(i) → Q(i−1) for all i ≥ 0, assuming that we define

Q(−1) :=Q. For all v ∈ Γ0, α ∈ Γ1, and i ∈N, define v(i) = σ(i)(v) and α(i) = σ(i)(α). Then,
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note that for i ≥ 1 and α ∈ Γ1, τ
(i) : Q(i) → Q(i−1) satisfies τ (i)(α(i)) = α(i−1). Then, we

have the following elementary properties:

1. σ(i) = τ (i+1)σ(i+1), for all i≥ 0.

2. c= τ (1) · · ·τ (i)σ(i) for all i≥ 1.

3. The map H1(τ
(i)) : H1(Q

(i),Z) → H1(Q
(i−1),Z) induces a map V(i)

M → V(i−1)
M (still

denoted H1(τ
(i))) that satisfies H1(τ

(i))(X
(i)
v ) =X

(i−1)
v for all v ∈ Γ0 and i≥ 1.

4. If α,β ∈ Γ1 satisfy α(k) = β(k) for some k ≥ 1, then

c(α) = c(β),

X
(k−1)
s(α) =X

(k−1)
s(β) ,

X
(k−1)
t(α) =X

(k−1)
t(β)

by the definition of Q(k). Applying the maps H1(τ
(i)) for 0≤ i < k implies that

X
(i)
s(α) =X

(i)
s(β),

X
(i)
t(α) =X

(i)
t(β),

for all 0≤ i < k.

Example 4.15. Let us compute the i -nice variables for Example 4.7. To begin, let us

label the vertices and arrows of Γ := ΓM as follows:

where the coloring map c : Γ→ L2 is understood to satisfy c(βi) = c(γi) = αi for all i= 1,2.

We will choose v1 as a basepoint throughout. Since Γ is a tree, H1(Γ,Z) = 0 and V(0)
M

∼=
Zα1⊕Zα2. Hence, X

(0) is the function

X(0) : Γ0 →V(0)
M⎛

⎜⎜⎜⎜⎝
v1
v2
v3
v4
v5

⎞
⎟⎟⎟⎟⎠ �→

⎛
⎜⎜⎜⎜⎝

0

α1

α1+α2

α2

0

⎞
⎟⎟⎟⎟⎠ .

Then, the arrows of Q(1) are described as follows:

β
(1)
1 = (0,α1,α1),

β
(1)
2 = (α1,α1+α2,α2),

γ
(1)
1 = (α2,α1+α2,α1),

γ
(1)
2 = (0,α2,α2).

https://doi.org/10.1017/nmj.2023.37 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.37


26 J. JUN AND A. SISTKO

Note that σ(1) : Γ→Q(1) is injective on arrows, so Q(1) is the quiver:

Q(1) =

v
(1)
2

v
(1)
1 v

(1)
3

v
(1)
4

β
(1)
2β

(1)
1

γ
(1)
2 γ

(1)
1

It follows that V(1)
M = Zβ

(1)
1 ⊕Zβ

(1)
2 ⊕Zγ

(1)
1 ⊕Zγ

(1)
2

∼= Z4, and X(1) is the function

X(1) : Γ0 →V(1)
M

⎛
⎜⎜⎜⎜⎝

v1
v2
v3
v4
v5

⎞
⎟⎟⎟⎟⎠ �→

⎛
⎜⎜⎜⎜⎜⎝

0

β
(1)
1

β
(1)
1 +β

(1)
2

β
(1)
1 +β

(1)
2 −γ

(1)
1

β
(1)
1 +β

(1)
2 −γ

(1)
1 −γ

(1)
2

⎞
⎟⎟⎟⎟⎟⎠ .

A similar description holds for all i≥ 2. For all such i, we have V(i)
M =Zβ

(i)
1 ⊕Zβ

(i)
2 ⊕Zγ

(i)
1 ⊕

Zγ
(i)
2

∼= Z4, and X(i) is the function

X(i) : Γ0 →V(i)
M

⎛
⎜⎜⎜⎜⎝

v1
v2
v3
v4
v5

⎞
⎟⎟⎟⎟⎠ �→

⎛
⎜⎜⎜⎜⎜⎝

0

β
(i)
1

β
(i)
1 +β

(i)
2

β
(i)
1 +β

(i)
2 −γ

(i)
1

β
(i)
1 +β

(i)
2 −γ

(i)
1 −γ

(i)
2

⎞
⎟⎟⎟⎟⎟⎠ .

It will turn out that such behavior is typical whenever Γ is a tree.

Example 4.16. Let Q = L2, and let M be the representation with the following

coefficient quiver:

Here, the winding c : Γ → L2 is understood to satisfy c(βi) = c(γi) = αi for i = 1,2. We

choose v1 to be the basepoint throughout. Note that Im(ι◦H1(c)) = Z(2α1−2α2), and so

V(0)
M is the torsion-free quotient of Zα1⊕Zα2

〈2(α1−α2)〉
∼= Z⊕Z2. Thus, V(0)

M
∼= Z, and we will denote

the generator corresponding to the coset of α1 by α. The 0-nice variables are then described

via the function
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X(0) : Γ0 →V(0)
M⎛

⎜⎜⎝
v1
v2
v3
v4

⎞
⎟⎟⎠ �→

⎛
⎜⎜⎝

0

α

0

α

⎞
⎟⎟⎠ .

It follows that

Q(1) = (0,•) (α,•),

β
(1)
1 =γ

(1)
1

β
(1)
2 =γ

(1)
2

where • denotes the unique vertex of L2. The winding map σ(1) is given by⎛
⎜⎜⎝

v1
v2
v3
v4

⎞
⎟⎟⎠ �→

⎛
⎜⎜⎝

(0,•)
(α,•)
(0,•)
(α,•)

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

β1

β2

γ1
γ2

⎞
⎟⎟⎠ �→

⎛
⎜⎜⎜⎝

β
(1)
1

β
(1)
2

β
(1)
1

β
(1)
2

⎞
⎟⎟⎟⎠ .

Hence, V(1)
M is the torsion-free quotient of

Zβ
(1)
1 ⊕Zβ

(1)
2

〈2(β(1)
1 −β

(1)
2 )〉

∼= Z⊕Z2. Denoting its generator

by β, we find that the 1-nice variables are given by

X(1) : Γ0 →V(1)
M⎛

⎜⎜⎝
v1
v2
v3
v4

⎞
⎟⎟⎠ �→

⎛
⎜⎜⎝

0

β

0

β

⎞
⎟⎟⎠ .

We see that for this representation, no new information is obtained from iteration. This

reflects the fact that for any nice grading ∂ of M, a ∂-nice grading is the same as a nice

grading. Note that v1 and v3 cannot be distinguished by any nice sequence, nor can v2 and

v4. This will turn out to be typical behavior for Γ a “non-primitive quiver of type Ãn” (see

Definition 5.19).

Definition 4.17. Let M and N be abelian groups. A function f :M →N is said to be

affine if there exists a z ∈N such that x �→ f(x)− z is a group homomorphism. If M =N

and f(x) = x+z, we say that f is a translation. The translations of M form a group under

composition isomorphic to M.

Remark 4.18. Assuming that c : Γ→Q is indecomposable, the variables (X(i))i≥0 are

unique up to translation in V(i)
M . Hence, the condition X

(i)
u =X

(i)
v does not depend on the

choice of basepoint.
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The following theorem explains the name “universal nice grading” as one obtains any

nice sequence as an evaluation of universal nice gradings. In other words, any nice sequence

∂ uniquely factors through universal nice gradings as follows:

Γ0 Z

V(i)
M

∂i

X(i) ev(i)(∂)
(4.16)

To be precise, we prove the following.

Theorem 4.19. Let M be an indecomposable F1-representation of Q, and let c : Γ→Q

be the associated winding with basepoint b. Let ∂ = (∂i)
∞
i=0 be a nice sequence for M. Then,

for each i, there exists a unique affine map

ev(i)(∂) : V(i)
M → Z

such that ∂i = ev(i)(∂)◦X(i). We write X(i)(∂) := ev(i)(∂)◦X(i) and call it the evaluation

of X(i) at ∂.

Proof. We first prove the claim for i= 0. Define a map g0 : V(0)
M → Z via the formula

c(α) �→ ∂0(t(α))−∂0(s(α)), (4.17)

where α ∈ Γ1. We must show that this map is well defined. First, note that ∂0 : Γ0 → Z

extends uniquely to a group map ZΓ0 → Z (also denoted ∂0). Since ∂0 is a nice grading, we

have a well-defined map ĝ0 : ZQ1 → Z defined via the following formulas:

1. ĝ0(c(α)) = ∂0(t(α))−∂0(s(α)), for all c(α) ∈ c(Γ1).

2. ĝ0(β) = 0, for all β ∈Q1 \ c(Γ1).

If Z :=
∑

λαα is an element of H1(Γ,Z), then

0 =
∑

λα[t(α)−s(α)],

and hence the element ι(0)H1(c)(Z) =
∑

λαc(α) satisfies

ĝ0

(∑
λαc(α)

)
=
∑

λαĝ0(c(α))

=
∑

λα[∂0(t(α))−∂0(s(α))]

= ∂0

(∑
λα[t(α)−s(α)]

)
= 0.

In other words, ĝ0 descends to a map on V(0)
M and g0 is well defined.18 We now set

ev(0)(∂) := g0+∂0(b).

18 Note that any homomorphism f :M →N between abelian groups induces a homomorphism M/t(M)→
N/t(N).
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Let v ∈ Γ0 with αε1
1 · · ·αεd

d a walk in Γ from b to v. Then

∂0(v) = ∂0(b)+
∑
j

εj [∂0(t(αj))−∂0(s(αj))]

= ∂0(b)+g0

⎛
⎝∑

j

εjc(αj)+Im(ι(0) ◦H1(c))

⎞
⎠

= ∂0(b)+g0

(
X(0)

v

)
= [ev(0)(∂)◦X(0)](v),

so we have the desired factorization. To prove uniqueness, suppose a : V(0)
M → Z is an affine

map such that ∂0 = a◦X(0). Then, in particular,

ev(0)(∂)(0) = ∂0(b)

= [a◦X(0)](b)

= a
(
X

(0)
b

)
= a(0).

In other words, g0 = ev(0)(∂)− ∂0(b) and f := a− ∂0(b) are both group homomorphisms.

Pick α ∈ Γ1 and let p = αε1
1 · · ·αεd

d denote a walk from b to s(α) in Γ. Then, pα is a walk

from b to t(α) in Γ and

g0(c(α)) = ∂0(t(α))−∂0(s(α))

=
[
g0

(
X

(0)
t(α)

)
+∂0(b)

]
−
[
g0

(
X

(0)
s(α)

)
+∂0(b)

]
= a

(
X

(0)
t(α)

)
−a
(
X

(0)
s(α)

)
=
[
f
(
X

(0)
t(α)

)
+∂0(b)

]
−
[
f
(
X

(0)
s(α)

)
+∂0(b)

]
= f

(
X

(0)
t(α)−X

(0)
s(α)

)
= f(c(α)).

It follows that a = ev(0)(∂). Thus, the claim holds for i = 0. Now, suppose that i > 0, and

that the result has been proved for all j < i. Since ∂0 is a nice grading for σ(0) = c, we may

also assume by induction that ∂j is a nice grading for σ(j) for all 0 ≤ j < i. Under these

assumptions, we claim that ∂i induces a nice grading on σ(i). Suppose that α,β ∈ Γ1 are

given such that α(i) = σ(i)(α) = σ(i)(β) = β(i). Then, by definition of Q(i), we must have

c(α) = c(β),

X
(i−1)
s(α) =X

(i−1)
s(β) ,

X
(i−1)
t(α) =X

(i−1)
t(β) .
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By Remark 4.14, this also implies

X
(j)
s(α) =X

(j)
s(β),

X
(j)
t(α) =X

(j)
t(β),

for all 0 ≤ j < i. By induction, for all 0 ≤ j < i, there exists a unique affine map ev(j)(∂) :

V(j)
M → Z satisfying ∂j = ev(j)(∂)◦X(j). In particular, we must have

∂j(s(α)) = ev(j)(∂)(X
(j)
s(α))

= ev(j)(∂)(X
(j)
s(β))

= ∂j(s(β)),

for all 0≤ j < i. Similarly, ∂j(t(α)) = ∂j(t(β)) for all 0≤ j < i as well. Since c(α) = c(β) as

well, the assumption that ∂i is a (∂0, . . . ,∂i−1)-nice grading implies that

∂i(t(α))−∂i(s(α)) = ∂i(t(β))−∂i(s(β)),

from which it follows that ∂i is a nice grading for σ(i). By the base case, there exists a

unique affine map ev(i)(∂) : V(0)

M(i)
→ Z satisfying ∂i = ev(i)(∂)◦X(M (i)). Since V(i)

M = V(0)

M(i)

and X(i) =X(M (i)) by Construction 4.12, the result now follows from induction.

The proof above readily implies the following:

Corollary 4.20. Let M be an indecomposable F1-representation of Q, and let c : Γ→Q

be the associated winding with basepoint b. Let (∂i)i≥0 be a nice sequence for M. Then, for

each i, ∂i is a nice grading for σ(i) : Γ→Q(i).

Remark 4.21. We can view a nice grading as a certain integer-valued function on the

arrows of Q. Indeed, a nice grading on M is the same thing as a nice sequence ∂ = (∂i)i≥0

with ∂i = 0 for all i > 0. By Theorem 4.19, a nice grading on M is then an affine map

f : V(0)
M → Z. Writing f = g+z with z an integer and g : V(0)

M → Z a group homomorphism,

the map g can be identified with a group homomorphism ZQ1 → Z that vanishes on

Im(ι ◦H1(c)). If b1, . . . , bk is a cycle basis for H1(Γ,Z), then a map ZQ1 → Z vanishes

on Im(ι ◦H1(c)) if and only if it vanishes on [ι ◦H1(c)](bi) for each i. Finally, any such

homomorphism comes from a unique function Q1 → Z.

Corollary 4.22. Let c : Γ → Q be an indecomposable winding with associated repre-

sentation M. Let X(i) denote the universal i-nice grading of M. Then, for any two w,z ∈ Γ0,

there exists a nice sequence distinguishing w and z if and only if X
(i)
w 	=X

(i)
z for some i.

Proof. By Theorem 4.19, a nice sequence ∂ is equivalent to a collection of affine maps

Ei := ev(i)(∂) : V(i)
M → Z. Write Ei = hi+xi, where hi : V(i)

M → Z is a group homomorphism

and xi ∈ Z. The ith map will distinguish w and z if and only if Ei(X
(i)
w ) 	= Ei(X

(i)
z );

hence, 0 	= Ei(X
(i)
w )−Ei(X

(i)
z ) = hi(X

(i)
w )− hi(X

(i)
z ) = hi(X

(i)
w −X

(i)
z ). This implies that

X
(i)
w 	=X

(i)
z . Conversely, assume that X

(i)
w 	=X

(i)
z . Since V(i)

M is a finitely generated torsion-

free abelian group, it is free abelian and hence has a basis {b1, . . . , bm}. If b∗i : V
(i)
M → Z is

the homomorphism defined by b∗i (bj) = δij , then X
(i)
w 	=X

(i)
z implies b∗j (X

(i)
w ) 	= b∗j (X

(i)
z ) for

some j. Setting Ei = bj and Ek =0 for all k 	= 0, {Ek}k≥0 is a collection of affine maps which

induce a nice sequence distinguishing w and z.
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§5. Euler characteristics of quiver Grassmannians

5.1 Nice representations

Our reason for considering nice sequences for F1-representations is that, under certain

circumstances, they allow us to combinatorially compute the Euler characteristics of

associated quiver Grassmannians. In this section, we introduce the notion of a nice

F1-representation of Q. If M is a nice F1-representation, then the Euler characteristic of

GrQe (MC), the quiver Grassmannian associated with the C-representation MC of Q,19 can be

computed as the number of e-dimensional subrepresentations of M. This is a combinatorial

task, since M is a finite set. We prove several sufficient conditions for M to be nice:

more precisely, we prove sufficient conditions for the existence of a nice sequence on M

distinguishing vertices. We formalize this idea with the nice length of a representation,

which we use to construct new Hopf algebras from HQ and HQ,nil in §6.2. We conclude

this subsection with several examples of nice representations, including a family of nice

representations for Q= L2 whose cycle spaces can have arbitrarily high rank. Previously in

the literature, only tree modules, band modules, and representations of nice length 0 had

been explicitly considered. The above discussion motivates the following definition.

Definition 5.1. Let M be an F1-representation of Q with associated winding

cM : ΓM →Q.

We say that M is nice if the following equation holds, for all dimension vectors e≤dim(M):

χe(MC) = |{N ≤M | dim(N) = e}|, (5.1)

where χe(MC) is the Euler characteristic of GrQe (MC).

In what follows, we will simply denote GrQe (MC) by Gre(MC) whenever there is no

possible confusion.

In Lemma 1 of [1], Cerulli Irelli shows that a nice grading on a string module M induces

an algebraic action of C× on Gre(M) for each dimension vector e. Writing M =
⊕

i∈Q0
Mi,

this action has finitely many fixed points when the grading distinguishes the basis elements

of Mi for each i, in which case the number of fixed points equals χe(M). In Theorem 1.1

of [7], Haupt generalizes this result to arbitrary representations and gradings. As a special

case, Lemma 4.11 and Corollary 5.2 of [7] show how (∂0, . . . ,∂i)-nice gradings distinguishing

basis elements can be used to compute Euler characteristics of quiver Grassmannians by

counting fixed points of the induced torus actions. Haupt then applies these results to tree

and band modules. The proposition below is essentially a restatement of the result on Euler

characteristics from [7]. We include a proof for the convenience of the reader.

Proposition 5.2 [7]. Let M be an F1-representation of Q, and let ∂ be a nice sequence

for M which distinguishes vertices. Then, M is a nice representation.

19 Recall that MC is the C-representation of Q obtained from M via “base change” as in (2.2) and (2.3).
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Proof. Note that ΓM can be considered as a coefficient quiver of MC in the sense of

Ringel [24] with a choice of a basis as follows:20

B =
⊔

v∈Q0

Bv, B(v) =Mv\{0}. (5.2)

Since ∂ distinguishes vertices, there exists an n ∈ N such that for all x,y ∈ (ΓM )0, ∂i(x) 	=
∂i(y) for some i ≤ n. In particular, the elements of MC which are ∂i-homogeneous (as in

[7, p. 756]) for all i≤ n are precisely the scalar multiples of elements in the set B.
Now, it follows from [7, Th. 1.1] that for all e≤ dim(M), Gre(MC) has the same Euler

characteristic as the locally closed subset

X = {N ∈Gre(MC) |N has a ∂i-homogeneous basis for all i≤ n.}. (5.3)

From the aforementioned correspondence between elements of MC which are ∂i-

homogeneous and the scalar multiples of elements in B, any N as in (5.3) must have a basis

BN ⊆B. It is then easy to check that the span of BN defines a C-representation if and only

if BN is an F1-representation of Q.21 Hence, X is a finite set with |{N ≤M | dim(N) = e}|
elements, and so M is nice.

For an F1-representation M of Q and its subrepresentation N, one can define the quotient

M/N by using the quotient of F1-vector spaces in Definition 2.2. By a subquotient, we mean

a quotient of a subrepresentation of M. The following is straightforward.

Proposition 5.3. Let M be an F1-representation of Q with associated winding cM :

ΓM → Q. Let M ′/N ′ denote a subquotient of M with associated winding cM ′/N ′. If cM
admits a non-degenerate, positive or negative (∂0, . . . ,∂n)-nice grading, then so does cM ′/N ′.

Proof. It follows from [10, Lem. 3.12] that the coefficient quiver of M ′/N ′ is a subquiver

of ΓM . Hence, any non-degenerate/positive/negative (∂0, . . . ,∂n)-nice grading on M will

restrict to one on M ′/N ′.

Definition 5.4. Let M be an F1-representation of Q with coefficient quiver Γ := ΓM

and winding map c := cM . Recall from Definition 4.6 that a nice sequence (∂i) for M

distinguishes vertices if for each distinct x,y ∈ Γ0, there exists an i ∈ N for which ∂i(x) 	=
∂i(y). We say that M has finite nice length if there exists a nice sequence (∂i) for M which

distinguishes vertices in finitely many steps, in the sense that there exists an N ∈ N such

that for all distinct x,y ∈ Γ0, ∂i(x) 	= ∂i(y) for some i≤N . If M has finite nice length, the

nice length of M is the smallest nonnegative integer n such that there exists a nice sequence

∂ = (∂i)
∞
i=0 for which the truncated sequence (∂0, . . . ,∂n) distinguishes vertices. We write

nice(M) = n in this case, and nice(M) =∞ if M does not have finite nice length.

The following properties are clear from the definition (and Proposition 5.2):

1. If nice(M)<∞, then M is nice.

2. If M is an F1-representation of Q, then nice(M ′/N) ≤ nice(M) for any subquotient

M ′/N of M. In particular, if nice(M)<∞, then nice(M ′/N)<∞.

20 See §2.3 for the definition of coefficient quivers by Ringel.
21 This essentially follows from the fact that fα(BN )⊆ B∪{0} for all α ∈Q1.
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Example 5.5. Let M be an F1-representation of Q, with Γ := ΓM and c := cM .

In Theorem 1 of [1], Cerulli Irelli considers a map d : Γ0 → Z which satisfies the two

conditions:

(D1) For all v ∈Q0, the function d restricts to an injection on c−1(v).

(D2) The function d is a nice grading on M.

If such a d exists, then certainly nice(M) ≤ 1, say by Proposition 6.1 of [7]. In fact, we

claim nice(M) = 0. To do this, we must find an injective nice grading of M. First, note that

if f : Q0 → Z is any function, then f induces a nice grading f∗ : Γ0 → Z via the formula

f∗(v) = f(c(v)). It is straightforward to check that d+f∗ still satisfies (D1) and (D2). Pick

an ordering v0, . . . ,vm of Q0, and for each i= 0, . . . ,m, set Bi := c−1(vi). Define a function

f :Q0 → Z as follows:

f(vi) = 2i · max
u,v∈Γ0

(|d(u)−d(v)|+1) , i= 0, . . . ,m.

Setting ∂ := d+ f∗ yields a nice grading of M that distinguishes any two vertices of

Bi, for i = 0, . . . ,m. If u ∈ Bi and v ∈ Bj with i < j, a straightforward computation

reveals that ∂(v)− ∂(u) ≥ 1. Hence, ∂ distinguishes all vertices of Γ and nice(M) = 0,

as claimed. Conversely, any representation M with nice length 0 admits a grading that

satisfies (D1) and (D2). Hence, we may identify such F1-representations as those with nice

length 0.

Example 5.6. In light of Corollary 4.22, the computation in Example 4.15 shows that

the string module described in Example 4.7 has nice length 1. Similarly, one can show that

the string module described in Example 4.8 has nice length 2. Indeed, consider the vertices

a,b, . . . , i defined as follows:

(5.4)

Fixing a as a basepoint, we have

X(0)
a =X

(0)
d =X(0)

e =X
(0)
h =X

(0)
i = 0,

X
(0)
b =X(0)

c =X
(0)
f =X(0)

g = α1.
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The quiver Q(1) is given as follows:

Q(1) =

α1+α2+α3

α1+α2 T � α1+α3

α1

0

α2 D � α3

α2+α3

λ (5.5)

Here, each vertex is labeled by its 0-nice variable, T and D are considered as elements of

H1(Q
(1),Z) with the clockwise orientation, and λ is an arrow of Q(1). We now have X

(1)
a =

X
(1)
i = 0, X

(1)
b = λ, X

(1)
c = λ+T , X

(1)
d = T , X

(1)
e = T +D, X

(1)
f = λ+T +D, X

(1)
g = λ+D,

and X
(1)
h =D. Since X

(1)
a =X

(1)
i , it follows that the nice length of this representation is at

least 2. Since the nice sequence (∂0,∂1,∂2,0,0, . . .) described in Example 4.8 distinguishes

vertices, the nice length of this representation is exactly 2.

Let c : Γ→Q be a winding and α ∈Q1. In the following, it will be convenient to endow

c−1(α) with the structure of a subquiver. We let c−1(α) mean the arrow-induced subquiver

of Γ whose set of arrows is {β ∈ Γ1 | c(β) = α} and whose vertex set consists of the sources

and targets of those β.

Proposition 5.7. Let M be an F1-representation of Q, and let cM : ΓM → Q denote

the associated winding. Let ∂ be a nice grading on M. Then, the following hold:

1. If ∂ is positive or negative, then M is nilpotent.

2. Suppose that ∂ is positive or negative, and that Q has no loops. If for each α ∈ Q1, ∂

restricts to an injection on the set {s(β) | β ∈ (ΓM )1, cM (β) = α}, then nice(M)≤ 1 and

M is nice.

3. If ∂ is non-degenerate and c−1
M (α) is connected for all α ∈Q1, then nice(M)≤ 1 and M

is nice.

Proof. For (1) and (2), we only prove the case that ∂ is positive, as the negative case is

similar.

(1) Suppose that β1 · · ·βd is an oriented cycle in ΓM with v := s(β1) = t(βd). Then,

∂(v) =
d∑

i=1

Δ∂
cM (βi)

+∂(v),

which implies
∑d

i=1Δ
∂
cM (βi)

= 0, contradicting the positivity of ∂. It follows that ΓM is

acyclic, so M is nilpotent.

(2) For each α ∈ Q1, let Sα denote the subquiver of ΓM whose vertex set is (ΓM )0 and

whose arrow set is Aα := {β ∈ (ΓM )1 | c(β) = α}. Since Q has no loops, for each α ∈ Q1,
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the connected components of Sα are isolated vertices or arrows. Combining this with the

assumption that ∂ restricts to an injection on {s(β) | β ∈ Aα}, it follows that for any two

arrows β,γ ∈ Aα, we have ∂(s(β)) 	= ∂(s(γ)). Then, Conditions (4.1) and (4.3) can never

hold simultaneously, and so any grading is a ∂-nice grading. In particular, any injective

function ∂1 : (ΓM )0 → Z is a ∂-nice grading. Then (∂,∂1,0,0,0 . . .) is a nice sequence for M

distinguishing vertices and hence nice(M)≤ 1.

(3) Since c−1
M (α) is connected, it must be an oriented path of length ≥ 0. It follows from

the non-degeneracy of ∂ that for any two vertices v,w ∈ c−1
M (α), ∂(v) 	= ∂(w). Then, there

is an injective ∂-nice grading on M, and hence nice(M)≤ 1.

Let c : Γ → Q and c′ : Γ′ → Q be two winding maps. Suppose that v ∈ Γ0 and v′ ∈ Γ′
0

satisfy c(v) = c′(v′). Then, one can define the amalgam Γ�v∼v′ Γ′ and associated quiver

map c�v∼v′ c′ : Γ�v∼v′ Γ′ → Q22. Note that if c(Γ1)∩ c(Γ′
1) = ∅, then c�v∼v′ c′ is again

a winding. The next proposition shows how nice sequences behave with respect to such

amalgams.

Proposition 5.8. Let M and N be F1-representations of Q with cM : ΓM → Q and

cN : ΓN → Q their associated windings. Suppose that cM (ΓM ) and cN (ΓN ) have disjoint

arrow sets, and that there are vertices u ∈ (ΓM )0 and v ∈ (ΓN )0 with cM (u) = cN (v). Let A

denote the F1-representation of Q associated with the amalgam cM�u∼v : ΓM �u∼vΓN →Q.

If nice(M)<∞ and nice(N)<∞, then nice(A)<∞ and A is nice.

Proof. We will write ΓA = ΓM �u∼v ΓN to ease notation. Choose the points u, v, and

u = v as basepoints for M, N, and A. Let X(i), Y (i), and Z(i) denote the i -nice variables

(defined in Construction 4.12) for M, N, and A. Let BM and BN be the cycle bases of ΓM

and ΓN associated with any two spanning trees containing the vertices u and v, respectively.

Then, BM �BN can be considered as a cycle basis for ΓA. Since c(ΓM ) and c(ΓN ) have no

arrows in common, the inclusions ΓM ↪→ ΓA and ΓN ↪→ ΓA induce a sequence of group

isomorphisms

V(i)
A

f(i)

−−→∼= V(i)
M ⊕V(i)

N , (5.6)

satisfying f (i)(Z
(i)
w ) =X

(i)
w whenever w ∈ (ΓM )0 and f (i)(Z

(i)
w ) = Y

(i)
w whenever w ∈ (ΓN )0.

Since any two vertices of ΓM can be distinguished by a nice sequence for M, it follows that

they can be distinguished by a nice sequence for A as well. Similarly, any two vertices of ΓN

and can be distinguished by a nice sequence for A. By Remark 4.9, one may begin any nice

sequence for A with the (finitely many) gradings necessary to distinguish these vertices.

Hence, it only remains to show that a vertex w ∈ (ΓM )0 can be distinguished from a vertex

z ∈ (ΓN )0 by a nice sequence for A. By Corollary 4.22, this is equivalent to showing that

Z
(i)
w −Z

(i)
z 	= 0 for some i. If Z

(i)
w −Z

(i)
z = 0 for all i, then f (i)(Z

(i)
w −Z

(i)
z ) =X

(i)
w −Y

(i)
z = 0

for all i as well. But this would imply that X
(i)
w and Y

(i)
z were both 0 for all i from

the decomposition (5.6). But then w cannot be distinguished from u and z cannot be

distinguished from v, a contradiction. Hence, Z
(i)
w −Z

(i)
z 	= 0 for some i, which concludes the

proof.

In general, determining the F1-representations of Q which admit a positive grading is a

subtle problem. Below, we describe a family of representations which admit positive and

22 For more details, see [10, Def. 3.4].
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injective nice gradings. In particular, such representations are nice. These representations

are interesting because they are defined by windings c : Γ → Q, where H1(Γ,Z) can have

arbitrarily large rank. The main results of [7] explicitly depend on Γ being a tree or a band.

Proposition 5.9. Let M be a nilpotent F1-representation of Q with associated

winding cM . Suppose that c−1
M (α) is connected for all α ∈ Q1, and that ΓM contains a

set of Z-linearly independent23 cycles {X1, . . . ,Xn} with the following properties:

(i) The cycles [ι ◦H1(cM )](X1), . . . , [ι ◦H1(cM )](Xn) form a Q-basis for Q⊗Z Im(ι ◦
H1(cM )), where ι◦H1(cM ) is as in (4.15).

(ii) For all i, we can write Xi = pi−qi, where pi and qi are directed paths of positive length

in ΓM with common source and target, but no interior vertices in common.

(iii) For each i≤n, either cM (pi) or cM (qi) consists of arrows that do not appear in cM (Xj)

for j 	= i, where we consider cM (Xj) as a subquiver of Q.

Then, nice(M)≤ 1 and M is nice.

Proof. For each i, write pi = α
(i)
1 · · ·α(i)

di
and qi = β

(i)
1 · · ·β(i)

ei , where the α
(i)
j and β

(i)
j

are arrows in ΓM . For each i = 1, . . . ,n, we let Yi = [ι ◦H1(cM )](Xi). To begin, note that

Property (i) implies that {Y1, . . . ,Yn} generates a full-rank subgroup of Im(ι◦H1(cM )). This

means that for any x ∈ Im(ι ◦H1(cM )), there exists a positive integer m such that mx is

a Z-linear combination of {Y1, . . . ,Yn}. But by Remark 4.21, a nice grading on M may be

viewed as a function Q1 →Z whose induced group homomorphism ZQ1 →Z factors through

Im(ι◦H1(cM )). Let Δ :Q1 → Z be any function such that the induced map (also denoted

Δ) satisfies Δ(Yi) = 0 for all i. Then, in particular, 0 = Δ(mx) =mΔ(x); hence, Δ(x) = 0

since m is positive. It now follows from Property (ii) that a nice grading on M is a map

Δ :Q1 → Z satisfying

di∑
j=1

Δ(cM (α
(i)
j )) =

ei∑
j=1

Δ(cM (β
(i)
j )), for all i= 1, . . . ,n.

We now prove the claim by induction on n. If n=1, then defining Δ(α
(1)
j ) = e1 for all j ≤ d1,

Δ(β
(1)
j ) = d1 for all j ≤ e1, and Δ(α) = 1 otherwise yields such a map. This Δ is a positive

nice grading, so that since c−1
M (α) is connected for all α ∈Q1, M is nice by Proposition 5.7.

Now, suppose the claim holds for all k < n. By induction, we can define a map

Δ′ :
⋃
i<n

(cM (Xi))1 → N\{0}

such that

di∑
j=1

Δ′(cM (α
(i)
j )) =

ei∑
j=1

Δ′(cM (β
(i)
j )), for all i < n. (5.7)

By multiplying dn, we have the following:
di∑
j=1

dnΔ
′(cM (α

(i)
j )) =

ei∑
j=1

dnΔ
′(cM (β

(i)
j )), for all i < n. (5.8)

23 When considered as elements of H1(ΓM ,Z).
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Define the map Δ to be the scalar multiple Δ = dnΔ
′:

Δ :
⋃
i<n

(cM (Xi))1 → N\{0}, cM (αi
j) �→ dnΔ

′(cM (αi
j)). (5.9)

After possibly relabeling pn and qn, we may assume via Property (iii) that cM (pn) contains

no arrows in cM (Xj) for j < n. Furthermore, since c−1
M (α) is connected for all α ∈ Q1,

Property (i) implies that cM (pn) and cM (qn) have no arrows in common. Then, the condition

that Δ extends to a nice grading on ΓM is precisely the requirement that there exist

integers

• Δ(cM (α
(n)
k )) for k = 1, . . .dn,

• Δ(cM (β
(n)
k )), whenever cM (β

(n)
k ) not an arrow in cM (Xi) with i < n,

such that

dn∑
j=1

Δ(cM (α
(n)
j )) =

en∑
j=1

Δ(cM (β
(n)
j )). (5.10)

We construct such a Δ as follows: first, for any cM (β
(n)
k ) which are not arrows in c(Xi)

(i < n), define Δ(cM (β
(n)
k )) = dn. Then, the right-hand side of (5.10) is a positive integer

divisible by dn. Define

Δ(cM (α
(n)
j )) =

1

dn

en∑
j=1

Δ(cM (β
(n)
j )), for all j = 1, . . . ,dn.

Finally, define Δ(α) = 1 for any remaining arrows α ∈Q1. Then, Δ is a positive grading on

M, so that nice(M)≤ 1 by Proposition 5.7.

We now illustrate this result with some examples.

Example 5.10. Let Q= L3. For the sake of illustration, let {α,β,γ} denote the arrow

set of L3. Then, the representation M with coefficient quiver

satisfies the hypotheses of Proposition 5.9 with
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and

Here, we interpret the cycles clockwise so that [ι ◦H1(cM )](X1) = 2γ − 3β and [ι ◦
H1(cM )](X2) = 2(α−β). We exclude the cycle

since [ι◦H1(cM )](Y ) = 4(α−β) = 2[ι◦H1(cM )](X2). Note that the one-dimensional subrep-

resentations of M are precisely the sinks of ΓM . The two-dimensional subrepresentations

are either a direct sum of two simples or indecomposable: the indecomposables are

parameterized by sets of the form {s, t}, where s and t are vertices of ΓM , t is a sink,

and there is exists an arrow s
α−→ t in ΓM . It follows that χ1(MC) = 2 and χ2(MC) = 4.

Similar considerations allows one to compute the remaining Euler characteristics.

Example 5.11. Let Q = L2, the quiver with one vertex and two loops. We will let

(L2)1 = {α1,α2}, with α1-colored arrows appearing in blue and α2-colored arrows appearing

in red. An F1-representation M of Q will be called a 2-strand representation if there exists a

2×d-matrix X =

(
m1 m2 · · · md

n1 n2 · · · nd

)
with entries in Z>0 such that ΓM can be described

as follows:

https://doi.org/10.1017/nmj.2023.37 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.37


F1 -REPRESENTATIONS AND EULER CHARACTERISTICS 39

where each colored arrow above represents an oriented path of length mi (resp. ni), and an

arrow with no label is allowed to be of arbitrary length. Up to translations, a nice grading

on M is a pair (Δ1,Δ2) ∈ Z2 satisfying

miΔ1 = niΔ2, for all i= 1, . . . ,d.

Using Proposition 5.9, it follows thatM admits a positive grading if and only if rank(X) = 1.

Indeed, if rank(X) = 1, then the columns of X are Q-linear multiples of each other and

Q⊗ Im(ι◦H1(cM )) =Q(n1α2−m1α1). In this case, we only need

to satisfy the hypotheses of Proposition 5.9. Note that Condition (iii) is vacuous since n=1.

If rank(X)> 1, then there exist two columns

(
mi

ni

)
and

(
mj

nj

)
of X that are linearly

independent over Q. In particular,

det

(
mi mj

−ni −nj

)
=−det

(
mi mj

ni nj

)
	= 0.

Then, miΔ1 = niΔ2 and mjΔ1 = njΔ2 implies(
mi mj

−ni −nj

)(
Δ1

Δ2

)
=

(
0

0

)
,

which has only the trivial solution

(
Δ1

Δ2

)
=

(
0

0

)
.

The following are more explicit examples.

Example 5.12. Let M be a representation M = (M0,f1,f2) of L2, where M0 =

{0,1,2,3},

•f1 f2

such that

f1(1) = 2, f1(2) = 3, f1(3) = 0,

and

f2(1) = 2 f2(2) = 3, f2(3) = 0.

Then, ΓM can be described as follows (f1 is in blue and f2 is in red):
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Then, MC is a representation of L2 over C given as follows:

C3A1 A2 ,

where

A=A1 =A2 =

⎡
⎣0 0 0

1 0 0

0 1 0

⎤
⎦ .

So, in this case, Gr1(MC) consists of the lines of C
3 invariant under the linear transformation

A. One can easily see that this set consists only of the line spanned by the vector

⎡
⎣00
1

⎤
⎦. It

follows that χ1(MC) = 1. On the other hand, following the notation in Example 5.11, M is

a 2-strand representation in Rep(L2,F1)nil with associated matrix

X =

[
1 1

1 1

]
.

It follows from the discussion in Example 5.11 that M is nice, in particular, we have

χ1(MC) = |{N ≤M | dim(N) = 1}|= 1. (5.11)

When e = 2, one may obtain χe(MC) = 1 from the duality in C (or applying the same

matrix computation as in the case for d= 1). This is also clear as follows:

χ2(MC) = |{N ≤M | dim(N) = 2}|= 1. (5.12)

Example 5.13. Let M be a representation M = (M0,f1,f2) of L2, where M0 =

{0,1,2,3} such that

f1(1) = 3, f1(2) = f1(3) = 0,

and

f2(1) = 2 f2(2) = 3, f2(3) = 0.

Then, ΓM can be described as follows (f1 is in blue and f2 is in red):

Then, MC is a representation of L2 over C given as follows:

C3A1 A2 ,

https://doi.org/10.1017/nmj.2023.37 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.37


F1 -REPRESENTATIONS AND EULER CHARACTERISTICS 41

where

A1 =

⎡
⎣0 0 0

0 0 0

1 0 0

⎤
⎦ , A2 =

⎡
⎣0 0 0

1 0 0

0 1 0

⎤
⎦ .

Again, in this case, Gr1(MC) consists only of the line spanned by the vector

⎡
⎣00
1

⎤
⎦. It follows

that χ1(MC) = 1. On the other hand, M is a 2-strand representation with associated matrix

X =

[
1

2

]
.

It follows from Example 5.11 that M is nice, and we have

χ1(MC) = |{N ≤M | dim(N) = 1}|= 1. (5.13)

The following example illustrates how our gluing procedure in Proposition 5.8 creates a

nice grading.

Example 5.14. Let Q = L4, the quiver with one vertex and four loops. We will write

Q1 = {α1,α2,α3,α4}. Consider the 2-strand representation

By the discussion above, there is a nice sequence ∂ distinguishing its vertices. For instance,

if we define ∂0 as

then any map (ΓM )0 → Z is a ∂0-nice grading. Hence, we can take ∂1(vi) = i for all i ≤ 4,

and set ∂j = 0 for all j > 1.

Now, define N to be the string representation

Note that any vector (Δ1,Δ2,Δ3,Δ4) ∈ Z4 induces a nice grading on N, but no choice

distinguishes v′1 and v′5. Nevertheless, there is a nice sequence ∂′ for N which distinguishes

its vertices. For instance, we can set
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so that any map (ΓN )0 → Z is a ∂′
0-nice grading. As before, set ∂′

1(v
′
i) = i for i ≤ 5 and

∂′
j = 0 for j > 1.

We can glue M and N by identifying v1 = v′1 to obtain another representation A:

Proposition 5.8 ensures that A admits a nice sequence which distinguishes vertices.

5.2 Low-dimensional niceness results

In this subsection, we give new proofs of results first published in [1], [7]. These new

proofs fix apparent gaps in the proofs of Lemmas 6.3 and 6.4 of [7] (see the Appendix at

the end of this article for more details). In particular, we show that an F1-representation

M of Q is nice if ΓM is either a tree or a (primitive) affine Dynkin quiver of type Ãn. We

then apply these results to classify the representations of finite nice length when Q is a

pseudotree.

Remark 5.15. LetM be an F1-representation of Q. Suppose that S⊆ΓM is a subquiver

that is a deformation retract, and let N denote the representation induced by the restriction

of cM to S. Then, ΓN = S, H1(ΓN ,Z) ∼=H1(ΓM ,Z), and we can find a cycle basis for ΓN

which is also a cycle basis for ΓM . In other words, H1(ΓN ,Z) and H1(ΓM ,Z) correspond to

the same subgroup of ZQ1. It follows that there is a commutative diagram

H1(ΓN ,Z) H1(ΓM ,Z)

ZQ1 ZQ1

ψ

φN φM

id

(5.14)

where ψ is an isomorphism, φM = ι1 ◦H1(cM ), and ιN = ι2 ◦H1(cN ), where ι1 (resp. ι2) is

the inclusion of the image of H1(cM ) (resp. H1(cN )) into ZQ1. This allows us to identify

coker(ι1 ◦H1(cM )) with coker(ι2 ◦H1(cN )), which in turn allows us to identify nice gradings

of M with nice gradings of N. We will make such identifications freely throughout this text.

Recall that any winding c : Γ→Q can be considered as a certain coloring of Γ, where Γ0

(resp. Γ1) is colored by Q0 (resp. Q1). In what follows, we interchangeably use the terms

colored quivers and coefficient quivers.

Lemma 5.16. Let c1, . . . , cm be a basis for H1(ΓM ). Suppose that v is a vertex of ΓM

that lies in none of the cycles c1, . . . , cm. Let ΓM \{v} denote the colored subquiver of ΓM

obtained by deleting v and all arrows incident to it. Then, ΓM admits a nontrivial (resp.

non-degenerate, positive, negative) grading if and only if ΓM \{v} does.

Proof. Since ΓM \{v} is a deformation retract of ΓM , this directly follows from Remark

5.15.
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Lemma 5.17. Let c : Γ→Q be a winding with Γ a Dynkin quiver of type An, and let M

denote the associated representation. Pick a basepoint b ∈ Γ0. Then, there exists an N such

that for all i≥N :

1. The universal i-nice grading X(i) : Γ0 →V(i)
M is injective.

2. If the distance from v to b is d, then X
(i)
v is a linear combination of d distinct elements

of Q
(i)
1 with nonzero coefficients.

In particular, from Corollary 4.22, nice(M)<∞ and M is nice.

Proof. Write Γ = αε1
1 · · ·αεn−1

n−1 throughout. We start by proving the following claim: if

there is no such N such that (1) holds for all i≥N , then Γ contains distinct arrows β,γ ∈Γ1

with c(β) = c(γ) and either s(β) = s(γ) or t(β) = t(γ), contradicting the assumption that c is

a winding. The cases n=2,3 can be verified through direct computation. Suppose the claim

holds for all k ≤ n. If no such N exists, then Corollary 4.22 implies that there exist vertices

u,v ∈ Γ0 such that X
(i)
u =X

(i)
v for all i. Indeed, X

(i)
u 	=X

(i)
v implies X

(i+1)
u 	=X

(i+1)
v since

H1(τ
(i+1))(X

(i+1)
z ) = X

(i)
z for all z ∈ Γ0 (see Remark 4.14). If {u,v} 	= {s(αε1

1 ), t(α
εn−1

n−1 )},
then the claim follows from induction, so without loss of generality assume u= s(αε1

1 ) and

v = t(α
εn−1

n−1 ). By Remark 4.18, we may assume b = u so that X
(i)
u = X

(i)
v = 0 for all i.

Since Γ is simply connected as a topological space, V(i)
M is contained in ZQ

(i)
1 for each i.

Furthermore,

0 =X(i)
v = εn−1α

(i)
n−1+X

(i)

s(α
εn−1
n−1 )

.

This implies that there exists a j < n−1 such that the following equations hold for all i :

εj + εn−1 = 0, (5.15)

α
(i)
j = α

(i)
n−1. (5.16)

Indeed, for each i, it is clear that a j depending on i exists. To prove that j can be chosen

independently of i, for each j < n−1, let Sj = {i ∈N | (5.15) and (5.16) hold for α
(i)
j }. By

the pigeonhole principle, Sj must be unbounded for a fixed j. But then, (5.16) implies that

α
(i′)
j = α

(i′)
n−1 for all i′ < i, again using Remark 4.14. It follows that Sj is an unbounded,

successor-closed subset of the poset (N,≤), and so Sj =N. Having established the existence

of such a j, the definition of Q(i) implies

X
(i)

s(α
εj
j )

=X
(i)

s(α
εn−1
n−1 )

,

which in turn implies that the subwalk from s(α
εj
j ) to s(α

εn−1

n−1 ) contains the desired

subquiver by the induction hypothesis. Hence, Claim (1) holds, since c : Γ → Q is a

winding. So, choose an N ′ such that X(i) is injective for all i≥N ′. Then, by construction,

σ(N ′+1) : Γ→ Γ(N ′+1) will be injective on arrows. Hence, Claims (1) and (2) will hold for

N =N ′+1.

The following corollary confirms the truth of [7, Lem. 6.3]. See the Appendix at the end

of this article for a discussion of the original proof.

Corollary 5.18 (cf. Lemma 6.3 of [7]). Let c : Γ → Q be a winding with associated

representation M. Suppose that Γ is a tree. Then, nice(M)<∞ and M is nice.
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Proof. Suppose that no nice sequence distinguishes x,y ∈ Γ0. Let p denote the unique

walk of minimal length from x to y, and select x as the basepoint. Since Γ is retractable,

Remark 5.15 implies that the i -nice variables of vertices in p are the same for c and the

restricted representation c|p, for all i ≥ 0. In other words, the restricted representation

c|p : p→Q cannot distinguish x and y, contradicting Lemma 5.17.

Definition 5.19. Let c : Γ→ Q be a winding with Γ an affine Dynkin quiver of type

Ãn. Write Γ = βδ1
1 · · ·βδd

d , where s(βδ1
1 ) = t(βδd

d ). If the cycle c(Γ) is primitive (in the sense

that c(Γ) = c(β1)
δ1 · · ·c(βd)

δd 	= qk for a cycle q of Q with k > 1), then we say that c is

primitive. We make a similar definition for a cycle in a general winding.

The following lemma confirms the truth of [7, Lem. 6.4] in the case of an F1-

representation. See the Appendix at the end of this article for a discussion of the original

proof.

Theorem 5.20 (cf. Lemma 6.4 of [7]). Let c : Γ → Q be a winding with Γ an

affine Dynkin quiver of type Ãn. Let M be the associated F1-representation of Q. Then,

nice(M)<∞ if and only if c is primitive.

Proof. ( =⇒ ) Suppose that c is not primitive. Then, there exists a cycle q = αε1
1 · · ·αεd

d

in Q such that c(Γ) = qk for some k > 1. Since c : Γ → Q factors through the inclusion

q ↪→Q, we may assume without loss of generality that q =Q. Then, c : Γ→Q corresponds

to wrapping around the cycle qk-times. In other words, we may write

Γ = βε1
11β

ε2
12 · · ·βεd

1dβ
ε1
21 · · ·βεd

2d · · ·β
εd
kd,

where βij ∈Γ1 satisfies c(βij) =αj for all i and j. Note that c(βε1
i1 · · ·β

εd
id ) = c(βε1

i1 ) · · ·c(β
εd
id ) =

q for all i ≤ k. Pick b = s(βε1
11) as basepoint. Note that Im(ι ◦H1(c)) is generated by

c(Γ) = kq ∈ ZQ1. It follows that q is torsion in ZQ1/ Im(ι ◦H1(c)), and so q = 0 as an

element of V(0)
M . From this, it follows that

X
(0)

t(β
εj
ij )

=

j∑
s=1

εsαs,

for all i≤ k and j ≤ d. In particular, X
(0)

t(β
εj
ij )

=X
(0)

t(β
εj
1j )

for all j ≤ d. Note that Γ(1) can then

be identified with q, and σ(1) : Γ→ Γ(1) is the map which wraps around qk-times. Repeating

the above argument for each s≥ 0, we see that X
(s)

t(β
εj
ij )

=X
(s)

t(β
εj
1j )

for all s. It follows that for

each i≤ k, there is no nice sequence for M distinguishing the vertices {t(βεj
ij ) | j = 1, . . . ,d}.

( ⇐= ) Suppose that c is primitive, but no nice sequence distinguishes the vertices

u,v ∈ Γ0. Let p and q be the two walks (considered as subquivers) in Γ from u to v.

Suppose that p= αε1
1 · · ·αεd

d and q−1 = βδ1
1 · · ·βδe

e and that �(p)≤ �(q), where �(p) and �(q)

are the lengths of p and q, respectively. Without loss of generality, we may assume that u

and v are chosen minimal, in the sense that if the distance between u′ and v′ is strictly

less than �(p), then there is a nice sequence which distinguishes u′ and v′. We first claim

that there must exist an i such that X
(i)
u = X

(i)
v , but X

(i)
w 	∈ {X(i)

u ,X
(i)
v } for all interior

vertices w ∈ p0. In particular, one has {X(i)
w | w ∈ q0} 	⊆ {X(i)

z | z ∈ p0}. Indeed, to prove

the claim, assume by way of contradiction that {X(i)
w | w ∈ q0} ⊆ {X(i)

z | z ∈ p0}. We may

further assume that X
(i)
v =X

(i)
u =0. Consider the variables in q−1 = βδ1

1 · · ·βδe
e starting with
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the vertex t(βδ1
1 ): this vertex is adjacent to s(βδ1

1 ) = v, whose i -nice variable is X
(i)
v = 0.

The only two vertices in p that are adjacent to vertices whose i -nice variables are 0, are

t(αε1
1 ) and s(αεd

d ): by F1-linearity
24 X

(i)

t(β
δ1
1 )

	= X
(i)

s(α
εd
d )

, so we must have X
(i)

t(β
δ1
1 )

= X
(i)

t(α
ε1
1 )

.

In particular, this forces c(βδ1
1 ) = c(αε1

1 ). We can proceed in this fashion for all vertices

of q−1: given any vertex of q−1, there is exactly one way to choose a variable for it from

{X(i)
z | z ∈ p0} which does not contradict F1-linearity. Thus, we are forced to conclude that

c(q−1) = c(p)m for some m, contradicting primitivity. Hence, there must exist some w ∈ q0
such that X

(i)
w 	∈ {X(i)

z | z ∈ p0}, in particular,

{X(i)
w | w ∈ q0} 	⊆ {X(i)

z | z ∈ p0} (5.17)

as we wished to show.

Now, we construct a nice sequence distinguishing u and v by using (5.17) which would

give us a contradiction. Let T be the tree quiver obtained from Γ by splitting v into two

separate vertices λ and ρ (we will say that p goes from u to λ and q goes from u to ρ).

There is a winding map c̃ : T → Γ which maps λ,ρ �→ v and acts as the identity on the

remaining vertices. This map induces a bijection on arrows, so we identify T1 with Γ1. For

each i, let Y
(i)
z denote the 0-nice variables on the representation σ(i) ◦ c̃ : T →Q(i) with u as

basepoint. Note that Y
(i)
z is a coset representative for X

(i)
c̃(z) for all i and z. We verify this

for the vertices in p: the argument for vertices in q is similar. If z = t(α
εj
j ), then

Y (i)
z =

j∑
k=1

εkα
(i)
k +Im

(
ι(i) ◦H1(σ

(i) ◦ c̃)
)

=

j∑
k=1

εkα
(i)
k +(0) ∈ ZΓ

(i)
1 /(0)∼= ZΓ

(i)
1 ,

since T is a tree and hence induces the zero map on homology (note again that we write

c̃(αk) = αk since c̃ induces a bijection on arrows). Of course, the walk from u to c̃(z) in Γ

is just αε1
1 · · ·αεj

j so that

X
(i)
c̃(z) =

j∑
k=1

εkα
(i)
k +Im

(
ι(i) ◦H1(σ

(i))
)

as claimed. On the other hand, for each z ∈ p0 (resp. z ∈ q0), the variable Y
(i)
z may be

identified with the i -nice variable for c̃(z) with respect to the restricted winding c|p with

basepoint c̃(u) = u (resp. c |q with basepoint u). By Lemma 5.17, there exists an i′ such

that the Y (i′) are injective on p0 and q0, and such that Y
(i′)
z is a sum of t distinct elements

of Q
(i′)
1 , where t is the distance from u to z in T (which is the same as the distance from

u to c̃(z) in Γ). Since the arrows of Q(i′) are determined by the nice variables X(j) with

j ≤ i′, and since {X(i)
w | q0} 	⊆ {X(i)

z | z ∈ p0}, it follows that Y
(N+1)
ρ contains an arrow of

Q(N+1) that does not appear in Y
(N+1)
λ , where N =max{i, i′}. In other words, Y

(N+1)
ρ and

Y
(N+1)
λ are linearly independent in QQ

(N+1)
1 . If

(ΔΔΔ,Y (i)
z ) �→ Y (i)

z |ΔΔΔ

24 From which we do not allow subquivers of the form • α−→ • α←− • or • α←− • α−→ •, with α ∈Q1.
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denotes the usual pairing

(QQ
(N+1)
1 )∗×QQ

(N+1)
1 →Q

induced by Q
(N+1)
1 and its dual basis,25 then the Q-linear map

(QQ
(N+1)
1 )∗ →Q2

ΔΔΔ �→
(

Y
(N+1)
λ |ΔΔΔ

Y
(N+1)
ρ |ΔΔΔ

)

has rank 2, and so it intersects the diagonal of Q2 nontrivially. In other words, there is a

ΔΔΔ 	= 0 such that

Y
(N+1)
λ |ΔΔΔ= Y (N+1)

ρ |ΔΔΔ 	= 0.

If necessary, we can replace ΔΔΔ with a suitably large integral multiple to assume that ΔΔΔ is

an integer vector. In turn, this implies the existence of a nice sequence ∂ such that

∂N+1(v) = ∂N+1(u)+Y
(N+1)
λ |ΔΔΔ,

a contradiction!

If Q is a pseudotree with central cycle C, and M is an indecomposable F1-representation

of Q, then the restriction ResC(M) of M to C is also indecomposable (see [10]). Since

indecomposables for C are either (extended) Dynkin quivers of type An or Ãn, it follows

from a straightforward argument that ΓM is a pseudotree. Hence, it makes sense to talk

about the central cycle of ΓM (if it has one).

Corollary 5.21. Let Q be a pseudotree, and let c : Γ→Q be a winding with associated

representation M. Then, nice(M)<∞ if and only if the central cycle of ΓM is primitive.

Proof. If Γ is a tree or of type Ãn, there is nothing to show, so we may assume that Γ

is a proper pseudotree with central cycle C. First, suppose that C is primitive and hence

ResC(M) has finite nice length by Theorem 5.20. Note that Γ may be obtained by gluing

a tree (possibly trivial) to each vertex of C, and that these trees have no arrow colors

in common with each other or with C. Since tree representations have finite nice length

by Corollary 5.18, the result now follows from Proposition 5.8. The converse is clear from

Theorem 5.20.

§6. Hall algebras arising from F1-representations

6.1 Hall algebras and coefficient quivers

In [27], Szczesny discussed the following problem: given a finite graph G and two

orientations Q and Q′ of G, compare Rep(Q,F1) and Rep(Q′,F1). Note that one cannot

appeal to reflection functors, since the usual definition does not make sense over F1. An

alternate strategy would be to compare the associated Hall algebras HQ and HQ′ , or their

nilpotent variants HQ,nil and HQ′,nil. Since the Milnor–Moore theorem applies to these

25 More explicitly: if Q is any quiver, then Q1 is a basis for QQ1 and the dual basis for (QQ1)
∗ is

{χα | α ∈Q1}, where χα(β) = δαβ for all β ∈Q1. If Y =
∑

yαα ∈QQ1 and ΔΔΔ=
∑

zαχα ∈ (QQ1)
∗, then

Y |ΔΔΔ=ΔΔΔ(Y ) =
∑

α,β zαyβχα(β).
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Hopf algebras, one could even compare their Lie subalgebras of primitive elements. In this

section, we study the Lie algebra nQ of HQ,nil when Q is a tree or affine Dynkin diagram of

type Ãn. Such quivers are precisely the ones of bounded representation type over F1 [10].

We show that nQ ∼= nQ′ when Q and Q′ are different orientations of a tree T, and that if Q

is acyclic of type Ãn, then nQ is a central extension of the equioriented quiver of type Ãn.

Explicit descriptions of HQ,nil for all Q of type Ãn can then be deduced: previously, only

the equioriented case had been described in the literature.

Definition 6.1. Let T be an undirected tree, and let Q be a quiver with Q= T . Let ST

denote the set of nonempty connected subgraphs of T, and let nT denote the free C-vector

space on ST .

It was shown in [27, Th. 5] that indecomposable F1-representations of Q are in bijective

correspondence with ST . Hence, the underlying vector space of nQ
26 may be identified

with nT . Let the following

[·, ·]Q : nT ⊗nT → nT

denote the Lie bracket of nQ, considered as a Lie bracket on nT .

The set ST is a poset under the subgraph relation, that is, for T1,T2 ∈ STT1 ≤ T2 if

and only if T1 is a subgraph of T2. Since T is a tree, any two elements S,S′ ∈ ST have a

supremum, which we denote by S ∨S′.27 Indeed, S ∨S′ may be characterized as the full

subgraph whose vertex set consists of S0∪S′
0, along with all vertices in the paths joining

an element of S0 to S′
0.

Of course, the nonempty connected subquivers of Q are in bijective correspondence with

the elements of ST . By an abuse of notation, we will let S denote the Q-representation

corresponding to S ∈ ST and we will write ΓS = S, identifying the coefficient quiver

simultaneously with S and the subquiver of Q it determines. Note that if (S∨S′)0 =S0�S′
0,

then S∨S′ is obtained by adding exactly one new edge connecting a vertex of S to a vertex

of S′.

Definition 6.2. Suppose that (S ∨S′)0 = S0 �S′
0. Then, we write S ∨S′ = S

α−→ S′

if S ∨S′, considered as a subquiver of Q, is obtained by adding an α-colored arrow with

s(α) ∈ S0 and t(α) ∈ S′
0, where α ∈ Q1. We define S

α←− S′ analogously. We write SαS′ to

mean either S
α−→ S′ or S

α←− S′.

Note that [S,S′]Q 	=0 if and only if S∨S′ =SαS′ for some α∈Q1 (see [10, Lem. 3.12(3)]).

More specifically, we can write

[S,S′]Q = μQ
S,S′S∨S′,

where μQ
S,S′ ∈ C is defined via the formula

μQ
S,S′ =

⎧⎪⎨
⎪⎩
+1, if S∨S′ = S

α−→ S′ for some α ∈Q1,

−1, if S∨S′ = S
α←− S′ for some α ∈Q1,

0, otherwise.

26 As mentioned above, nQ is the Lie subalgebra of the Hall algebra HQ,nil =HQ consisting of primitive
elements.

27 Elements of ST do not always have an infimum since ∅ �∈ ST . If T is not a tree, there may not be a
unique least upper bound for S and S′.
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Proposition 6.3. Let Q and Q′ be different orientations of a tree T. Then, there is an

isomorphism nQ → nQ′ .

Proof. Let rα(Q) denote the quiver that is obtained from Q by reversing the direction

of the arrow α. Then, Q′ = rαk
· · ·rα1(Q), where α1, . . . ,αk are the arrows of Q that have

a different orientation than Q′. The result will therefore follow if we can show nQ
∼= nrα(Q)

for any α ∈ Q1, and so without loss of generality we assume that there is an α for which

Q′ = rα(Q). Define ε : ST →{±1} via the formula

ε(S) =

{
+1, if α 	∈ S1,

−1, if α ∈ S1.

Here, we identify α with its corresponding (undirected) edge in T. We claim that the C-

linear automorphism φ : nT → nT defined via the formula

S �→ ε(S)S

induces an isomorphism nQ → nQ′ . On the one hand,

φ([S,S′]Q) = φ
(
μQ
S,S′S∨S′

)
= ε(S∨S′)μQ

S,S′S∨S′.

On the other,

[φ(S),φ(S′)]Q′ = ε(S)ε(S′)[S,S′]Q′

= ε(S)ε(S′)μQ′

S,S′S∨S′.

Hence, we will be done if we can show

ε(S∨S′)μQ
S,S′ = ε(S)ε(S′)μQ′

S,S′ (6.1)

for all S,S′ ∈ ST . Note that μ
Q
S,S′ = 0 if and only if μQ′

S,S′ = 0, so we may assume that neither

are zero. There are then two cases to consider:

Case 1: Suppose S ∨S′ = SβS′ for some β 	= α. Then, S ∨S′ = S
β−→ S′ in Q if and only

if S ∨S′ = S
β−→ S′ in Q′, and S ∨S′ = S

β←− S′ in Q if and only if S ∨S′ = S
β←− S′ in Q′.

Hence, μQ
S,S′ = μQ′

S,S′ and (6.1) reduces to ε(S ∨S′) = ε(S)ε(S′). But since S ∨S′ = SβS,

α ∈ (S∨S′)1 if and only if α is in exactly one of S or S′. The relation ε(S∨S′) = ε(S)ε(S′)

now readily follows.

Case 2: Suppose S∨S′ = SαS′. Then, S∨S′ = S
α−→ S′ in Q if and only if S∨S′ = S

α←− S′

in Q′, and S∨S′ = S
α←− S′ in Q if and only if S∨S′ = S

α−→ S′ in Q′. Hence, μQ
S,S′ =−μQ′

S,S′

and (6.1) reduces to ε(S ∨S′) = −ε(S)ε(S′). But ε(S) = ε(S′) = +1 and ε(S ∨S′) =−1 for

S∨S′ = SαS′, so the equality is clear.

We have proved that (6.1) holds for all S and S′, so φ is indeed an isomorphism of Lie

algebras.

Remark 6.4. Szczesny proved in [27, Th. 8] that there is a surjective map U(n+)→HQ

when Q is a tree, and provides an example to show that this map is in general not injective.

Here, n+ denotes the positive part of the symmetric Kac–Moody algebra associated with Q.
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Set g := gln(C) and let ĝ= g[t, t−1]⊕Cc be the associated affine algebra. The bracket of

ĝ is given by the formula

[x⊗ tm,y⊗ tn] = [x,y]⊗ tm+n+tr(xy)nδn,−mc.

Then, ĝ admits a triangular decomposition ĝ= a−⊕hn⊕a+, where a− = t−1gln(C)[t
−1]⊕

N−, hn = Dn⊕Cc, a+ = tgln(C)[t]⊕N+, and N−, Dn, N+ denote the upper triangular,

diagonal, and lower triangular matrices in gln(C), respectively.

Recall that if Q is a type Ãn quiver, with vertices oriented cyclically as 1, . . . ,n,28 then its

nilpotent indecomposables are described through two families: I[d,i] and Ĩd, where 1≤ i≤ n

and d≥ 1. If Q is equioriented, then only the first family yields nilpotent representations.

I[d,i] is an n-dimensional string module, corresponding to wrapping a walk of length

n− 1 around Q starting at the vertex i. For Q acyclic, Ĩd is a dn-dimensional F1-band,
29

corresponding to a closed loop around Q which wraps around d times. For further details,

we refer the reader to [10, Constructions 5.10 and 5.11]. Here is an example.

Example 6.5. Consider the following acyclic quiver of type Ã3:

v1

v3 v2

α1α3

α2

Then, as in [10, Construction 5.10], we have I[8,3] = {M1,M2,M3}, where

M1 = {k | 1≤ k ≤ 8,k ≡ 1−3+1(mod3)}= {2,5,8}.

Similarly, M2 = {3,6} and M3 = {1,4,7}. The coefficient quiver is as follows:

The coefficient quiver of Ĩ2 is as follows:

The following lemma is due to Szczesny [27]. We recall it here for convenience.

Lemma 6.6. Let Q be the equioriented Dynkin quiver of type Ãn. Then, nQ ∼= a+.

Proof. Let {Eij}i,j≤n denote the standard basis for g. Then, as in [27, §11], a direct

computation verifies that the map

28 Note that our terminology is slightly different from that of [27], where Ãn is required to have n+1
vertices.

29 Technically, only the thin representation Ĩ1 yields a band in the traditional sense. See Definition 3.10.
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ψ : a+ → nQ

Eij ⊗ tm �→ I[j−i+mn,i]

is an isomorphism of Lie algebras.

We now turn to a discussion of type Ãn quivers with acyclic orientations. If Q is such

a quiver, then its indecomposable F1-representations are I[d,i] and Ĩd, where 1≤ i≤ n and

d≥ 1. Note that any short exact sequence 0→N → E →M → 0 with N or M isomorphic

to some Ĩd necessarily splits. This means that the elements [Ĩd] are all central in nQ. As the

proposition below shows, we can obtain nQ from a+ via a central extension.

For the proposition below, we will use δ’s to denote indicator functions on subsets

of {(i, j) | 1 ≤ i, j ≤ n}. Subsets that are defined by equations will be denoted by those

equations, for example, δi≡j(modn) is the indicator function for the set {(i, j) | i≡ j(modn)}.
When n is understood from context, we will just write i≡ j. The indicator function for the

subset {(i, j),(j, i)} will be denoted by the standard Kronecker notation δi,j .

Let Q = α
ε(1)
1 · · ·αε(n−1)

n−1 be an acyclic quiver of type Ãn. Furthermore, let (i, j,q) and

(k, l,s) be two elements of N3 such that 1 ≤ i, j,k, l ≤ n, either i ≤ j or q > 0, and either

k ≤ l or s > 0. Then, the representations I[j−i+qn,i] and I[l−k+sn,k] are well defined. One

can compute the following identity in HQ, where we have set d := (j+ l)− (i+k)+(q+s)n

to ease notation:

[I[j−i+qn,i]] · [I[l−k+sn,k]] = [I[l−k+sn,k]⊕ I[j−i+qn,i]]+ δj,kδε(j−1),1[I[d,i]]

+ δi,lδε(l−1),−1[I[d,k]]+ δj,kδi,lδε(j−1),1δε(l−1),−1(q+s)[Ĩq+s].

This immediately implies the following computation in nQ:[
[I[j−i+qn,i]], [I[l−k+sn,k]]

]
= δj,k

(
δε(j−1),1− δε(j−1),−1

)
[I[d,i]]

+ δi,l
(
δε(l−1),−1− δε(l−1),1

)
[I[d,k]]

+ δj,kδi,l
(
δε(k−1),1δε(l−1),−1− δε(l−1),1δε(k−1),−1

)
(q+s)[Ĩq+s]

= δj,kε(j−1)[I[d,i]]− δi,lε(l−1)[I[d,k]]

+ δj,kδi,lδε(k−1),−ε(l−1)ε(k−1)(q+s)[Ĩq+s].

We are now ready to identify nQ in the acyclic case.

Proposition 6.7. Let Q be a Dynkin quiver of type Ãn. Define ZQ ≤ nQ be the zero

ideal when Q is equioriented, and the central ideal spanned by {[Ĩd] | d≥ 1} otherwise. Then,

there is an isomorphism nQ/ZQ
∼= a+. In particular, nQ is a central extension of a+.

Proof. Write Q=α
ε(1)
1 · · ·αε(n−1)

n−1 with ε(i) =±1. The equioriented case is already proved

by Szczesny (Lemma 6.6). So, we may assume that {ε(i) | 1 ≤ i ≤ n− 1} is not a proper

subset of {−1,+1}. Let (i, j,q) and (k, l,s) be two elements of N3 such that 1≤ i, j,k, l≤ n,

either i ≤ j or q > 0, and either k ≤ l or s > 0. Then, the representations I[j−i+qn,i] and

I[l−k+sn,k] are well defined. From the discussion above, we have[
[I[j−i+qn,i]], [I[l−k+sn,k]]

]
= δj,kε(j−1)[I[d,i]]− δi,lε(l−1)[I[d,k]]+λ(i,j,q):(k,l,s)[Ĩq+s], (6.2)

where the coefficient λ(i,j,q):(k,l,s) is given by the formula

λ(i,j,q):(k,l,s) = δj,kδi,lδε(k−1),−ε(l−1)ε(k−1)(q+s). (6.3)
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Then, we define a map ψQ : a+ → nQ/ZQ by the formula

Eij ⊗ tq �→ ε(j−1)I[j−i+qn,i]+ZQ. (6.4)

(6.2) immediately implies that ψQ is a Lie algebra morphism. Showing that it is a bijection

is essentially the same as in Lemma 6.6.

6.2 The Hall algebra of representations with finite nice length

In this section, we associate a Hall algebra Hnice
Q (resp. Hnice

Q,nil) to the category of (resp.

nilpotent) F1-representations M of Q with nice(M)<∞. We then relate these Hall algebras

to HQ and HQ,nil. A description of Hnice
Q,nil when Q is a (not-necessarily proper) pseudotree

is obtained. In this case, the representations M with nice(M)<∞ are related to absolutely

indecomposable F1-representations of quivers with bounded representation type over F1.

Absolutely indecomposable F1-representations remain mysterious for general Q, and will

be the subject of a future article.

Recall from §5 that if nice(M) < ∞, then any subquotient S of M also satisfies

nice(S) < ∞. It follows that the full subcategory Rep(Q,F1)
nice (resp. Rep(Q,F1)

nice
nil ) of

representations (resp. nilpotent representations) of finite nice length is finitary and proto-

exact. Therefore, we can associate with it a Hall algebra Hnice
Q (resp. Hnice

Q,nil).

It is easy to describe Hnice
Q and Hnice

Q,nil in terms of HQ and HQ,nil, respectively.

Proposition 6.8. Let Q be a fixed quiver. Then, the ideal of HQ (resp. HQ,nil)

generated by representations with infinite nice length is a Hopf ideal, and we have

isomorphisms of Hopf algebras:

Hnice
Q

∼=HQ/〈[M ] | nice(M) =∞〉,

Hnice
Q,nil

∼=HQ,nil/〈[M ] | nice(M) =∞〉.

Proof. Set I = 〈[M ] | nice(M) =∞〉 ⊆HQ, the ideal generated by representations with

infinite nice length. Note that any element in I can be written as a C-linear combination of

isomorphism classes [M ] with nice(M) =∞. This follows from the fact that for any short

exact sequence

0→M1 →M2 →M3 → 0

in Rep(Q,F1), nice(M1) =∞ or nice(M3) =∞ implies nice(M2) =∞. Hence, I is the vector

space with basis given by {[M ] | nice(M) =∞}. Given [M ] ∈ I, we may write Δ([M ]) as

Δ([M ]) =
∑

(A,B)∈D2(M)

[A]⊗ [B],

where D2(M) = {(A,B) ∈ Iso(Q)2 | M ∼= A⊕B}. But M ∼= A⊕B if and only if ΓM can

be written as the disjoint union of ΓA and ΓB. Then, nice(M) = ∞ implies that either

nice(A) =∞ or nice(B) =∞, and hence

Δ([M ]) =
∑

(A,B)∈D2(M)

[A]⊗ [B] ∈ I⊗HQ+HQ⊗ I.

It follows that I is a coideal of HQ. To show that I is invariant under the antipode, simply

note that S([M ]) is a sum of products of the form [M1] · · · [Mk], where M ∼=M1⊕·· ·⊕Mk.
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Then, [M ] ∈ I implies that [Mi] ∈ I for at least one index i, and hence S([M ]) ∈ I as well.

It follows that I is a Hopf ideal, so that HQ/I is a Hopf algebra.

There is a C-linear isomorphism Hnice
Q → HQ/I defined by [M ] �→ [M ] + I. This is an

algebra morphism, since a short exact sequence in Rep(Q,F1)
nice is the same as a short

exact sequence

0→M1 →M2 →M3 → 0

with nice(Mi) < ∞ for all i. It is also a coalgebra morphism, since the direct sum

decompositions of M in Rep(Q,F1)
nice are exactly the direct sum decompositions of M in

Rep(Q,F1). Hence, we have the desired isomorphism Hnice
Q

∼=HQ/I. The proof for nilpotent

representations is similar.

The results from [27] and §6.1 above allow us to compute Hnice
Q,nil when Q has bounded

representation type over F1.
30 In this case, indecomposable representations in Rep(Q,F1)

nice
nil

are precisely the absolutely indecomposable representations which we define below.

Definition 6.9. Let Q be a quiver, and let M be an F1-representation of Q. We say

that M is absolutely indecomposable if M ⊗F1 k is indecomposable for any algebraically

closed field k.

If k is a field and Q is a quiver, a k -representation M of Q is said to be thin if the

components of the dimension vector dim(M) are either 0 or 1. We have an analogous

definition for F1-representations of Q. If S is a subquiver of Q, then one obtains a thin

representation 1S by taking k at each vertex of S, the identity map k→ k at each arrow of

S, and zero spaces and maps at the remaining vertices and arrows. Of course, 1S is a scalar

extension of an F1-representation which we also call 1S . A straightforward computation

reveals that EndkQ(1S) ∼= kc, where c is the number of connected components of S. It

follows that 1S is indecomposable if and only if S is connected.

Recall from [10] that if Q is an acyclic quiver of type Ãn, then the indecomposable

representations are either string modules I[d,i], whose coefficient quivers are oriented line

graphs, or F1-bands Ĩd, whose coefficient quivers are of type Ãdn (for d≥ 1).

Corollary 6.10. Let Q be a connected quiver of bounded representation type, and let

M be an indecomposable nilpotent F1-representation of Q. Then, nice(M)<∞ if and only

if M is absolutely indecomposable. Furthermore, exactly one of the following holds:

1. Q is a tree. In this case, Hnice
Q,nil =Hnice

Q =HQ,nil =HQ.

2. Q is equioriented of type Ãn. In this case, Hnice
Q,nil =HQ,nil.

3. Q is acyclic of type Ãn. In this case, 〈[Ĩd] | d > 1〉 = 〈[M ] | nice(M) =∞〉 and Hnice
Q,nil =

Hnice
Q =HQ/〈[Ĩd] | d > 1〉.

Proof. Let k be an algebraically closed field, and let M be an indecomposable nilpotent

F1-representation of Q. In cases (1) and (2), ΓM is a tree and so nice(M) < ∞ by

Corollary 5.18. Since ΓM is a tree, M ⊗F1 k is a tree module and indecomposable [6].

In case (3), nice(I[d,i]) < ∞ and I[d,i] is absolutely indecomposable for all d by the same

argument. Hence, it only remains to determine which of the Ĩd are of finite nice length. For

30 We proved in [10, Th. 5.3] that when Q is connected, Q has bounded representation type over F1 if
and only if Q is either a tree or type Ãn.
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d= 1, Ĩ1 is isomorphic to the thin representation 1Q: then nice(Ĩ1)<∞ and Ĩ1 is absolutely

indecomposable since Q is connected. For d > 1, nice(Ĩd) =∞ by Corollary 5.20 and it is

straightforward to verify that Ĩd⊗F1 k is decomposable. The claim now follows.

Corollary 6.11. Let Q be a connected proper pseudotree with central cycle C. Let M

be an indecomposable nilpotent F1-representation of Q. Then, the following are equivalent:

1. nice(M)<∞.

2. M is a thin module or a tree module.

3. ResC(M) is absolutely indecomposable.

In particular, all M with nice(M)<∞ are absolutely indecomposable.

Proof. Clearly, (2)⇒ (1). To prove (1)⇒ (3), first note that the coefficient quiver of

ResC(M) is a coefficient subquiver of ΓM , so nice(M)<∞ implies nice(ResC(M))<∞. The

result then follows from Corollary 6.10. To prove (3)⇒(2), note that ResC(M) absolutely

indecomposable implies that ResC(M) is a tree module or Ĩ1. Then, either M is a tree

module or thin, as we wished to show.

Corollary 6.12. Let Q be a connected proper pseudotree with central cycle C. Then,

Hall algebra Hnice
Q,nil is described as follows:

1. If C is equioriented, then Hnice
Q,nil =HQ,nil.

2. If C is not equioriented, then Hnice
Q,nil =Hnice

Q =HQ/〈[M ] | ResC(M)∼= Ĩd,d > 1〉.

Proof. If C is equioriented, then every nilpotent indecomposable F1-representation is

a tree module. If C is not equioriented, then Q is acyclic and the claim follows from

Corollary 6.11(3).

Let Q be a connected proper pseudotree. Then, an absolutely indecomposable F1-

representation does not necessarily have finite nice length as the following example

illustrates.

Example 6.13. Let Q be the following proper pseudotree:

Q= s t u
α

β

γ
.

Let M be the F1-representation of Q with the following coefficient quiver:

A routine calculation shows that Mk is indecomposable for any algebraically closed field k.

Hence, M is absolutely indecomposable, but nice(M) =∞ by Corollary 6.11.

Let Fq denote the finite field with q elements. For a quiver Q and dimension vector d,

there are finitely many isomorphism classes of d-dimensional, absolutely indecomposable Fq-

representations of Q. One can then associate a function AQ(d, q) which counts the isoclasses

in each dimension. It is shown in [12] that AQ(d, q) is a polynomial in q with integer
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coefficients. These functions are shown to satisfy important combinatorial identities in [9],

and the behavior of ALn(d, q) at q = 1 is described via tree modules31 in [8], [14].

It is natural to ask how much of this theory carries over to F1-representations. Certainly,

there are finitely many isomorphism classes of absolutely indecomposable, d-dimensional

F1-representations of Q. One can then define a counting function AQ(d) analogous to that

of AQ(d, q). Two questions immediately become apparent.

Question 6.1. How can one characterize the absolutely indecomposable F1-

representations of a given quiver Q?

Question 6.2. How can one compute AQ(d) for a given quiver Q?

One would hope that absolutely indecomposable F1-representations of Q could be used

to interpret the numbers AQ(d,1). However, no obvious relationship exists between AQ(d)

and AQ(d,1). This leads us to the following question.

Question 6.3. Let Q be a quiver. Does there exist a finitary category FQ and a faithful

functor F : Rep(Q,F1)→FQ with the following properties?

1. For each field k, there is a functor Gk :FQ →Rep(Q,k) such that the following diagram

commutes:

Rep(Q,F1) FQ

Rep(Q,k)

F

k⊗F1
−

Gk
.

2. For any dimension vector d, there is a suitable notion of an absolutely indecomposable,

d-dimensional object in FQ.

3. There are finitely many absolutely indecomposable objects in FQ for each α, and the

associated counting function is precisely AQ(d,1).

For instance, one might ask whether FQ could be obtained by suitably modifying the

category CQ described in §3. These questions will be the topic of a future paper.

§A. The Proofs of Lemmas 6.3 and 6.4 of [7]

In Lemmas 6.3 and 6.4 of [7], Haupt asserts that Equation (5.1) holds for tree and band

modules. Unfortunately, we have reason to believe that Haupt’s original proofs of these two

lemmas contain significant mistakes, although the statements themselves are ultimately

true.32 We outline our concerns with each result below, and then discuss how our results

address these concerns. We have no reason to doubt the validity of any other result in [7].

In particular, the authors still believe the geometric material preceding these results to be

sound.

A.1 Gaps in the original proof of [7, Lem. 6.3]

Haupt’s proof of Lemma 6.3 begins with the following language: “By Proposition 6.1 it is

enough to treat the cases when F0 : S0 →Q0 is surjective and not injective. If i, j ∈ S0 exist

31 Using a broader notion of tree modules than the one considered in this paper.
32 At least for F1-representations, which is the concern of the present work. We note that Lemma 6.4 is

stated for band modules, which are not always defined over F1.
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with F0(i) =F0(j) and i 	= j, we construct a nice grading ∂ of F∗(1S) such that ∂(i) 	= ∂(j).”

However, Example 4.7 shows that this statement cannot be taken literally: any nice grading

on M fails to distinguish the first and last vertices. This is not surprising, as nice(M) = 1.

It would be necessary to first find a nice grading ∂0 on M, and then construct a ∂0-nice

grading which distinguishes i and j.

Proceeding with the argument, Haupt defines S′ to be a “minimal connected subquiver

such that there exist i, j ∈ S′
0 with F0(i) = F0(j) and i 	= j.” Note that Haupt has changed

the meaning of i and j from the previous paragraph: in terms of Example 4.7, the candidates

for S′ would be any of the four arrows. He then constructs a nice grading distinguishing the

endpoints of this S′. This grading is analogous to the nice grading in Equation (4.10), which

takes different values at adjacent vertices. This still leaves the problem of distinguishing

the endpoints of S′ when it is not “minimal” in the sense of this proof, since “minimality”

is unconnected to the size of |S0|− |Q0|.
To complete Haupt’s argument, we would need to assume that the result has been proved

in the case when a type A Dynkin subquiver contains k vertices lying in a single fiber of

the winding, and then prove that it holds when the subquiver contains k+1 vertices lying

in a single fiber. However, Haupt’s argument breaks down at this stage: specifically, the

line where Haupt writes “. . .so for all 1< k < l the equation F1(s1) 	= F1(sk) holds” would

no longer be valid (consider the first and third arrows of Example 4.7). Note that Haupt

does not attempt to move to 1-nice gradings (the construction in [7, Prop. 6.1]), as we do

in Example 4.7. Also, note that the quiver Haupt calls S′ is unrelated to the construction

of Q′ in [7, Prop. 6.1]. We are left to conclude that the original proof presented in [7, Lem.

6.3] is incomplete.

A.2 Gaps in the original proof of [7, Lem. 6.4]

Haupt attempts to demonstrate that if F : S →Q is a winding with S an affine Dynkin

quiver of type Ãn, and that none of the nice gradings ∂(a,b) distinguish a minimal pair of

vertices lying in a single fiber of F0, then F cannot be primitive. This claim appears to be

false. Consider the acyclic, primitive winding of L3 whose coefficient quiver is given by:

• •

• •

• •

• •

• • •

γ

β α

α

γ

β

γ

γ

γ γ

γ

The condition for an integer-valued map on the vertices of this quiver to be a nice grading

is simply Δγ =0, so the source and target of each γ-colored arrow must have the same image

under any nice grading. In particular, the source and target of any γ-colored arrow on the

bottom oriented path correspond to a minimal pair i and j that cannot be distinguished.

This again requires us to at least consider 1-nice gradings, which is not done in [7, Lem. 6.4].
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Proceeding with the argument, Haupt asserts that “εkρ(F1(sk)) = εmρ(F1(sm)) for all

k,m ∈ S0 with F (sk) = F (sm)” and uses this to conclude that S is not primitive. However,

this statement is false for the γ-colored arrows in the above example. For instance, if we

traverse the cycle in the clockwise direction, the expression εkρ(F1(sk)) is −5 for the γ-

colored arrow on top, and +5 for any γ-colored arrow on the bottom. Again, we are forced

to conclude that the original proof in [7, Lem. 6.4] is incomplete.

A.3 Patches to the gaps of [7, Lems. 6.3 and 6.4]

A common issue with [7, Lems. 6.3 and 6.4] is that at some point in the middle of the

argument, it is necessary to switch from the winding S→Q to the winding S→Q′ described

by [7, Prop. 6.1]. Indeed, Example 4.7 and the F1-band in the previous subsection both have

finite nice length, as one could see from iterating once.33 Unfortunately, Haupt only invokes

Proposition 6.1 at the start of each proof, to reduce to the case of distinguishing i, j ∈ S0

with F (i) = F (j). Furthermore, Haupt’s construction depends on a choice of grading, and

there are many unhelpful choices (e.g., constant functions are always nice gradings).

The material we develop in §§4 and 5 of this article is meant to address these exact issues.

Indeed, nice sequences, i -nice variables, universal i -nice gradings, and nice length all show

how one can iterate the construction of [7, Prop. 6.1] in a logically coherent and efficient

fashion. The proofs of Lemma 5.17, Corollary 5.18, and Theorem 5.20 in this article are

different from Haupt’s proofs in that the use of i -nice variables allows us to systematically

switch between windings as many times as is necessary to avoid the errors outlined above.
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