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Nori Motives of Curves With Modulus and
Laumon I-motives

Florian Ivorra and Takao Yamazaki

Abstract. Let k be a number field. We describe the category of Laumon 1-isomotives over k as
the universal category in the sense of M. Nori associated with a quiver representation built out of
smooth proper k-curves with two disjoint effective divisors and a notion of H}, for such “curves
with modulus”. This result extends and relies on a theorem of J. Ayoub and L. Barbieri-Viale that
describes Deligne’s category of 1-isomotives in terms of Nori’s Abelian category of motives.

1 Introduction

Let k be a field of characteristic zero with an embedding k < C into the field of
complex numbers.

1.1 Let R be a field or a Dedekind ring and T: 2 — mod(R) a representation of a quiver
2 with values in the category mod(R) of finitely generated projective R-modules.
In the unpublished work [9] (see also [11,16] for surveys), M. Nori constructed an
R-coalgebra Cr such that the representation T has a universal factorization (see The-
orem 2.1)

725 comod(Cr) B, mod(R),
where comod(Cr) is the category of left Cr-comodules that are finitely generated over
R, T is a representation, and Fr is the forgetful functor.

Then Nori applied this formalism to Betti homology to obtain the Abelian category
EHM of effective homological motives over k (see [9,11,16]). By construction, given
a k-variety X, a closed (reduced) subscheme Y ¢ X, and an integer i € Z, there is a
motive H;(X,Y) in EHM that realizes to the usual Betti homology.

1.2 J. Ayoub and L. Barbieri-Viale showed [1, Theorem 5.2, Theorem 6.1] that the thick
Abelian subcategory of Nori’s category of effective homological motives generated by
the Hy and H, of pairs is equivalent to: (a) the Abelian category EHM; associated
with the representation

Crv — mod(Z), (C,Y)— Hy(C,Y)

where Crvy, is the category of pairs (C, Y') where C is a smooth affine k-curve, Y ¢ C
is a closed subset consisting of finitely many closed points, and H;(C, Y) is the first
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Betti homology group of the pair (C, Y); (b) the Abelian category 4 of Deligne’s
1-motives with torsion [3, 8] .

Note that by [17, Théoréme 3.4.1], the derived category of Deligne’s Abelian cate-
gory of I-isomotives .# g is known to be equivalent to the thick triangulated subcat-
egory of Voevodsky’s category of geometrical effective motives with rational coeffi-
cients generated by motives of smooth k-curves.

1.3 Suchadescription is not possible integrally for the extension of the theory of 1-motives
introduced by G. Laumon [14] and studied in [2,4,15,20]. Indeed, the category of Lau-
mon l-motives with torsion 2 of [4] contains the category of infinitesimal formal
k-groups (equivalent via the Lie algebra to the category of finite-dimensional k-vector
spaces) as a full subcategory. In particular not all Hom groups in £#}* are finitely gen-
erated Abelian groups and therefore there cannot exist a quiver Z and a representa-
tion T: 2 — mod(Z) such that 24/ is equivalent to comod(Cr).

If the field k is not a number field, the same obstruction applies with rational coeffi-
cients. The Abelian category .#/’ of Laumon 1-isomotives still contains the category
of infinitesimal formal k-groups as a full subcategory and therefore not all its Hom
groups are finite-dimensional Q-vector spaces. Again this prevents the existence of
a quiver Z and a representation T: 2 — mod(Q) such that My is equivalent to
comod(Cr).

1.4 If k is a number field, one may still hope to describe the Abelian category .#/’, of
Laumon 1-isomotives over k via Nori’s tannakian formalism. The main result of this
work is such a description in that case.

More precisely, let a k-curve with modulus be a triplet (X, Y, Z) where X is a
smooth proper k-curve and Y, Z are effective divisors on X with disjoint supports.
Define the de Rham cohomology of a such a k-curve with modulus as the finite-
dimensional k-vector space

Hip(X,Y,2) = H'(X, [Jy - 5 Q%]),

where Jy and J; are the ideals in O that define Y and Z. The k-curves with modulus
define a category MCrvy for which a morphism (X,Y,Z) - (X’,Y’,Z’) is a mor-
phism f:X — X' of k-varieties such that Y < f*Y', Z - Z.eq > f*(Z' - Z.,4), and
Zred 2 ([*Z")red- If k is a number field, by forgetting the k-linear structure, the de
Rham cohomology of curves with modulus define a functor

Hjp: MCrv,* - mod(Q)
with values in the category of finite-dimensional Q-vector spaces. Our main theorem
is the following (see Theorem 5.9).
Theorem 1.1  Let k be a number field. The Q-linear Abelian category associated with
the representation of quiver
Hjp: MCrv,’ — mod(Q)
(XY, 2) — Hig(X, Y, Z) = H'(X, [Jy - 370k ])

is equivalent to the category .#\'y of Laumon I-isomotives over k.
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Theorem 1.1 generalizes the equivalence between (a) and (b) recalled in §1.2 and
proved by J. Ayoub and L. Barbieri-Viale [1, Theorem 5.2]. Note that we do not pro-
vide any definition for a non-homotopy invariant analog of the full category of Nori’s
motives of varieties (of arbitrary dimension) with modulus. Moreover in [1] the main
theorems are valid over any field of characteristic zero embedded into the complex
numbers, and they also admit integral coefficient variants. Here we are not able to
provide such generality."! We leave this issue for future study.

Conventions. Throughout the paper we work over a base field k with a fixed embed-
ding k — C. In §3.4, §3.6, and from §5.6 onward, we further assume that k is a number
field. For a k-scheme X, we denote by QY the sheaf of Kéhler differentials on X rela-
tive to k. If Z is a closed subscheme of X, we write J; c O for the ideal sheaf of Z.
For a vector space V over k, we write V* for the k-linear dual of V. Let R be aringand
let R be an R-algebra. For an R-linear Abelian category <7, we denote by & ®x R’
its scalar extension. This is an R’-linear Abelian category having the same objects as
&/ and such that

11 Hom g,z (A, B) = Hom. (A, B) ®r R'.
2 Reminders on Nori’s Tannakian Formalism

2.1 Let K bea field. Following [10, Chapitre II, §4], recall that a K-linear Abelian category
& is said to be finite if it is Noetherian and Artinian, i.e., & is essentially small and
any object in & has finite length. We shall say that & is Hom finite if for any objects
P, Q in & the K-vector space (P, Q) is finite-dimensional. By [12, Theorem 2.1],
we have the following theorem.

Theorem 2.1 Let & be a K-linear Abelian category which is finite and Hom finite, 7 a
quiver (i.e., directed graph), and T: 9 — &7 a representation of the quiver 9 with values
in . Then there exist a K-linear Abelian category <7, a representation R: 9 — o/, a
K-linear faithful exact functor F: of — &, and an invertible 2-morphism a: FoR - T
such that for every K-linear Abelian category 9, every representation S: 9 — 9B, every
K-linear exact faithful functor G: 8 — &, and every invertible 2-morphism 3: Go S —
T the following conditions are satisfied.

(i)  There exist a K-linear functor H: o/ — 9 and two invertible 2-morphisms
y:HOR;S 8:GoH —>F,
such that
GoHoR—"-Gos
l&*R J{ﬁ

FoR—2% T

is commutative.

IRecent papers [6,7], introduced a new construction of the universal category without finite dimen-
sionality assumption, which would enable us to define ECMM; for an arbitrary subfield of C. Unfortu-
nately, we would then lose a description of the category as comod(Cr), which is essential in the proof
of our main result (see Proposition 2.3).
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(i) IfH": o - 2B isa K-linear functor and
y':H'OR—:> S 8:GoH —=>F

are two invertible 2-morphisms such that the square

GoH oR—"+Gos

s ]

FoR—2% T

is commutative, then there exists a unique 2-morphism 6: H - H' such that y' o
(0xR)=ypandd' o (G~*0)=4.

It will be useful to keep in mind the following remark.

Remark 2.2. When & = mod(K), the previous theorem is due to M. Nori. More
precisely, let & be a full subquiver of 2 with finitely many objects and Endg(T|¢)
the subring of [, Endg(T(q)) formed by the elements e = (e;)4es such that e, o
T(m) = T(m) o e, for every object p € & and every morphism m: p — q in 2. Then
its linear dual Cry, := Endg(T|s)" is a coassociative, counitary K-coalgebra that
is finite-dimensional over K. We may then consider the K-linear Abelian category
comod(Cr) of finite-dimensional left comodules over the coassociative and counitary
K-coalgebra
Cr:= ngén Crie

where the colimit is taken over full subquivers of & with finitely many objects.

For every object p € 2 the finite-dimensional K-vector space T(p) inherits a
structure of left Cp-comodule. This provides a representation T: 2 — comod(Cr)
such that T = Fr o T where Fr:comod(Cr) — mod(K) is the forgetful functor. The
main result proved by Nori is that the tuple (comod(Cr), T, Fr, id) satisfies the uni-
versal property of Theorem 2.1 when & = mod(K).

The general case is deduced from Nori’s result. Indeed, let & be a finite and Hom
finite K-linear Abelian category and T: ¥ — &7 a representation. A result [12, Corol-
lary 4.3] that can be easily deduced from [23, 5.1 Theorem, 5.8] assures the existence
of a K-linear exact faithful functor w: & — mod(K). Let & := comod(Cyor) and
consider the associated representation

R:=woT:2 - comod(Cpor) =t .

The universal property of (<7, R, F,oT, Id) applied to the tuple (%2, T, w, 1d) provides
a K-linear exact faithful functor F: .o/ — &2 and an invertible natural transformation
a:F o R - T. One checks then that the tuple (<7, R, F, a) satisfies the universal
property stated in Theorem 2.1 (see [12] for details).

2.2 Let Z be a quiver and T: ¥ — & a representation. Let (%4, G, R, 8) be an tuple
where 4 is a K-linear Abelian category, S: 2 — 4 is a representation, G: %4 - &
is a K-linear exact faithful functor, and 3: G o S — T is an invertible natural trans-
formation. By the universal property of Theorem 2.1, there exist a K-linear functor
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H:comod(Cr) — % and two invertible natural transformations
y:HoT;S, 5:G0Hi>FT
such that the square

— G*y
GoHoT ——=GoS

i(S*R lﬁ
Fr o?: T

is commutative (here we use the notations from Remark 2.2). J. Ayoub and L. Barbieri-
Viale gave a criterion for the functor H to be an equivalence [1, Proposition 2.1]. The
proof of our main result relies on this criterion.

Proposition 2.3 (Ayoub and Barbieri-Viale [1]) Assume the following conditions.

(i)  Forall vertices p, q € 9, there exist puq in 2 and edges i: p — pugq, j:q - puq
such that the map S(i) + S(j): S(p) ® S(q) - S(puq) is an isomorphism in A.

(ii) Every object in A is a quotient of an object of the form S(p) for some vertex p € 2.

(iii) For every map S(p) — B in 2, there exists a finite sub-quiver & € 9 containing
p such that Ker{T(p) = GoS(p) —» G(B)} is a sub-End(T|s )-module of T(p).

Then the functor H: comod(Cr) — 2 is an equivalence of categories.

2.3 Let & and £, be two finite and Hom finite K-linear Abelian categories. Let %, 2,
be quivers, D: 9, — %, a morphism of quivers, and Ty: 9, — & and Tr: 9, - &,
two representations. Let (4, Fi, Ry, 1) and (%, F,, Ry, &) be tuples obtained by
applying Theorem 2.1 to the representations T; and T, respectively.

The next proposition shows that certain exact functors can be lifted to universal
categories (for a proof, see [12, Proposition 6.6]).

Proposition 2.4  Let (®, ¢) be a pair where ©: P — P, is an exact K-linear functor
and ¢: ® o Ty - T, o D is an isomorphism of representations. There exist an exact
functor ¥: e/} — a5, an invertible natural transformation p:® o F; - F, o Y, and an
isomorphism of representations p:¥ o Ry = R, o D such that

2.1) ®oFoR — ", ®oT

p*Ry Tz oD

ay*xD

F,oWoR,——=F,0oR,0D
Fy*xp
is commutative.
2.4 In this work we will need to lift natural transformations as well. Let Dy, D,: &, — %,
be a morphism of quivers. Let (O, ¢1), (D2, ¢2) be a pairs, where @y, ©,: P, - P,

are exact K-linear functor and ¢: @, 0Ty — T, 0 Dy, ¢2: Py 0 Ty - T 0 D, are
isomorphisms of representations.
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By Proposition 2.4, there exist exact functors ¥, ¥,: .24 — 97, invertible natural
transformations p;: @y o F; - F, 0 ¥, p: @3 o F; » F, o ¥, and isomorphisms of
representations p;: W1j0R; = Ry0Dy, pa: W20R; = Ry0D; such that the corresponding
diagrams as in (2.1) are commutative.

Proposition 2.5 Let (6,0p) be a pair where 0:®; — ®, and 0p:D; - D, are
natural transformations such that the square

(I)IOTILTZODI

iG*Tl \LTz*el)

(DZOTlLTZODZ

is commutative. Then there exists one and only one natural transformation 6:9, > ¥,
that makes the squares

\PIORILRZODI @10F1L>F20\P1
J{G*Rl le*G‘D le*Fl lFZ*O
WZORILRZODZ q)zOFlLFzO\Pz

commutative.

Proof Let X be an object in .27. Let us sketch the construction of a morphism
Ox:¥1(X) — ¥,(X) in % which makes the square

@ (F (X)) 2> Fy (W (X))

l Or,(x) in (6x)

D,(F(X)) > By (¥a(X))

commutative. Since F, is faiihful, such a morphism is necessarily unique. When X =
Ri(p) for p € 21, we define 0y to be the unique morphism that makes the square

¥ (X) —2> Ry(Dy(p))

J(OX lRZ(eD,p)

W, (X) 22> Ry(Ds(p))

commutative. This defines also 6x when X is a finite direct sum of such objects. As-
sume now the existence of an epimorphism s: Y — X in .2/; where Y is an object for
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which 6y has been constructed. It is then enough to check the existence of a factor-

ization
¥
¥ () L g (x) 0
Oy
Y2 (s) v
¥,(Y) ¥, (X) 0.

As the rows are exact, this amounts to checking that W, (s) o 8y vanishes on the kernel
of W1 (s). But this is true since it is after applying F,, and F, is faithful.

Similarly, one shows the existence of @x when X is any subobject of an object Y in
o, for which 0y has already been constructed.

This concludes the proof since by [11, Proposition 7.1.16] every object in o4 is a
subquotient of a finite direct sum of objects of the form X = R;(p) for p € 2. ]

Remark 2.6. Note that since F, is a K-linear exact and faithful functor, if 6 is a mono-
morphism (resp. epimorphism), then 8 is a monomorphism (resp. epimorphism).

3 Nori Motives of Curves With Modulus
3.1 In this subsection, we collect some preliminary results on cohomology of curves.

Proposition 3.1 Let f:C — C' be a finite k-morphism of smooth, proper connected

k-curves. Let D and D’ be effective divisors on C and C’, respectively.

(i)  Suppose D < f*D'. Then the canonical map Oc: — f.O¢ induces Ip: - f.Ip
and the trace map f, Q¢ — Qp, induces f.(J5 Q%) = I5 Q..

(ii) Suppose D — Dyeq > f*(D' = D..4) and Dreq > (f*D')rea. (The latter condition
is equivalent to f(C\|D|) ¢ f(C'~|D’|)). Then the canonical map Qp, — f.Qr
induces 50 Qcr — f.(I5'Qc) and the trace map f.Oc - Oc: induces f,Ip —
jDr.

(Recall that by our convention k is a subfield of C, that Q. is the sheaf of Kihler differ-

entials on C relative to k, and that Jp is the ideal sheaf defining D.)

Proof This follows from the following elementary lemma. ]

Lemma 3.2 Let K be a function field of one variable over k, and let R c K be a

discrete valuation ring containing k. Let L be a finite extension of K and let S be the

integral closure of R in L. Denote by m the maximal ideal of R, and by wy, ..., n, the

maximal ideals of S. Let e; € Z~q be the ramification index of n;. Let m,ny,...,n, 21

be integers and put n" =" ---nlr, 0" =00

(i)  Suppose n; < e;m for all i. Then the canonical map K — L sends m™ ton", and
the trace map Q. — Qp sendsn™" Qg tom™"Qp ;.

(i) Supposen; —12 e;(m —1) for all i. Then the canonical map Q}(/k - QlL/k sends
m " Qp/x ton " Qgx, and the trace map L — K sends n" tom™.
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Proof The last statement of (ii) follows from [22, Chapter III, Propositions 7, 13]. All
other statements are elementary. ]

Proposition 3.3  Let C be a smooth proper curve over k and let D be an effective
divisor on C. We set
U(C,D):=H*(C,Ip,/Ip) V(C,D):=H"(C.Ip,,Ip/0c).
Then the differential map induces isomorphisms
d:U(C,D) — H*(C, (Oc/IpTp. ) ® QL),
d:V(C,D) — H*(C, (95 /I5.,) ® QL).

Proof Write D = }p|c| npP. Then we have

U(C,D)z @ mp/mp’,
Pe|D|

H'(C,(0/9pTp,,,) ® Qc) 2 @ Qg p/mp" Qg p,
P¢|D|
where mp denotes the maximal ideal of the local ring &¢ p of C at P. Thus the first
statement follows from the bijectivity of
dimp/mp? — Qp p/mpr 7 Qp
which is readily seen. Similarly, we have

V(C,D)z @ m} " /0cp,
Pe|D|

H(C. 05 /T, ©0c) = @ mp™ Qg p/my g
S
Thus the second statement follows from the bijectivity of
dimy " [Oc p — mp"P Qe p/mp Qe p,
which is readily seen. u
Corollary 3.4  'The two k-vector spaces U(C, D) and V(C, D) are canonically dual
to each other.
Proof We may suppose D is (effective and) non-trivial. Then we get
U(C, D) =ker[H'(C,Jp) - H'(C,Ip,,)]

from an exact sequence 0 — Jp — Jp,_, —> Ip..,/Ip —> 0. On the other hand,
another exact sequence 0 — I} ® Q¢ — I3 ® Q¢ — (15/75, ) @ Qg — 0
and the above proposition yield

V(C,D) = Coker[H*(C,Tp. ,Q¢) - H*(C, I, Qp)].

Now the corollary follows from the Serre duality. |

Corollary 3.5 Let (C,D) and (C', D") be pairs consisting of a smooth proper k-curve
and an effective divisor. Let f:C — C’ be a finite k-morphism. The canonical map
Oc' — f.Oc and the trace map f,QF — QY induce the following functoriality.
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(i) IfD< f*D’, then we have
f:U(c’,D') — U(C,D) f.:V(C,D) — V(C,D).
(i) IfD - Drea > f*(D' - D'y) and Dyea > (f*D’)rea, then we have
f:v(',D')— V(C,D) f.:U(C,D)— U(C',D").

Proof Since D < f*D’ implies Dyeq < (f*D')rea < f*(D;.q)- this follows from
Propositions 3.1 and 3.3. ]

3.2 Letusdenote by MCrv the following category. An objectin MCrv isa triplet (X, Y, Z)
where X is a smooth proper k-curve and Y, Z are effective divisors on X such that
|Y|n|Z| = @. A morphism (X,Y,Z) —» (X', Y, Z") in MCrv is a morphism f: X —
X' of k-varieties such that Y < f*Y', Z = Zrea 2 f*(Z' = Z]o4)> and Zreq 2 (f*Z)rea
(equivalently, f(X \|Z]) c f(X'\|Z'|)). It then follows from Proposition 3.1 that the
canonical map Oxs — f, Ox induces morphisms of sheaves

(31) jyr —_— f*jy and 521703(, —_—> f*(jEIQIX)

It will be useful to consider also the following variant: MCrv is the category with
the same objects as MCrv, but this times a morphism (X, Y,Z) - (X',Y',Z’) in
MCrvy is a morphism f: X — X' of k-varieties such that Y — Yreq > f*(Y' - Y/,4),
Yied 2 (f*Y")red> and Z < f*Z’. Again it then follows from Proposition 3.1 that the
trace map f.Ox — Oxs induces morphisms of sheaves

(3.2) fuJyr — Iy and f,(3,Q%) — 7, QL.

Definition 3.6 Let (X, Y, Z) be an object in the category MCrv. We define
Hip(X,Y,Z) = H'(X,[Jy > I7'Q%])

to be the first hypercohomology group of the complex of &'x-modules [Jy — J;'Q% ],
where Jy is placed in degree zero. This is a finite-dimensional k-vector space. By (3.1),
we obtain a functor Hjp: MCrv°®? — mod(k), where mod(k) is the category of finite-
dimensional k-vector spaces. We also have a functor

(3.3) "H}jz: MCrv — mod(k)

which takes the same value on objects as HER, but acts on morphisms via (3.2).
3.3 In the following, see Proposition 3.3 for the definition of U(X,Y) and V (X, Z).

Proposition 3.7 Forany (X,Y,Z) € MCrv, there is a canonical decomposition
(3.4) HiR(X,Y,Z) 2 Hig (X, Yeds Zred) @ U(X, Y) @ V(X, Z).

Moreover, the decomposition (3.4) is functorial with respect to maps in MCrv.

Proof Since U(C, Dyeq) = V(C, Dyea) = 0 for a smooth proper k-curve C and an
effective divisor D, we are reduced to showing

Hir(X,Y,Z) 2 Hix (X, Yrea, Z) ® U(X,Y) 2 Hir (X, Y, Zped) ® V(X, Z).
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To show the first isomorphism, we construct canonical maps

a:Hyg (X, Yiea, Z) — HiR(X,Y,Z), b:HiR(X,Y,Z) — Hig(X, Yred, Z)
such that b o a = id and ker(b) 2 U(X, Y). For this we first note that the map

[9y > IvT3,,97 Qx] — [Tv.e > I7 Qx]

(induced by the inclusions Jy c Jy,,, and JyJy! J;' c J5') is a quasi-isomorphism by
Proposition 3.3. Using this, we define a to be the composition

Hr (X, Yrea, Z) = H'(X, [T = I7' Q%))

< H'(X,[Iy - I35, 9/ 0%]) —

H'(X, [y > 77Qk]) = Hyp (X, Y, 2),
where the second map is induced by the inclusion JyJy! 75! ¢ J;'. Next, b is given
by

Ha(X, Y, 2) = H'(X, [Ty > J7'0k])
— H'(X, [Ty, > 97 Ox]) = Hi (X, Yrea 2),

which is induced by the inclusion Jy c Jy,,. It is obvious that the composition bo a is
the identity. It is also clear from this construction that ker(b) = U(X,Y). Note also
that Proposition 3.3 tells us that Coker(a) 2 U(X,Y), as it should be.

The second isomorphism Hjz (X,Y,Z) = HYz (X, Y, Zrea) ® V(X,Z) is con-
structed in a similar way. We omit it. ]

Proposition 3.8 Forany (X,Y,Z) € MCrv, the two k-vector spaces Hiz (X, Y, Z)
and Hiy (X, Z, Y) are canonically dual to each other.

Proof Apply Lemma 3.9 with C* = [Jy - J;'Q% ] and D* = [Jz - I3 Q%] [ |

Lemma 3.9 Let C* and D* be two complexes of sheaves of k-vector spaces on X
such that C' and D' are locally free Ox-modules for all i and that C' = D' = 0 unless
i ¢ {0,1}. Let A:Tot(C* ®; D*) — Q% be a map of complexes and suppose that it
induces C° = Hom,, (D', Q%) and C' = Hom,; (D°, QY). Then A induces a perfect
duality between H (X, C*) and H*>~ (X, D*) for all i.

Proof This is reduced to the Serre duality by an exact sequence

- — H7Y(X,C") — H(X,C*) — H'(X,C") — H'(X,C") — ---

and a similar sequence for D*. ]

3.4 The following definition introduces our main object of studies.

Definition 3.10 Let k be a number field. The category ECMM,; of effective coho-
mological isomotives of curves with modulus is the Q-linear category associated with
the representation Hjp: MCrv® — mod(Q).
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By construction the representation Hjj, has a factorization

_ H, FS
MCrv®® — ECMM,; —> mod(Q)

—1
into a representation Hyp and a Q-linear faithful exact functor Fyy.

3.5 Let Crv be the category defined as follows (see [1, §5.1]). An object is a pair (C,Y)
where C is a smooth affine curve and Y ¢ C is a closed subset consisting of finitely
many closed points. A morphism (C,Y) — (C’,Y’) is given by a k-morphism
f:C — C’'such that f(Y) c Y.

Recall that by definition [1, §5.1] the Q-linear Abelian category EHM; of effective
homological isomotives of curves ? is the universal category associated with the rep-
resentation

(3.5) H2:Crviy — mod(Q), (C,Y)+— HP(C,Y)®zQ,

where HP (C, Y) is the Betti homology of the pair (C, Y) (with integral coefficients).

Let us denote by ECM, the universal category associated with the representation
Hy:Crv;? — mod(Q), (C,Y)+— Hg(C,Y)®zQ,

where Hy (C, Y) is the Betti cohomology of the pair (C, Y). The Q-linear dual functor
mod(Q)°? — mod(Q) induces an equivalence

(3.6) (EHM;)°® —> ECM,.

3.6 In this work, it will be convenient to define effective cohomological motives of curves
using algebraic de Rham cohomology instead of Betti cohomology. For this we as-
sume that k is a number field and consider the representation

(3.7) Hljg: Crv®® —s mod(k)
(C,Y) — Hgg(C,Y) := Hg (C, [Ty ~ Qc])).

If C is the smooth compactification of C and Co, = C~ C is the set of points at infinity,
then we have H(C,Y) = Hiz(C, Y, Cs ), where H};(C, Y, Cs) is defined as in
Definition 3.6 with both Y, Co, viewed as closed reduced subschemes of C. Let us
denote by ECM{® the Q-linear Abelian category associated with the representation
H!j in (3.7). By construction the representation Hj has a factorization

-1

H
Crv®? —% ECM{R Lar, mod(Q)

—1
into a representation H i and a Q-linear faithful exact functor F4qgr. Note that by the
universal property the functor Fag factorizes in mod(k) via the forgetful functor.

Lemma 3.11  There is a canonical isomorphism of functors Hy, ® C — H}, .. on the
category Crv.

2Note that in [1] the category EHM; is denoted by EHM{' , while EHM; stands for the the thick
Abelian subcategory of Nori’s category of effective cohomological isomotives generated by the first co-
homology motive of pairs. These categories are equivalent by [1, Theorem 5.2, Theorem 6.1].
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Proof For a k-variety V we write V*" for the complex analytic variety associated
with V. Let (C, Y) in Crvand let J, J be the ideals of Y*" and CZY in & The canon-
ical map

Hir(C,Y, Coo) © C — H'(C",[I > 7' Qw])

is an isomorphism of C-vector spaces by GAGA. On the other hand, we have canon-
ical quasi-isomorphisms

j+Com 2 [Ogn - 7' Qn],  i.Cyam 2 [Ogm[] > 0],

where j: C*" — C™and i: Y™ - C" are immersions and Ccan (resp. Cyan) denotes
the constant sheaf on C*" (resp. Y*"). There is an exact sequence of complexes

— [1 > 7' Qn] — [Ogn > J7' QL] — [Ogm [T - 0] — 0.

Hence the lemma follows from the fact that H;(C, Y) ®z C is computed as the hy-
percohomology of the cone of j,Ccam — i,Cyan with degree shifted by one. |

Proposition 3.12  Let k be a number field. The categories ECM; and ECM{® are
equivalent.

Proof Consider the 2-fiber product .7 of the categories mod(k) and mod(Q) over
mod(C). An object of o7 is thus a triplet (V, W, «) where V is a finite-dimensional
k-vector space, W is a finite-dimensional Q-vector space, and a: V ®; C - W ®gp C
is an isomorphism of C-vector spaces. The category <7 is a Q-linear Abelian cate-
gory with two Q-linear exact faithful functors I1;: & — mod(Q), IT: &/ - mod(Q)
given by the projection on the first factor composed with the forgetful functor and
the projection on the second factor. We may then consider the representation

Hjp p: Crv® — o/
(C,Y) — Hay 3(C, Y) := (Har (C, Y), Hp(C, Y) ®2 Q. a),

where the isomorphism a: Hjz (C,Y) ®, C - Hg(C,Y) ®; C is the one of Lem-
ma 3.11. We have the commutative diagram

Ha ECM{R — mod(@)

dR B
Crv? ———= &/

ECM; —— mod(Q)

https://doi.org/10.4153/CJM-2017-037-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-037-x

880 F. Ivorra and T. Yamazaki

where IT; and TI, are the functors provided by the universal properties. The subdia-
gram

ECM{®

Crv®? mod(Q)

ECM,

then provides a Q-linear functor ECM; — ECMX, Similarly we get a Q-linear func-
tor ECM{® — ECM; and it is easy to check that they are quasi-inverse to one an-
other. ]

Let C be any smooth affine k-curve. We denote by C, its smooth compactification
and set C,, = C \ C viewed as a reduced subscheme of C. This induces a morphism
of quivers

(-):Crv — MCrv, (C,Y)+— (C,Y,Cs).

Remark 313. Let f:(C,Y) - (C’,Y’) be a morphism in Crv. Then f extends to
a morphism f:C — C' between smooth compactifications. This morphism satisfies
f(C~Co) '\, and since f(Y) c Y/, we have

Y = Yreq < (f*(Yr,ed))red g.]M(leecl) :f*(Y,)'

Therefore, f defines a morphism between (C, Y, Co,) and (6/, Y’,C!.) in MCrv.
Similarly, we have another morphism of quivers

(3.8) Crv — MCrv, (C,Y)+ (C,Co,Y).

Since, by definition Hjy = Hlj o (-) as representations of the quiver Crv°P, the
universal property of Nori’s construction [12, Theorem 2] ensures the existence of a
@Q-linear exact faithful functor Igcy: ECM;le — ECMM, and isomorphisms of func-
tors . L

Iecm o Hgg — Hgg o (=), Fir © Ieem — Far
that makes the square

—1 —1
Fgp o Igcm © Hyg — Fip o Hyg o (=)

l i

Fr o HiiR —————Hy,
commutative.

Let us consider now the Q-linear Abelian category % defined as follows. An object
in #is a tuple (V, W, a, b) where V, W are finite-dimensional k-vector spaces and
a:V — W and b: W — V are morphisms of k-vector spaces such that b o g = Id.
A morphism (V,W,a,b) - (V',W',a’,b") in £ is simply a pair of k-linear mor-
phisms (f:V - V', g W - W') such thata’o f = goaand b’ o g = f o b. Note
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that by construction, we have two QQ-linear exact functors obtained by projection on
the first and second factor composed with the forgetful functor I1;: # — mod(Q),
I1,: # - mod(Q) and that, moreover, IT; is faithful.

Let X be a smooth proper k-curve and Y, Z be closed subschemes of X. Recall
from Proposition 3.7 that there are two morphisms

(3.9) a:Hig (X, Yieds Zred) — Hir (X, Y, Z)
and
(3.10) b:HiR(X,Y,Z) — Hir(X, Yied> Zred)

such that b o a = id. We may therefore consider the representation

Hjg 5 MCrv® — %
(X,Y,Z) — (HyR(X, Yred> Zrea), Hir (X, Y, Z), a, b),

where a and b are the morphisms (3.9) and (3.10). By construction IT, o HER’ 2= H}iR
and from (3.7) we have ITj o H}, ,, = Hjp o (=)s, where (—)¢ is the morphism of
quivers

(=)e: MCrv — Crv, (X,Y,Z) —> (X \ Zred> Yred)-

By [12, Theorem 2], there exists a faithful exact Q-linear functor F;: ECMM, — %
and two isomorphisms of functors y: F{, Oﬁfm - Hyy g, 0: 110 F, — Fip such that

a 17t o *y 1
MyoFgzoHyy —— Il oHy 5
lé‘*H;R l
Fig o ﬁilR ——Hy
is commutative.
We may apply [12, Proposition 6.6] to IT; to obtain the existence of a Q-linear exact
and faithful functor ITgcy: ECMM,; — ECMfP‘ and isomorphisms of functors
=1 —1
I 0 Fg — Far o llgem,  Tgem o Hgg — Hgr © (—)et

such that the diagram

—1 —1 —
IT; o F§y o Hyg — Far 0 ITgcm © Hyg — Far © Hgg 0 (—)et

o

I o HER,@ B H(liR o (=)at

commutes. (See [12, Proposition 6.7] for uniqueness.)
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Remark 3.14. Let Iz: mod(k) — 2 be the functor that maps V to (V, V,1d, Id). The
diagram

ECM® ™ mod(k)

lIECM llga\
pe

ECMM, — 2 > % — 2+ mod(Q)

\/

a
FdR

is commutative up to isomorphisms of functors.

Proposition 3.15  The composition Ilgcm © Ixcm is isomorphic to the identity. More-
over, the functor Ixcy is fully faithful.

Proof Since ()¢ o (-) is the identity on the quiver Crv, the first assertion is an
immediate consequence of the uniqueness statement [12, Proposition 6.7]. Let M, N
be objects in ECM;le and a: Igcp (M) — Igcm(N) be a morphism in ECMM;. Note
that for such an «, we have ITy o F,(«) = IT; o F§,(a) = Fip (). Let B = Tgcm ().
It is enough to show that Igcm(f) = « and since Fjy is faithful, it is enough to show
this equality after applying Fg;. We have

Fir(Tecm(B)) = Far(B) = Far (Mecm(«)) = Tl 0 F(a) = Tz o Fp(a) = Fgg (a).
This concludes the proof. ]

4 Review of Laumon 1-motives and Their de Rham Realization

In this section, we recall necessary material introducing notations [4,14].

4.1 Recall that we are working over a field k of characteristic zero. Let Aff be the category
of affine schemes over k, and let .7 be the category of sheaves of Abelian groups on
the fppf site on Aff. For F € .7, we abbreviate F(R) := F(Spec R) for a k-algebra R,
and we put Lie(F) := ker[F(k[e]/(€?)) — F(k)].

4.2 We shall consider full subcategories of .7

Let .} be the full subcategory of . consisting of objects that are represented by
connected commutative algebraic groups G over k [14, (4.1)]. We identify such a G
with the object in .# represented by G.

Let .#} be the full subcategory of .#; consisting of linear commutative algebraic
groups over k. We write .#n; (resp. mul) for the full subcategory of .#; consist-
ing of unipotent (resp. multiplicative) groups. For any L € .7}, there is a canonical
decomposition L & Lyp; X Lyl Where Lyni € Funi and Ly € Zmu- The functor
Funi = mod(k), L — L(k) is an equivalence by which we often identify them.

Let .7, be the full subcategory of .#; consisting of Abelian varieties. Recall that
any G € .%, canonically fits in an extension 0 - G; - G — G, — 0, where G, € .7,
and G, € .. We ease the notation by putting Gun; = (G;)uni and Guu1 = (G1)mul-
We call Gs, := G/Gypi the semi-Abelian part of G.
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Let .7 be the full subcategory of .% consisting of formal groups over k without
torsion [14, (4.2)]. We write .#in¢ (resp. #%) for the full subcategory of ., con-
sisting of connected (resp. étale) formal groups. For any F € ./, there is a canon-
ical decomposition F = Fjy¢ x Fg, where Fipr € Fnr and Fg € % The functor
Lie: .#ns & mod(k) is an equivalence, with a quasi-inverse V — V @ G,, where G,
denotes the formal completion of G,.

4.3 Following [14, (5.1.1)], define a Laumon 1-motive to be a complex [F — G] in .¥ such
that F € /_; (placed at degree —1) and G € .%; (placed at degree 0). We denote the
category of Laumon 1-motives over k by .Z* (or by .#,* (k) if we wish to stress the
dependency on k). There is an equivalence (.#")°? — .4, called the Cartier duality.

4.4 A Laumon l-motive [F — G] is called a Deligne 1-motive if Fiyr = 0 and Gyp; = 0.
Denote by .# the full subcategory of .#,* consisting of Deligne 1-motives. Along
with this, we denote by ./Z\"" (resp. .#™) the essential image of an obvious full
faithful functor

Fani — A, Ur—U[0]:=[0- U],
(resp. Sinf — A", F+— F[1]:=[F - 0]).

4.5 LetM =[F — G] € #;*. We define a filtration on M by
il M =M>fil' ;M = [Fs > G] 2 fil’, M = [0 = Gypn;] 2 i’ , M = 0.
We put Gr' , M := fil',, M/fil'’) M, so that
Gr’yM = Fipe[1], Gr'yM = [Fs > Gga] =t Mpe, Gr’yM = i’ M = Gupni[0].
We have defined functors
Gry M — MM, GE M — Mypay Grlyidl® — A,

Note that all these functors are exact, and that Groﬁ (resp. Grzﬁ) is a left (resp. right)
adjoint to the inclusion . — ./ (resp. .4 — #). Following [4], we also
define (recall that G, = G/Gyni) My := M/ﬁlz/,lM = [F - Gga]. The functor M —

M, is a left adjoint of the inclusion {G € . | Gyn; = 0} < A

4.6 Wecall M = [F » G] € 4" unipotent free if Gyn; = 0. For such M, it was shown
[4, (2.2.3)] that there is an extension M" = [F — G"] € . of M by Ext_4a(M,G,)*
such that it is universal among extensions of M by an object of .#,"".. (Here * denotes
k-linear dual. Recall that by convention we identify a k-vector space with an object

of ni-)

4.7 Now take any M = [u: F — G| € .. Note that M, and Mp, (introduced in §4.5)
are unipotent free. By [4, (2.3.2)], an exact sequence 0 - Mpe = My — Fipf[1] = 0
induces an exact sequence 0 — (Mpe)" = (M, )" — Fiyr — 0, where

ﬁinf = [Finf - Lie(Finf)] € =//1a-
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Let us write (Mpe1)" = [ul,: Fee > Gbyl, (Mx)" = [ul: F - G1]. Then we get an
exact sequence

(4.1) 0 - Lie(GY,,) - Lie(G!) — Lie(Fiy¢) — 0,

which admits a canonical splitting given by Lie(u%,).
We also need the following remark. The universality of (M, )" induces maps vy
and v}, in the following commutative diagram with exact rows.

(4.2) 0 — Ext(M,,G,)* — (My)! ——= M, —=0
iVM ivsﬂ ‘Lz
0 Guni M Mx 0

4.8 The sharp extension M* = [F - G'] of M = [F — G] € .4 is defined to be the
pull-back of (M,)" by the canonical surjection M — M,. (If M is unipotent free,
then M*¥ = M".) There is a commutative diagram with exact rows and columns:

(4.3) 0 0

0 — Ext(M,,G,)* M! M 0
p /1
—l q //h
s VM
0 — Ext(M,,G,)* — (M,)" M, 0
0 0

Note that the dotted arrow vf; makes the lower right triangle commutative by (4.2),
but it is not necessarily the case for the upper left triangle. The middle vertical exact
sequence in (4.3) admits a canonical splitting s: M ! 5 Guni characterized byios =
p — (v}, o q). Hence there also is an exact sequence

0 —> Lie(Gyni) — Lie(G') — Lie(GY) — 0

equipped with a canonical splitting. Combined with (4.1), we obtain a canonical de-
composition

(4.4) Lie(G") = Lie(GY,;) @ Lie(Fint) @ Lie(Gun;)-
4.9 Following [4, (3.2.1)], we call an exact functor

Rar:.# — mod(k), Rar([F - G]) := Lie(G")
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the sharp de Rham realization. By (4.4), we have a canonical decomposition
(4.5) RdR(M) = RdR(MDel) @ Lie(Finf) @ Lie(Guni)
forany M = [F - G] e ..

4.10 Let . #,g = A1 ®z Q be the Q-linear Abelian category of Deligne 1-isomotives (1.1).

Recall from $§3.5 that EHMP is the universal Q-linear category associated with the
Betti homology functor (3.5) (with K = Q). L. Barbieri-Viale and J. Ayoub [1] showed
the following important result, which will be a key ingredient in the proof of our main
result. (Actually, they proved a stronger statement with integral coefficients.)

Theorem 4.1 We have an equivalence of Q-linear Abelian categories EHM? = M.

This functor is induced by a functor Crv — . via universality (see Remark 5.3).
We will construct its modulus version in the next section.

5 1-motives of a Curve With Modulus and the Main Theorem

In this section, we associate a Laumon 1-motive LM(X, Y, Z) € .#* with a smooth
proper k-curve X and two effective divisors Y, Z on X with disjoint support. We shall
see functorial properties that yield two functors

LM:MCrv — ., LM:MCrv — ;.

5.1 Let X be a smooth proper k-curve and Y an effective divisors on X. We denote by
J(X,Y) e A the generalized Jacobian of X with modulus Y in the sense of Rosen-
licht and Serre [18,21]. Recall that J(X, Y) is the connected component of the Picard
scheme Pic(Xy) of a proper k-curve Xy that is obtained by collapsing Y into a single
(usually singular) point [21, Chapter IV, §3-4]. It can also be defined as the Albanese
variety attached to a pair (X, Y) [19, Example 2.34], [20, §3.3].

Let X’ be another smooth proper k-curve and Y’ an effective divisor on it. Let
f:X - X' be a k-morphism. When Y < f*Y’, we have a pull-back f*: J(X',Y") —
J(X,Y) deduced by the functoriality of the Picard scheme. When

Y - Yiea 2 f*(Y, - leed)’ Yied 2 (f* Y,)red:
we have a push-forward f,: J(X,Y) - J(X’, Y") by [20, Proposition 3.22].

Lemma 5.1 There exists a canonical isomorphism (Proposition 3.3)

(5.1) Lie J(X, Y)uni & U(X, Y).

Proof IfY =, thenJ(X,Y)isan Abelian variety so that J(X, Y)un; = 0, and hence
the lemma holds. We suppose Y # @ in what follows. Consider an exact sequence of

sheaves on X: 0 » Jy — Jy., = Jy,,/Jy — 0. We have H°(X,Jy,,) = 0 since Y is a
non-empty effective divisor. It follows that

H°(X,Jy,,/9y) 2 ker(H'(X,Jy) - H'(X,Jy,,)).
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By [21, Chapter V, §10, Proposition 5], there are canonical isomorphisms
H'(X,Jy) 2 LieJ(X,Y), H'(X,Jy,,)=LieJ(X, Yred).
Now the lemma follows from an exact sequence
0 — LieJ(X,Y)uyn — LieJ(X,Y) — Lie J(X,Y)s, — 0
and a canonical isomorphism J(X,Y)s = J(X, Yred)- ]

5.2 Let X be a smooth proper k-curve and Z an effective divisor on X. We construct an
object F(X,Z) := F(X, Z)int X F(X, Z)& € -1 as follows. First, we define

F(X,Z)ét = ker[no(Z) - HO(X)])

where the map is the one induced by the closed immersion Z — X. Here, for any
k-variety V, we define 719 (V') € .. by declaring 7o (V) (U) is the free Abelian group
on the set of connected components of U x V for U € Aft. This depends only on the
reduced part of V. Next we define (Proposition 3.3, see also [13, §5.3])

(5.2) F(X, Z)ins == V(X, Z) ®k G,.

Let X’ be another smooth proper k-curve and Z’ an effective divisor on it. Let
f:X - X' be a k-morphism. There is a pull-back f*: F(X',Z") - F(X, Z) (resp. a
push-forward f.: F(X,Z) - F(X',Z")) when Z — Zyeq > f*(Z' - Z,4) and Zyeq >
(f*Z")rea (resp. Z < f*Z'). On the infinitesimal (resp. étale) part, they are defined
by Corollary 3.5 (resp. pull-back and push-forward of cycles).

5.3 We recall Russell’s results [19, §2.1]. Let V be a Noetherian reduced scheme. Define
Div,, € .7 to be the sheaf that associates with Spec(R) € Aff the group of all Cartier
divisors on V ®j R generated locally on Spec(R) by effective Cartier divisors which
are flat over R. There is a canonical “class” map

(5.3) Cl:@v — EV

to the Picard scheme Pic,, of V. Let @“), denote the inverse image under cl of the
connected component Pic}, of Picy.. We have DivY, (k) = H*(V, %/ 0;) (the group
of Cartier divisors on V) and Lie(Div},) = H°(V, /Oy, where %y is the sheaf
of the total ring of fractions of Oy. In [19, Proposition 2.13] it was shown that for any
F € .7 and a pair of maps ain¢: Lie(F) — Lie(Div%), and a¢: F(k) — Div® (k),
there exists a unique map

(5.4) a = (ing, ast): F — Divy,

that induces a map ain¢ (resp. gae¢) via Lie (resp. by taking sections over Spec k).

Let X be a smooth proper k-curve and let Y, Z be two effective divisors on X with
disjoint support. We apply the above argument to V' = Xy, where Xy is the curve we
discussed in §5.1. Since Y and Z are disjoint, we may identify Z as a closed subscheme
of Xy. We define

Tingt Lie(F(X, Z)in) = H' (X, 9792,/ Ox) = H'(X2,97' 92,04/ Oxy)
- HO(X’ f%/xy/ﬁxy) = Lle(@g(y)
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to be the map induced by the inclusion 7,77, , ¢ #,. Also, we define
70(Z) (k) = Zo(Z) — Divy, (k) = Div(Xy)
by sending D € Zy(Z) to O, (D). It restricts to
o F(X, Z)a(K) = Ker[m0(Z)  mo(X)] —> Divs, (k).
Using them, we define
7(X,Y,2) = do (1] ) F(X, Z) — Picg, = J(X, Y),

where we used the notations from (5.3) and (5.4). We then define a Laumon 1-motive
attached to (X, Y, Z) by

(5.5) LM(X, Y, Z) = [F(X, 2) “XT2, 10x,v)] e .
From this definition it is evident that
(5-6) I—M(X, Y, Z)Del = I—M(X> Yred) Zred)'

5.4 Let X’ be another smooth proper k-curve and let Y', Z’ be two effective divisors on
X' with disjoint support. Let f: X — X’ be a k-morphism. If f defines a morphism
in MCrv, then the square

F(X',Z") MG J(X', Y
| |
F(X,2) — XD gx v

commutes. Similarly if f defines a morphism in MCrv, then the square

F(X,2) — XD gox v
b ¥
F(X, 2y — 02 ox v

commutes. This enables us to make the following definition.

Definition 5.2 We define a functor LM: MCrv®® — .#® (resp. LM:MCrv —
M) by setting LM(X,Y,Z) = LM(X,Y,Z) = LM(X,Y,Z), and LM(f) = f*
(resp. LM(f) = f.) for amorphism f in MCrv (resp. in MCrv).

Remark 5.3. The composition of LM with Crv - MCrv from (3.8) factors through
M (see $4.4). This induces the functor in Theorem 4.1 via universality.

Proposition 5.4  There is an isomorphism of functors Rqg o LM — Hlp.

Proof Let (X,Y,Z) e MCrv. By (4.5), (5.1), (5.2), and (5.6), we have
Rar © LM(X, Y, Z) = Rar(X, Yred> Zred) ® U(X, Y) ® V(X, Z).
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Moreover, by [5, Corollary 2.6.4] there is a canonical isomorphism
RdR(X, Yred> Zred) = H}iR(X’ Yred, Zred)~
Now the proposition follows from (3.4). ]

Remark 5.5. There is also an isomorphism of functors Rgg o LM — tHéR considered
as functors MCrv — mod(k), see (3.3).

Remark 5.6. (This remark will not be used in the sequel.) For any (X, Y, Z) € MCrv,
we find that LM(X, Y, Z) and LM(X, Z,Y) are Cartier dual to each other. In other
words, using a functor Sw: MCrv — MCrv defined by Sw(X,Y,Z) = (X, Z,Y), we
get a commutative diagram.

MCrv M2 ()P

Swi lCartier dual

MCrv LT) M

5.5 Let.#\ = A" ®;Qbe the Q-linear Abelian category of Laumon 1-isomotives (L1).

Proposition 5.7  Any Laumon 1-motive M = [F = G] is a quotient in My of
LM(X, Y, Z) for some object (X, Y, Z) of MCrv.

Remark 5.8. If M is such that F = 0, then (X, Y, Z) can be chosen as Z = & Similarly,
if M is such that G; = 0, then (X, Y, Z) can be chosen as Y = @. This will be apparent
from the proof given below.

Proof We divide the proof into three steps.

Step 1. (Cf. [21, Chapter VII, §2, no. 13, Theorem. 4].) We first prove the proposition
assuming that k is algebraically closed, and that both u;n¢: Lie(Fins) — Lie(G) and
ue: Fee — G are injective. Choose a Z-basis ey, . .. , e, of Fer, and put p; := ug(e;) €
G (i = L...,r). Let py € G be the identity element. We take a one-dimensional
closed integral subscheme Cj on G that contains po, pi, . . . , pr as regular points. Also,
choose a k-basis ti,. .., ty of Lie(Finf), and put v; = uine(t;) € Lie(G), i =1,...,s".
Weextend vy, ..., vy toa k-basis vy, ..., vy,...,vsof Lie(G). Foreachi=1,...,s, we
take a one-dimensional closed integral subscheme C; on G that passes p, regularly
and that has tangent v; at py. For i = 0,1,...,s, we let C; - C! be the normalization.
We denote the preimage of p; in C; by the same letter p;. (Here j = 0,...,r for
i=0,andj=0fori=1,...,s.) Let X; be the smooth completion of C;. Let Y; be a
modulus for the morphism C; - C; < G. This means that Y; is an effective divisor
supported on X; \ C; and that C; — G factorsas C; — J(X;, Y;) & G. We also define
effective divisors Zg := (po) + (p1) + -+ + (p,) € Div(Xy), Z; := 2(po) € Div(X;),
i=1...,s,and Z; := 0,i =s" +1,...,s. Let X be the disjoint union of Xy,..., X,
andletY=Yy+ -+ Y, Z=Zyg+--- + Zi.

By definition, we have F(X, Z)e = F(Xo, Zo) = Div}y, (Xo), hence we can define
an isomorphism F(X, Z)s — Fee by Y01 n;(pi — po) » i niei, ny,...,n, € Z.
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Also, by definition, we have F(X, Z)inf = f’:l F(X;,Z;) = 69?;1 k - v;, hence we can
define an isomorphism F(X, Z)in — Finf by Z§;1 a;v; ~ Zj;l a;ti, ai,...,ay € k.
We have defined an isomorphism f: F(X, Z) — F. Finally, we define g: J/(X,Y) - G
as the sum of g;: J(X;,Y;) > Gover i = 0,...,s. Since the image of

Lie(g;):Lie(J(X;, Y;)) — Lie(G)

contains v;, we find Lie(g): Lie(J(X, Y)) — Lie(G) is surjective, hence g: J(X,Y) —
G itself is also surjective. It is straightforward to see that f and g define an epimor-
phism LM(X, Y, Z) - M in .#,. (Here we do not need to tensor with Q.)

Step 2. We drop the assumption that k is algebraically closed, but keep the assump-
tion that both u;,¢ and ug are injective. By Step 1, we can find a finite extension k’/k
such that the base change of M to k' satisfies the conclusion of the proposition. The
Weil restriction functor

Ri i M (k') —> M (K), Rk ([F = G]) = [Rprjk (F) = Ry i (G)]

is exact. (Here we denote by .7 (k) and .#' (k') for the category of Laumon
l-isomotives over k and over k’.) Moreover, for any (X,Y,Z) € MCrv; we have
er/kEMk/(X, Y,Z) = LMy (X, Yk, Zx ), where for a k’-scheme S we write S for
the k-scheme S with structure morphism S — Speck’ — Spec k. (This follows from
a general fact that the Picard functor commutes with base change.) This proves the
proposition in this case.

Step 3. We prove the proposition in the general case. Let F, := ker(u),
M, := [F/F, -» G], M, := [F, — 0]. Then there is a non-canonical isomorphism
M = M; ® M, in A Now we apply the result from Step 2, and we are done. W

5.6 Henceforth, we suppose that k is a number field. Note that .#’; is a Q-linear Abelian
category. By Propositions 2.1 and 5.4, we obtain a Q-linear exact faithful functor

(5.7) LM: ECMM, — /g,

—1 —
and two invertible natural transformations LM o Hyr - LM, Rqr o LM — Fg;. The
main result of this article is the following theorem.

Theorem 5.9 Suppose that k is a number field. The functor LM: ECMM, — ", in
(5.7) is an equivalence.

6 Filtration on Nori Motives With Modulus

We continue to assume that k is a number field. In this section, we construct on every
object of ECMM, a two steps filtration that mirrors the one on Laumon 1-motives
defined in §4.5.

6.1 Consider the morphism of quivers

(6.1) MCrv — MCrv, (X,Y,Z)+— (X,Y,Zeq).
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Note that if a morphism f: X — X’ of k-curves defines a morphism (X,Y,Z) —
(X',Y’,Z") in MCrv, then it also defines a morphism (X, Y, Zeq) - (X', Y', Z/ )
in MCrv, by our definition of MCrv (see §3.2).

If (X,Y, Z) is a k-curve with modulus, let us observe that by construction

fil' ,LM(X,Y,Z) = LM(X, Y, Zred)-
Hence the square

(6.2) MCrve? s
(_’_)_red)l iﬁl}ﬂ

— LM
op a
MCrv?? —— 1.0

commutes and Proposition 2.4 shows the existence of a Q-linear exact functor
fil': ECMM; —~ ECMM,
and two invertible natural transformations
pfill ) o LM —> LMo fil'  p:fil' o Hyp —> Hiyg 0 (= = —red)»

such that the corresponding diagram as in (2.1) is commutative.

Let us now show that there exists a natural transformation fil' — Id that is a
monomorphism for every object in ECMM,;. Let (X, Y, Z) be a k-curve with mod-
ulus. Since Zeq < Z, the identity of X defines an edge (X,Y,Z) - (X,Y, Zred)
that provides a natural transformation s: (—, —, —eq) — Id of functors from MCrv°?
with values in MCrv°?. Note that this transformation induces the monomorphism
fil'LM(X,Y,Z) - LM(X, Y, Z) in A and that the square

ﬁlkl//{ oLM=——=1LMo (_y_a_red)
l%*LMl lLM*t
M =——=IM

is commutative. We may therefore apply Proposition 2.5 to obtain a natural transfor-
mation Z: fil' - Id that makes the squares

63)  fil'oHyp —> Hyg 0 (= —red) fil' ) o LM —> LMo fil
il*HLR iHLR*[ \L[*LM J{LM*!
—1 =1 IM—IM
HdR - HdR

commutative. Note that by Remark 2.6, for every object A in ECMM,; the morphism
:fil'A - A is a monomorphism.
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6.2 So far we have constructed the first step of the filtration. Let us now construct the
second one. Let Z be the full subquiver of MCrv whose vertices are the k-curves
with modulus (X, Y, Z) such that Z is reduced.

We denote by . 115:0 the kernel of the exact functor Gr°,,. This is the category of
Laumon I-isomotives without infinitesimal part and by definition it is the full subcat-
egory of .#\', of objects M such that Gr’, (M) = 0,i.e,suchthat (4 fil' , (M) > M
is an isomorphism. Similarly we denote by ECMMi™=? the kernel of the exact functor
Gr’: ECMM; — ECMM,; constructed in §6.1. The compatibility given in (6.3) ensures
that the functor (5.7) induces an exact functor LM: ECMMilanO - 1‘}520.

Proposition 6.1  The universal Q-linear Abelian category associated with the repre-
sentation Hyy: 7°° - mod(Q) is equivalent to ECMM:™™=°,

H F
Proof Let us denote by % the associated category and by 2°P —% ¢ ~% mod(Q)
the canonical factorization of the restriction of HéR to 2°P. Since the restriction of

—1 inf=
Hyp to 2°P takes its values in the Abelian subcategory ECMMi"™=, the universal
property of Nori’s category ensures the existence of a Q-linear exact faithful functor

I4:€ — ECMMI™=C and two invertible natural transformations y: I o ﬁ% - ﬁ;R
and 8: F§; o Iy — Fe such that the square

a =1 Fap*y —
Fgg o lg o Hyy —— Fip o Hag

—1
lJ*H%

FgoHy ———H,

is commutative. To construct a quasi-inverse to the functor I let us go back to the
construction of fil' in §6.1. Observe that (6.1) takes its values in & and that the square
(6.2) can be refined in a square

MCrv? M e

—,—)—red)t J{filfﬂ
LMl

9op inf=0

LQ

By Propositions 2.4 and 2.5, this shows the existence of a QQ-linear exact functor
ﬁllg: ECMM,; — € and an invertible natural transformation I o ﬁllg > fil'.

Let us denote by Iins- the inclusion functor of ECMMilnf =0 into ECMM;. Since
fil' o Lo is isomorphic to the identity, the composition I Oﬁllg oIinf-o is isomorphic
to the identity. This shows that the faithful functor I is an equivalence and that
ﬁl% o Iinf=o is a quasi-inverse. [ |

Now consider the morphism of quivers

92— 2, (X,Y,Z)— (X, Yred, 2).
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(This is indeed a morphism, because if f: X — X’ is a morphism of k-curves and if ef-
fective divisors Y ¢ X and Y’ c X’ satisfy Y < f*Y’, then we have Yieq < (f* Y )rea <
f*(Y..4).) Since the square

LM inf=0
op in
PP —— //llQ

()red))l ‘LGYIJ”

LM inf=0
op in
D —— My

is commutative, Propositions 2.4 and univinf=0 show the existence of a Q-linear exact
functor® Gr': ECMMi™=? » ECMM"= and two invertible natural transformations

—1 —1
p:Gr'y o LM — LMo Gr', p:Gr' o Hygp —> Hyg © (= —red> =)
such that the corresponding diagram, as in (2.1), is commutative.
Note that for every Laumon l-isomotive M, there is a canonical epimorphism
fil' , (M) - Gr',(M). In particular, if M is without infinitesimal part, there is a

canonical epimorphism 7_4: M — Gr', (M). Since Yieq < Y, the identity of X in-
duces an edge from (X, Yreq, Z) to (X,Y,Z) in Z.

Remark 6.2. Note that if Y is not reduced, then the identity of X does not define an
edge from (X, Y, Z) to (X, Yred> Zrea) in MCrv. This is the main reason for introduc-
ing the subquiver 2.

This provides a natural transformation 7g:Idge — (=, —req, —) of functors from
2°P with values in 2°P. Note that the square

LMy —————— LM,
n«/ﬂ*LMQl \LLM@*TE@
Gr'y o LMy —— LM o (= ~rea> -)

commutes. We may therefore apply Proposition 2.5 to obtain a natural transformation
7:1d — Gr' that makes the squares

ﬁ:m _ ﬁim IM—1M

ﬁ*ﬁ‘ljk l iHiﬂ{*n@ $Ed *LMi \LLM*H

— — 1 d 1
Grl OHZIR P Hl]Ro(_a_red)_) Gr oLM —— LMo Gr

commutative. Note that in the above squares, all natural transformations are between
functors on 2°° or ECMMi™=°. By Remark 2.6, for every object A in ECMMi™=?,
the morphism 7: A — Gr'(A) is an epimorphism.

Let A be an object in ECMM;. Then fil' (A) belongs to ECMMI™=C and we set

fil>(A) := Ker[fil'(4) - Gr'(fil'(4))].

3Note that the notation might be misleading: Gr' is not yet the set of graded pieces associated to a
filtration.
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Note that by definition Gr'(A) := Gr'(fil'(A)).
7 Proof of the Main Theorem

In this section, we assume that k is a number field. We complete the proof of Theo-
rem 5.9.

7.1 Recall from Proposition 3.15 that we have a fully faithful functor Igzcy: ECMSR —
ECMM;. The composition of Igcm with LM: ECMM,; — ///1“@ factors through the
category ./, g of Deligne 1-isomotives. This induces a functor ECM{® — . o by
universality.

Proposition 7.1  The functor ECMSR — 4, g is an equivalence.

Proof This follows from (3.6), Theorem 4.1, Proposition 3.12, and the Cartier duality
for A . |

Let ECMM}™ be the intersection of the kernel of the exact functors Gr° and Gr*
constructed in §6.1 and §6.2. An object A in ECMM; belongs to the full subcategory
ECMM}™ if and only if the canonical monomorphism fil>(A) — A is an isomor-
phism. Since the functor LM is compatible with the filtration, it induces a Q-linear
exact faithful functor (see §4.4) LM: ECMM™ — ///1“&‘ Note that ///1“(5‘ is simply
the category of unipotent commutative algebraic groups over k and that the functor
G — mod(k) given by the restriction of the de Rham realization Ry is nothing
but the functor that associates with a unipotent commutative algebraic k-group its Lie
algebra and is therefore an equivalence.

For the proof of the next proposition, we need an elementary lemma.

Lemma 7.2 Forany p € Ly, k is generated by {a* | a € k} as a Q-algebra.

Proof Write k = Q(y) with y € k. Then y can be written as a Q-linear combination
of p#, (y +1)¥,..., (y + u — 1)¥. The lemma follows from this. [ |

Proposition 7.3  The functor LM: ECMM}™ — l‘f&i is an equivalence.

Proof We define a subquiver MPo of MCrv as follows. The vertices are given by
P, := (P!, n[oo],@) € MCrv for any integer n > 2. The edges from P, to P,, are of

two types:
(7.1) an automorphism of P' that fixes co, when 1 = m > 2.
(72) the identity map on P', when m > n > 2.

Let w:mod(k) — mod(Q) be the forgetful functor. Consider the representation T =
w o Rar © LM|gzp,: MP0°? - mod(Q) and its canonical factorization

Mpo® L o 1, mod(Q),
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where % = comod(Cr) is Nori’s universal category (see Remark 2.2). Note that
the restriction of the representation Hyy to the subquiver MPo takes its values in
ECMM!™. Hence, by the universal property of Nori’s construction (see Theorem 2.1),
there exist a Q-linear exact faithful functor U: % — ECMM}““, and two invertible
natural transformations a: U o T — ﬁzR and B:w o Rqr o LM o U — Fr such that the
diagram

_ H . .
MPo — "~ ECMM}™ ™ i

NP

U

R mod(k) —¥> mod(Q)

Fr

is commutative. Since the functor LM is faithful, to show the proposition it is enough
to show that Rgr o LMo U: % — mod(k) is an equivalence of categories (note that the
functor U will then also be an equivalence). It suffices to see that Cr is the Q-linear
dual of the algebra k, and this amounts to checking that for every full subquiver &
of MPo with finitely many objects, Endg(T|s) = k. We may assume & of the form
{P,,...,P,} for some integer n > 2. Write P' = Proj(k[T,S]) and put ¢t = T/S,
s = §/T so that oo € P! is defined by s = 0. By (5.1) and (5.5), the representation T
maps P, to the Q-vector space sk[s]/(s"). We compute the action of morphisms on
this space in three instances:

(a) Letn > 2 and consider the edge e:P,, - P, of type (7.1) given by ¢ — at, where a

is a fixed element in k. Then T'(e) is the k-linear map represented by a diagonal

matrix (a™,a"2,...,a'™™") with respect to the k-basis {s,s%,...,s""'},

(b) Let n > 2 and consider the edge e: P, — P, of type (71) given by ¢ — t — 1. Then
T(e) mapss = 1/t to1/(t—1) = s+ s2 + -+ s"1 (We will not need to know
T(e)(s') fori>1)

(c) Let m > n > 2 and consider the edge of type (7.2). Then T'(e) is the map

sk[s]/(s™) — sk[s]/(s")
induced by the identity on sk[s].
Let o be an element in Endg(T|s). Then « is given by a family

(@)1, € [T Endg(T(P;))
i=2

such that for every edge e: P; - P; in MPo
(7.3) ajoT(e)=T(e)oaj.

us define a Q-algebra embedding m: k - Endg (k) by m(a)(x) = ax (a,x € k).
The condition (7.3) for all edges of the form (a) implies that

(74) m(a)‘”oc/(fv) = oc;(fv)m(a)_” foralla € k™.
Since m(a) for a € Q lies in the center of Endg(k), (74) applied to, say, a = 2 yields

oc,(,iv) = 0if y # v. Inview of Lemma 72, it also yields that oc,(,ly) belongs to the centralizer
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of the image of m, which is k itself as k is a maximal commutative subring of Endg (k).
We write ocf, ,4) = m(a )) with a, () ¢ k. Applying the condition (7.3) for all edges of
the form (b), we obtain a =a #’) for all y. Finally, (7.3) for all edges of type (c) yields

( ) = al(l) for all i. We have shown that a = afl) € k. This completes the proof. W

Let ECMM™ be the kernel of the exact functor fil' constructed in §6.1. By a dual
argument, we obtain the following proposition.

Proposition 7.4 The restriction of the functor LM: ECMM, — ./’ to the subcate-

gory ECMM™ induces an equivalence of categories between ECMMI™ and ///1‘)“ (see
§4.4).

7.2 We finally prove our main theorem.

Proof of Theorem 5.9 To prove Theorem 5.9 it is enough to show that we are in a
situation where the criteria of Proposition 2.3 apply. The first condition is obviously
satisfied and the second one follows from Proposition 5.7. It remains to prove that the
third condition is also satisfied.

Let A be an object in ECMM;, M an object in .#/", and u: LM(A) — M a mor-

phism in .#%;. By applying the functor R4r, we get a morphism Ryr (u): Fip (A) —
Rqr (M) of Q-vector spaces. Note that u induces a commutative diagram in .2’

LM(fil*(A)) — LM(fil'(A)) —— LM(A)

| |

LM(Gr'(A)) LM(Gr’(A))

N oo

fil, (M) ———fill (M) —— M

NN

Gr', (M) Gr’, (M)

Applying the functor Rgg yields a commutative diagram:
(75)
Fgp (2(4)) —— F5R<ﬁ11 (4) — F3R A)

v

(Gr A)) FsR(Gr"(A))

Rar(fil’, (M))HRdR(ﬁl (M))—>RdR(M)

NN

Rar(Grly (M)) Rar(Grly (M))
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where we set v = Rggr(u), vo = RdR(Grg,[(u)), vy o= RdR(Gr}ﬂ(u)), and v, :=
Rar(fil?, (1)) to simplify notations.

By construction of the category ECMM; (see Remark 2.2), there exists a finite sub-
quiver & of MCrv such that in the diagram

gR(ﬁlz(A)) - FgR(ﬁll(A)) —> F§r(4)

| |

SR(Grl(A)) gR(GrO(A))

all objects are canonically endowed with an End(H)y|s)-module structure and all
morphisms are End(H}g |+ )-linear. Using Propositions 7.3, 7.4, and 7.1, by allowing &
to be bigger, we may assume that the kernels of the maps vy, v1, v, are sub-End(T|¢)-
modules. An easy diagram chase in (7.5) shows that the kernel of v is a sub-End( T/ ¢ )-
module of F{; as well. This concludes the proof. ]
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