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Nori Motives of Curves With Modulus and
Laumon 1-motives

Florian Ivorra and Takao Yamazaki

Abstract. Let k be a number ûeld. We describe the category of Laumon 1-isomotives over k as
the universal category in the sense of M. Nori associated with a quiver representation built out of
smooth proper k-curves with two disjoint eòective divisors and a notion of H1

dR for such “curves
with modulus”. _is result extends and relies on a theorem of J. Ayoub and L. Barbieri-Viale that
describes Deligne’s category of 1-isomotives in terms of Nori’s Abelian category ofmotives.

1 Introduction

Let k be a ûeld of characteristic zero with an embedding k ↪ C into the ûeld of
complex numbers.

1.1 Let R be a ûeld or a Dedekind ring and T ∶D → mod(R) a representation of a quiver
D with values in the category mod(R) of ûnitely generated projective R-modules.
In the unpublished work [9] (see also [11, 16] for surveys), M. Nori constructed an
R-coalgebra CT such that the representation T has a universal factorization (see_e-
orem 2.1)

D
TÐ→ comod(CT)

FTÐ→ mod(R),
where comod(CT) is the category of le�CT-comodules that are ûnitely generated over
R, T is a representation, and FT is the forgetful functor.

_enNori applied this formalism toBetti homology to obtain the Abelian category
EHM of eòective homological motives over k (see [9, 11, 16]). By construction, given
a k-variety X, a closed (reduced) subscheme Y ⊆ X, and an integer i ∈ Z, there is a
motive H i(X ,Y) in EHM that realizes to the usual Betti homology.

1.2 J. Ayoub and L. Barbieri-Viale showed [1, _eorem 5.2, _eorem 6.1] that the thick
Abelian subcategory ofNori’s category of eòective homological motives generated by
the H0 and H1 of pairs is equivalent to: (a) the Abelian category EHM1 associated
with the representation

Crvop
k Ð→ mod(Z), (C ,Y)z→ H1(C ,Y)

where Crvk is the category of pairs (C ,Y) where C is a smooth aõne k-curve, Y ⊆ C
is a closed subset consisting of ûnitely many closed points, and H1(C ,Y) is the ûrst
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Betti homology group of the pair (C ,Y); (b) the Abelian category tM1 of Deligne’s
1-motives with torsion [3, 8] .

Note that by [17, _éorème 3.4.1], the derived category of Deligne’s Abelian cate-
gory of 1-isomotives M1,Q is known to be equivalent to the thick triangulated subcat-
egory of Voevodsky’s category of geometrical eòective motives with rational coeõ-
cients generated by motives of smooth k-curves.

1.3 Such a description isnotpossible integrally for the extension of the theory of 1-motives
introduced byG. Laumon [14] and studied in [2,4,15,20]. Indeed, the category of Lau-
mon 1-motives with torsion tM a

1 of [4] contains the category of inûnitesimal formal
k-groups (equivalent via the Lie algebra to the category of ûnite-dimensional k-vector
spaces) as a full subcategory. In particular not all Hom groups in tM a

1 are ûnitely gen-
erated Abelian groups and therefore there cannot exist a quiver D and a representa-
tion T ∶D → mod(Z) such that tM a

1 is equivalent to comod(CT).
If the ûeld k is not a number ûeld, the same obstruction applieswith rational coeõ-

cients. _e Abelian categoryM a
1,Q of Laumon 1-isomotives still contains the category

of inûnitesimal formal k-groups as a full subcategory and therefore not all its Hom
groups are ûnite-dimensional Q-vector spaces. Again this prevents the existence of
a quiver D and a representation T ∶D → mod(Q) such that M a

1,Q is equivalent to
comod(CT).

1.4 If k is a number ûeld, one may still hope to describe the Abelian category M a
1,Q of

Laumon 1-isomotives over k via Nori’s tannakian formalism. _e main result of this
work is such a description in that case.

More precisely, let a k-curve with modulus be a triplet (X ,Y , Z) where X is a
smooth proper k-curve and Y , Z are eòective divisors on X with disjoint supports.
Deûne the de Rham cohomology of a such a k-curve with modulus as the ûnite-
dimensional k-vector space

H1
dR(X ,Y , Z) ∶= H1(X , [IY → I−1

Z Ω1
X]),

where IY and IZ are the ideals in OX that deûne Y and Z. _e k-curveswithmodulus
deûne a category MCrvk for which a morphism (X ,Y , Z) → (X′ ,Y ′ , Z′) is a mor-
phism f ∶X → X′ of k-varieties such that Y ⩽ f ∗Y ′, Z − Zred ⩾ f ∗(Z′ − Z′red), and
Zred ⩾ ( f ∗Z′)red. If k is a number ûeld, by forgetting the k-linear structure, the de
Rham cohomology of curves with modulus deûne a functor

H1
dR∶MCrvop

k → mod(Q)
with values in the category of ûnite-dimensionalQ-vector spaces. Our main theorem
is the following (see_eorem 5.9).

_eorem 1.1 Let k be a number ûeld. _eQ-linear Abelian category associated with
the representation of quiver

H1
dR∶MCrvop

k Ð→ mod(Q)
(X ,Y , Z)z→ H1

dR(X ,Y , Z) ∶= H1(X , [IY → I−1
Z Ω1

X])
is equivalent to the category M a

1,Q of Laumon 1-isomotives over k.
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_eorem 1.1 generalizes the equivalence between (a) and (b) recalled in §1.2 and
proved by J. Ayoub and L. Barbieri-Viale [1, _eorem 5.2]. Note that we do not pro-
vide any deûnition for a non-homotopy invariant analog of the full category ofNori’s
motives of varieties (of arbitrary dimension)withmodulus. Moreover in [1] themain
theorems are valid over any ûeld of characteristic zero embedded into the complex
numbers, and they also admit integral coeõcient variants. Here we are not able to
provide such generality.1 We leave this issue for future study.

Conventions. _roughout the paper we work over a base ûeld k with a ûxed embed-
ding k ↪ C. In §3.4, §3.6, and from §5.6 onward,we further assume that k is anumber
ûeld. For a k-scheme X, we denote by Ω1

X the sheaf of Kähler diòerentials on X rela-
tive to k. If Z is a closed subscheme of X, we write IZ ⊂ OX for the ideal sheaf of Z.
For a vector spaceV over k,wewriteV∗ for the k-linear dual ofV . Let R be a ring and
let R′ be an R-algebra. For an R-linear Abelian category A , we denote by A ⊗R R′
its scalar extension. _is is an R′-linear Abelian category having the same objects as
A and such that

(1.1) HomA⊗RR′(A, B) = HomA (A, B)⊗R R′ .

2 Reminders on Nori’s Tannakian Formalism

2.1 Let K be a ûeld. Following [10, Chapitre II, §4], recall that a K-linearAbelian category
P is said to be ûnite if it is Noetherian and Artinian, i.e., P is essentially small and
any object in P has ûnite length. We shall say that P is Hom ûnite if for any objects
P,Q in P the K-vector space P(P,Q) is ûnite-dimensional. By [12, _eorem 2.1],
we have the following theorem.

_eorem 2.1 LetP be aK-linearAbelian categorywhich isûnite andHomûnite,D a
quiver (i.e., directed graph), and T ∶D →P a representation of the quiverD with values
in P . _en there exist a K-linear Abelian category A , a representation R∶D → A , a
K-linear faithful exact functor F∶A →P , and an invertible 2-morphism α∶ F ○R → T
such that for every K-linear Abelian category B, every representation S∶D →B, every
K-linear exact faithful functorG∶B →P , and every invertible 2-morphism β∶G ○S →
T the following conditions are satisûed.
(i) _ere exist a K-linear functor H∶A →B and two invertible 2-morphisms

γ∶H ○ R ≃Ð→ S δ∶G ○H ≃Ð→ F ,
such that

G ○H ○ R
G⋆γ //

δ⋆R
��

G ○ S
β
��

F ○ R α // T
is commutative.

1Recent papers [6,7], introduced a new construction of the universal category without ûnite dimen-
sionality assumption, which would enable us to deûne ECMM1 for an arbitrary subûeld of C. Unfortu-
nately, we would then lose a description of the category as comod(CT), which is essential in the proof
of our main result (see Proposition 2.3).
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(ii) If H′∶A →B is a K-linear functor and

γ′∶H′ ○ R ≃Ð→ S δ′∶G ○H′ ≃Ð→ F

are two invertible 2-morphisms such that the square

G ○H′ ○ R
G⋆γ′ //

δ′⋆R
��

G ○ S
β
��

F ○ R α // T
is commutative, then there exists a unique 2-morphism θ∶H → H′ such that γ′ ○
(θ ⋆ R) = γ and δ′ ○ (G ⋆ θ) = δ.

It will be useful to keep in mind the following remark.

Remark 2.2. When P = mod(K), the previous theorem is due to M. Nori. More
precisely, let E be a full subquiver of D with ûnitely many objects and EndK(T ∣E )
the subring of∏q∈E EndK(T(q)) formed by the elements e = (eq)q∈E such that eq ○
T(m) = T(m) ○ ep for every object p ∈ E and everymorphism m∶ p → q in D . _en
its linear dual CT∣E ∶= EndK(T ∣E )∗ is a coassociative, counitary K-coalgebra that
is ûnite-dimensional over K. We may then consider the K-linear Abelian category
comod(CT) of ûnite-dimensional le� comodules over the coassociative and counitary
K-coalgebra

CT ∶= colim
E⊆D

CT∣E ,

where the colimit is taken over full subquivers ofD with ûnitely many objects.
For every object p ∈ D the ûnite-dimensional K-vector space T(p) inherits a

structure of le� CT-comodule. _is provides a representation T ∶D → comod(CT)
such that T = FT ○ T where FT ∶ comod(CT) → mod(K) is the forgetful functor. _e
main result proved byNori is that the tuple (comod(CT), T , FT , id) satisûes the uni-
versal property of_eorem 2.1 when P = mod(K).

_e general case is deduced from Nori’s result. Indeed, let P be a ûnite andHom
ûnite K-linear Abelian category and T ∶D →P a representation. A result [12, Corol-
lary 4.3] that can be easily deduced from [23, 5.1 _eorem, 5.8] assures the existence
of a K-linear exact faithful functor ω∶P → mod(K). Let A ∶= comod(Cω○T) and
consider the associated representation

R ∶= ω ○ T ∶D → comod(Cω○T) =∶ A .

_e universal property of (A , R, Fω○T , Id) applied to the tuple (P , T ,ω, Id) provides
a K-linear exact faithful functor F∶A →P and an invertible natural transformation
α∶ F ○ R → T . One checks then that the tuple (A , R, F , α) satisûes the universal
property stated in _eorem 2.1 (see [12] for details).

2.2 Let D be a quiver and T ∶D → P a representation. Let (B,G , R, β) be an tuple
where B is a K-linear Abelian category, S∶D → B is a representation, G∶B → P
is a K-linear exact faithful functor, and β∶G ○ S → T is an invertible natural trans-
formation. By the universal property of _eorem 2.1, there exist a K-linear functor
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H∶ comod(CT)→B and two invertible natural transformations

γ∶H ○ T ≃Ð→ S , δ∶G ○H ≃Ð→ FT

such that the square

G ○H ○ T
G⋆γ //

δ⋆R
��

G ○ S

β

��
FT ○ T T

is commutative (hereweuse thenotations fromRemark 2.2). J.Ayoub andL.Barbieri-
Viale gave a criterion for the functor H to be an equivalence [1, Proposition 2.1]. _e
proof of our main result relies on this criterion.

Proposition 2.3 (Ayoub and Barbieri-Viale [1]) Assume the following conditions.
(i) For all vertices p, q ∈ D , there exist p⊔ q in D and edges i∶ p → p⊔ q, j∶ q → p⊔ q

such that themap S(i)+ S( j)∶ S(p)⊕ S(q)→ S(p⊔ q) is an isomorphism in B.
(ii) Every object inB is a quotient of an object of the form S(p) for some vertex p ∈ D .
(iii) For every map S(p) → B in B, there exists a ûnite sub-quiver E ⊆ D containing

p such that Ker{T(p) = G ○ S(p)→ G(B)} is a sub-End(T ∣E )-module of T(p).
_en the functor H∶ comod(CT)→B is an equivalence of categories.

2.3 Let P1 andP2 be two ûnite andHom ûnite K-linear Abelian categories. Let D1,D2
be quivers, D∶D1 → D2 a morphism of quivers, and T1∶D1 → P1 and T2∶D2 → P2
two representations. Let (A1 , F1 , R1 , α1) and (A2 , F2 , R2 , α2) be tuples obtained by
applying _eorem 2.1 to the representations T1 and T2, respectively.

_e next proposition shows that certain exact functors can be li�ed to universal
categories (for a proof, see [12, Proposition 6.6]).

Proposition 2.4 Let (Φ, ϕ) be a pairwhereΦ∶P1 →P2 is an exact K-linear functor
and ϕ∶Φ ○ T1 → T2 ○ D is an isomorphism of representations. _ere exist an exact
functor Ψ∶A1 → A2, an invertible natural transformation ρ∶Φ ○ F1 → F2 ○ Ψ, and an
isomorphism of representations ρ∶Ψ ○ R1 → R2 ○ D such that

(2.1) Φ ○ F1 ○ R1
Φ⋆α1 //

ρ⋆R1

��

Φ ○ T1 ϕ

))
T2 ○ D

F2 ○Ψ ○ R1 F2⋆ρ
// F2 ○ R2 ○ D

α2⋆D
55

is commutative.

2.4 In this work we will need to li� natural transformations as well. Let D1 ,D2∶D1 → D2
be amorphism of quivers. Let (Φ1 , ϕ1), (Φ2 , ϕ2) be a pairs, whereΦ1 ,Φ2∶P1 →P2
are exact K-linear functor and ϕ1∶Φ1 ○ T1 → T2 ○ D1, ϕ2∶Φ2 ○ T1 → T2 ○ D2 are
isomorphisms of representations.
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By Proposition 2.4, there exist exact functors Ψ1 ,Ψ2∶A1 → A2, invertible natural
transformations ρ1∶Φ1 ○ F1 → F2 ○ Ψ1, ρ2∶Φ2 ○ F1 → F2 ○ Ψ2, and isomorphisms of
representations ρ1∶Ψ1○R1 → R2○D1, ρ2∶Ψ2○R1 → R2○D2 such that the corresponding
diagrams as in (2.1) are commutative.

Proposition 2.5 Let (θ , θD) be a pair where θ∶Φ1 → Φ2 and θD ∶D1 → D2 are
natural transformations such that the square

Φ1 ○ T1
ϕ1 //

θ⋆T1

��

T2 ○ D1

T2⋆θD
��

Φ2 ○ T1
ϕ2 // T2 ○ D2

is commutative. _en there exists one and only one natural transformation θ∶Ψ1 → Ψ2
that makes the squares

Ψ1 ○ R1
ρ1 //

θ⋆R1
��

R2 ○ D1

R2⋆θD
��

Ψ2 ○ R1
ρ2 // R2 ○ D2

Φ1 ○ F1
ρ1 //

θ⋆F1

��

F2 ○Ψ1

F2⋆θ
��

Φ2 ○ F1
ρ2 // F2 ○Ψ2

commutative.

Proof Let X be an object in A1. Let us sketch the construction of a morphism
θX ∶Ψ1(X)→ Ψ2(X) in A2 which makes the square

Φ1(F1(X))
ρ1,X //

θF1(X)
��

F2(Ψ1(X))

F2(θX)
��

Φ2(F1(X))
ρ2,X // F2(Ψ2(X))

commutative. Since F2 is faithful, such amorphism is necessarily unique. When X =
R1(p) for p ∈ D1, we deûne θX to be the uniquemorphism that makes the square

Ψ1(X)
ρ1,p //

θX
��

R2(D1(p))

R2(θD ,p)
��

Ψ2(X)
ρ2,p // R2(D2(p))

commutative. _is deûnes also θX when X is a ûnite direct sum of such objects. As-
sume now the existence of an epimorphism s∶Y → X in A1 where Y is an object for
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which θY has been constructed. It is then enough to check the existence of a factor-
ization

Ψ1(Y)
Ψ1(s) //

θY
��

Ψ1(X)

��

// 0

Ψ2(Y)
Ψ2(s) // Ψ2(X) // 0.

As the rows are exact, this amounts to checking that Ψ2(s)○θY vanishes on the kernel
of Ψ1(s). But this is true since it is a�er applying F2, and F2 is faithful.

Similarly, one shows the existence of θX when X is any subobject of an object Y in
A1 for which θY has already been constructed.

_is concludes the proof since by [11, Proposition 7.1.16] every object in A1 is a
subquotient of a ûnite direct sum of objects of the form X = R1(p) for p ∈ D1.

Remark 2.6. Note that since F2 is a K-linear exact and faithful functor, if θ is amono-
morphism (resp. epimorphism), then θ is amonomorphism (resp. epimorphism).

3 Nori Motives of Curves With Modulus

3.1 In this subsection, we collect some preliminary results on cohomology of curves.

Proposition 3.1 Let f ∶C → C′ be a ûnite k-morphism of smooth, proper connected
k-curves. Let D and D′ be eòective divisors on C and C′, respectively.
(i) Suppose D ⩽ f ∗D′. _en the canonical map OC′ → f∗OC induces ID′ → f∗ID

and the tracemap f∗Ω1
C → Ω1

C′ induces f∗(I−1
D Ω1

C)→ I−1
D′Ω

1
C′ .

(ii) Suppose D − Dred ⩾ f ∗(D′ − D′red) and Dred ⩾ ( f ∗D′)red. (_e latter condition
is equivalent to f (C∖ ∣D∣) ⊂ f (C′∖ ∣D′∣)). _en the canonical map Ω1

C′ → f∗Ω1
C

induces I−1
D′ΩC′ → f∗(I−1

D ΩC) and the trace map f∗OC → OC′ induces f∗ID →
ID′ .

(Recall that by our convention k is a subûeld of C, that Ω1
C is the sheaf of Kähler diòer-

entials on C relative to k, and that ID is the ideal sheaf deûning D.)

Proof _is follows from the following elementary lemma.

Lemma 3.2 Let K be a function ûeld of one variable over k, and let R ⊂ K be a
discrete valuation ring containing k. Let L be a ûnite extension of K and let S be the
integral closure of R in L. Denote by m the maximal ideal of R, and by n1 , . . . , nr the
maximal ideals of S. Let e i ∈ Z>0 be the ramiûcation index of ni . Let m, n1 , . . . , nr ⩾ 1
be integers and put nn ∶= nn1

1 ⋅ ⋅ ⋅nnr
r , n

−n ∶= n−n1
1 ⋅ ⋅ ⋅n−nr

r .
(i) Suppose n i ⩽ e im for all i. _en the canonical map K → L sends mm to nn , and

the tracemap Ω1
L/k → Ω1

K/k sends n−nΩ1
S/k to m−mΩ1

R/k .
(ii) Suppose n i − 1 ⩾ e i(m − 1) for all i. _en the canonical map Ω1

K/k → Ω1
L/k sends

m−mΩR/k to n−nΩS/k , and the tracemap L → K sends nn to mm .
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Proof _e last statement of (ii) follows from [22, Chapter III, Propositions 7, 13]. All
other statements are elementary.

Proposition 3.3 Let C be a smooth proper curve over k and let D be an eòective
divisor on C. We set

U(C ,D) ∶= H0(C , IDred/ID) V(C ,D) ∶= H0(C , IDredI
−1
D /OC).

_en the diòerential map induces isomorphisms

d∶U(C ,D) ≅Ð→ H0(C , (OC/IDI−1
Dred

)⊗Ω1
C),

d∶V(C ,D) ≅Ð→ H0(C , (I−1
D /I−1

Dred
)⊗Ω1

C).

Proof Write D = ∑P∈∣C∣ nPP. _en we have

U(C ,D) ≅ ⊕
P∈∣D∣

mP/mnP
P ,

H0(C , (O/IDI−1
Dred

)⊗Ω1
C) ≅ ⊕

P∈∣D∣
Ω1
C ,P/mnP−1

P Ω1
C ,P ,

where mP denotes the maximal ideal of the local ring OC ,P of C at P. _us the ûrst
statement follows from the bijectivity of

d∶mP/mnP
P Ð→ Ω1

C ,P/mnP−1
P Ω1

C ,P ,

which is readily seen. Similarly, we have

V(C ,D) ≅ ⊕
P∈∣D∣

m1−nP
P /OC ,P ,

H0(C , (I−1
D /I−1

Dred
)⊗Ω1

C) ≅ ⊕
P∈∣D∣

m−nP
P Ω1

C ,P/m−1
P Ω1

C ,P .

_us the second statement follows from the bijectivity of

d∶m1−nP
P /OC ,P Ð→ m−nP

P Ω1
C ,P/m−1

P Ω1
C ,P ,

which is readily seen.

Corollary 3.4 _e two k-vector spaces U(C ,D) and V(C ,D) are canonically dual
to each other.

Proof Wemay suppose D is (eòective and) non-trivial. _en we get

U(C ,D) = ker[H1(C , ID)→ H1(C , IDred)]
from an exact sequence 0 Ð→ ID Ð→ IDred Ð→ IDred/ID Ð→ 0. On the other hand,
another exact sequence 0 Ð→ I−1

Dred
⊗Ω1

C Ð→ I−1
D ⊗Ω1

C Ð→ (I−1
D /I−1

Dred
)⊗Ω1

C Ð→ 0
and the above proposition yield

V(C ,D) = Coker[H0(C , I−1
Dred

Ω1
C)→ H0(C , I−1

D Ω1
C)].

Now the corollary follows from the Serre duality.

Corollary 3.5 Let (C ,D) and (C′ ,D′) be pairs consisting of a smooth proper k-curve
and an eòective divisor. Let f ∶C → C′ be a ûnite k-morphism. _e canonical map
OC′ → f∗OC and the tracemap f∗Ω1

C → Ω1
C′ induce the following functoriality.
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(i) If D ⩽ f ∗D′, then we have

f ∗∶U(C′ ,D′)Ð→ U(C ,D) f∗∶V(C ,D)Ð→ V(C′ ,D′).
(ii) If D − Dred ⩾ f ∗(D′ − D′red) and Dred ≥ ( f ∗D′)red, then we have

f ∗∶V(C′ ,D′)Ð→ V(C ,D) f∗∶U(C ,D)Ð→ U(C′ ,D′).

Proof Since D ⩽ f ∗D′ implies Dred ⩽ ( f ∗D′)red ⩽ f ∗(D′red), this follows from
Propositions 3.1 and 3.3.

3.2 Let usdenote byMCrv the following category. Anobject inMCrv is a triplet (X ,Y , Z)
where X is a smooth proper k-curve and Y , Z are eòective divisors on X such that
∣Y ∣ ∩ ∣Z∣ = ∅. Amorphism (X ,Y , Z) → (X′ ,Y ′ , Z′) in MCrv is amorphism f ∶X →
X′ of k-varieties such that Y ⩽ f ∗Y ′, Z − Zred ⩾ f ∗(Z′ − Z′red), and Zred ⩾ ( f ∗Z′)red
(equivalently, f (X ∖ ∣Z∣) ⊂ f (X′∖ ∣Z′∣)). It then follows from Proposition 3.1 that the
canonical map OX′ → f∗OX induces morphisms of sheaves

(3.1) IY ′ Ð→ f∗IY and I−1
Z′Ω

1
X′ Ð→ f∗(I−1

Z Ω1
X).

It will be useful to consider also the following variant: MCrv is the category with
the same objects as MCrv, but this times a morphism (X ,Y , Z) → (X′ ,Y ′ , Z′) in
MCrvk is a morphism f ∶X → X′ of k-varieties such that Y − Yred ⩾ f ∗(Y ′ − Y ′

red),
Yred ⩾ ( f ∗Y ′)red, and Z ⩽ f ∗Z′. Again it then follows from Proposition 3.1 that the
tracemap f∗OX → OX′ induces morphisms of sheaves

(3.2) f∗IY ′ Ð→ IY and f∗(I−1
Z′Ω

1
X′)Ð→ I−1

Z Ω1
X .

Deûnition 3.6 Let (X ,Y , Z) be an object in the category MCrv. We deûne

H1
dR(X ,Y , Z) ∶= H1(X , [IY → I−1

Z Ω1
X])

to be the ûrst hypercohomology group of the complex ofOX-modules [IY → I−1
Z Ω1

X],
where IY is placed in degree zero. _is is a ûnite-dimensional k-vector space. By (3.1),
we obtain a functor H1

dR∶MCrvop → mod(k),wheremod(k) is the category of ûnite-
dimensional k-vector spaces. We also have a functor

(3.3) tH1
dR∶MCrv Ð→ mod(k)

which takes the same value on objects as H1
dR, but acts on morphisms via (3.2).

3.3 In the following, see Proposition 3.3 for the deûnition of U(X ,Y) and V(X , Z).

Proposition 3.7 For any (X ,Y , Z) ∈ MCrv, there is a canonical decomposition

(3.4) H1
dR(X ,Y , Z) ≅ H1

dR(X ,Yred , Zred)⊕U(X ,Y)⊕ V(X , Z).
Moreover, the decomposition (3.4) is functorial with respect to maps in MCrv.

Proof Since U(C ,Dred) = V(C ,Dred) = 0 for a smooth proper k-curve C and an
eòective divisor D, we are reduced to showing

H1
dR(X ,Y , Z) ≅ H1

dR(X ,Yred , Z)⊕U(X ,Y) ≅ H1
dR(X ,Y , Zred)⊕ V(X , Z).
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To show the ûrst isomorphism, we construct canonical maps

a∶H1
dR(X ,Yred , Z)Ð→ H1

dR(X ,Y , Z), b∶H1
dR(X ,Y , Z)Ð→ H1

dR(X ,Yred , Z)

such that b ○ a = id and ker(b) ≅ U(X ,Y). For this we ûrst note that themap

[IY → IYI
−1
Yred

I−1
Z Ω1

X]Ð→ [IYred → I−1
Z Ω1

X]

(induced by the inclusions IY ⊂ IYred and IYI
−1
Yred

I−1
Z ⊂ I−1

Z ) is a quasi-isomorphism by
Proposition 3.3. Using this, we deûne a to be the composition

H1
dR(X ,Yred , Z) = H1(X , [IYred → I−1

Z Ω1
X])

≅←Ð H1(X , [IY → IYI
−1
Yred

I−1
Z Ω1

X]) Ð→
H1(X , [IY → I−1

Z Ω1
X]) = H1

dR(X ,Y , Z),

where the second map is induced by the inclusion IYI
−1
Yred

I−1
Z ⊂ I−1

Z . Next, b is given
by

H1
dR(X ,Y , Z) = H1(X , [IY → I−1

Z Ω1
X])

Ð→ H1(X , [IYred → I−1
Z Ω1

X]) = H1
dR(X ,Yred , Z),

which is induced by the inclusion IY ⊂ IYred . It is obvious that the composition b○a is
the identity. It is also clear from this construction that ker(b) ≅ U(X ,Y). Note also
that Proposition 3.3 tells us that Coker(a) ≅ U(X ,Y), as it should be.

_e second isomorphism H1
dR(X ,Y , Z) ≅ H1

dR(X ,Y , Zred) ⊕ V(X , Z) is con-
structed in a similar way. We omit it.

Proposition 3.8 For any (X ,Y , Z) ∈ MCrv, the two k-vector spaces H1
dR(X ,Y , Z)

andH1
dR(X , Z ,Y) are canonically dual to each other.

Proof Apply Lemma 3.9 with C∗ = [IY → I−1
Z Ω1

X] and D∗ = [IZ → I−1
Y Ω1

X].

Lemma 3.9 Let C∗ and D∗ be two complexes of sheaves of k-vector spaces on X
such that C i and D i are locally free OX-modules for all i and that C i = D i = 0 unless
i /∈ {0, 1}. Let ∧ ∶Tot(C∗ ⊗k D∗) → Ω●

X be a map of complexes and suppose that it
induces C0 ≅ HomOX

(D1 ,Ω1
X) and C1 ≅ HomOX

(D0 ,Ω1
X). _en ∧ induces a perfect

duality between Hi(X ,C∗) andH2−i(X ,D∗) for all i.

Proof _is is reduced to the Serre duality by an exact sequence

⋅ ⋅ ⋅Ð→ H i−1(X ,C1)Ð→ Hi(X ,C∗)Ð→ H i(X ,C0)Ð→ H i(X ,C1)Ð→ ⋅ ⋅ ⋅

and a similar sequence for D∗.

3.4 _e following deûnition introduces our main object of studies.

Deûnition 3.10 Let k be a number ûeld. _e category ECMM1 of eòective coho-
mological isomotives of curveswithmodulus is theQ-linear category associatedwith
the representation H1

dR∶MCrvop → mod(Q).
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By construction the representation H1
dR has a factorization

MCrvop H1
dRÐÐ→ ECMM1

FadRÐÐ→ mod(Q)

into a representation H
1
dR and aQ-linear faithful exact functor FadR.

3.5 Let Crv be the category deûned as follows (see [1, §5.1]). An object is a pair (C ,Y)
where C is a smooth aõne curve and Y ⊆ C is a closed subset consisting of ûnitely
many closed points. A morphism (C ,Y) → (C′ ,Y ′) is given by a k-morphism
f ∶C → C′ such that f (Y) ⊂ Y ′.

Recall that by deûnition [1, §5.1] the Q-linear Abelian category EHM1 of eòective
homological isomotives of curves 2 is the universal category associated with the rep-
resentation

(3.5) HB
1 ∶Crvk Ð→ mod(Q), (C ,Y)z→ HB

1 (C ,Y)⊗Z Q,

where HB
1 (C ,Y) is the Betti homology of the pair (C ,Y) (with integral coeõcients).

Let us denote by ECM1 the universal category associated with the representation

H1
B∶Crvop

k Ð→ mod(Q), (C ,Y)z→ H1
B(C ,Y)⊗Z Q,

whereH1
B(C ,Y) is the Betti cohomology of thepair (C ,Y). _eQ-lineardual functor

mod(Q)op → mod(Q) induces an equivalence

(3.6) (EHM1)op Ð→ ECM1 .

3.6 In thiswork, itwill be convenient to deûne eòective cohomological motives of curves
using algebraic de Rham cohomology instead of Betti cohomology. For this we as-
sume that k is a number ûeld and consider the representation

H1
dR∶Crvop Ð→ mod(k)(3.7)

(C ,Y)z→ H1
dR(C ,Y) ∶= H1

dR(C , [IY → Ω1
C])).

If C is the smooth compactiûcation of C and C∞ = C∖C is the set of points at inûnity,
then we have H1

dR(C ,Y) ≅ H1
dR(C ,Y ,C∞), where H1

dR(C ,Y ,C∞) is deûned as in
Deûnition 3.6 with both Y , C∞ viewed as closed reduced subschemes of C. Let us
denote by ECMdR

1 the Q-linear Abelian category associated with the representation
H1
dR in (3.7). By construction the representation H1

dR has a factorization

Crvop H1
dRÐÐ→ ECMdR

1
FdRÐÐ→ mod(Q)

into a representation H1
dR and aQ-linear faithful exact functor FdR. Note that by the

universal property the functor FdR factorizes in mod(k) via the forgetful functor.

Lemma 3.11 _ere is a canonical isomorphism of functors H1
dR ⊗k C

∼Ð→ H1
B,C on the

category Crv.
2Note that in [1] the category EHM1 is denoted by EHM′′1 , while EHM1 stands for the the thick

Abelian subcategory of Nori’s category of eòective cohomological isomotives generated by the ûrst co-
homology motive of pairs. _ese categories are equivalent by [1,_eorem 5.2,_eorem 6.1].
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Proof For a k-variety V we write V an for the complex analytic variety associated
with V . Let (C ,Y) inCrv and let I, J be the ideals of Y an and Can∞ in OCan ._e canon-
ical map

H1
dR(C ,Y ,C∞)⊗k CÐ→ H1(Can , [I→ J−1Ω1

Can])

is an isomorphism of C-vector spaces by GAGA. On the other hand, we have canon-
ical quasi-isomorphisms

j∗CCan ≅ [OCan → J−1Ω1
Can], i∗CY an ≅ [OCan/I→ 0],

where j∶Can → Can and i∶Y an → Can are immersions and CCan (resp. CY an ) denotes
the constant sheaf on Can (resp. Y an). _ere is an exact sequence of complexes

0Ð→ [I→ J−1Ω1
Can]Ð→ [OCan → J−1Ω1

Can]Ð→ [OCan/I→ 0]Ð→ 0.

Hence the lemma follows from the fact that H i
B(C ,Y) ⊗Z C is computed as the hy-

percohomology of the cone of j∗CCan → i∗CY an with degree shi�ed by one.

Proposition 3.12 Let k be a number ûeld. _e categories ECM1 and ECMdR
1 are

equivalent.

Proof Consider the 2-ûber product A of the categories mod(k) andmod(Q) over
mod(C). An object ofA is thus a triplet (V ,W , α) where V is a ûnite-dimensional
k-vector space,W is a ûnite-dimensionalQ-vector space, and α∶V ⊗k C→W ⊗Q C
is an isomorphism of C-vector spaces. _e category A is a Q-linear Abelian cate-
gory with twoQ-linear exact faithful functors Π1∶A → mod(Q), Π2∶A → mod(Q)
given by the projection on the ûrst factor composed with the forgetful functor and
the projection on the second factor. Wemay then consider the representation

H1
dR,B∶Crvop Ð→ A

(C ,Y)z→ H1
dR,B(C ,Y) ∶= (H1

dR(C ,Y),H1
B(C ,Y)⊗Z Q, α),

where the isomorphism α∶H1
dR(C ,Y) ⊗k C → H1

B(C ,Y) ⊗Z C is the one of Lem-
ma 3.11. We have the commutative diagram

ECMdR
1

////

Π1
��

mod(Q)

Crvop H1
dR,B //

H1
B

00

H1
dR

//

A
Π2

%%

Π1

99

ECM1 //

Π2

OO

mod(Q)
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where Π1 and Π2 are the functors provided by the universal properties. _e subdia-
gram

ECMdR
1

Π2○Π1

%%
Crvop

H1
dR

::

H1
B $$

mod(Q)

ECM1

99

OO

then provides aQ-linear functor ECM1 → ECMdR
1 . Similarly we get aQ-linear func-

tor ECMdR
1 → ECM1 and it is easy to check that they are quasi-inverse to one an-

other.

Let C be any smooth aõne k-curve. We denote by C, its smooth compactiûcation
and set C∞ = C ∖ C viewed as a reduced subscheme of C. _is induces amorphism
of quivers

(−)∶Crv Ð→MCrv, (C ,Y)z→ (C ,Y ,C∞).
Remark 3.13. Let f ∶ (C ,Y) → (C′ ,Y ′) be a morphism in Crv. _en f extends to
a morphism f ∶C → C′ between smooth compactiûcations. _is morphism satisûes
f (C ∖ C∞) ⊂ C′ ∖ C′∞ and since f (Y) ⊂ Y ′, we have

Y = Yred ⩽ ( f ∗(Y ′
red))red ⩽ f ∗(Y ′

red) = f ∗(Y ′).
_erefore, f deûnes a morphism between (C ,Y ,C∞) and (C′ ,Y ′ ,C′∞) in MCrv.
Similarly, we have another morphism of quivers

(3.8) Crv Ð→MCrv, (C ,Y)z→ (C ,C∞ ,Y).

Since, by deûnition H1
dR = H1

dR ○ (−) as representations of the quiver Crvop, the
universal property of Nori’s construction [12, _eorem 2] ensures the existence of a
Q-linear exact faithful functor IECM∶ECMdR

1 → ECMM1 and isomorphisms of func-
tors

IECM ○H1
dR Ð→ H

1
dR ○ (−), FadR ○ IECM Ð→ FdR

that makes the square

FadR ○ IECM ○H1
dR

//

��

FadR ○H
1
dR ○ (−)

=
��

FdR ○H1
dR

= // H1
dR

commutative.
Let us consider now theQ-linearAbelian categoryB deûned as follows. An object

in B is a tuple (V ,W , a, b) where V ,W are ûnite-dimensional k-vector spaces and
a∶V → W and b∶W → V are morphisms of k-vector spaces such that b ○ a = Id.
A morphism (V ,W , a, b) → (V ′ ,W ′ , a′ , b′) in B is simply a pair of k-linear mor-
phisms ( f ∶V → V ′ , g∶W → W ′) such that a′ ○ f = g ○ a and b′ ○ g = f ○ b. Note
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that by construction, we have two Q-linear exact functors obtained by projection on
the ûrst and second factor composed with the forgetful functor Π1∶B → mod(Q),
Π2∶B → mod(Q) and that,moreover, Π2 is faithful.

Let X be a smooth proper k-curve and Y , Z be closed subschemes of X. Recall
from Proposition 3.7 that there are two morphisms

(3.9) a∶H1
dR(X ,Yred , Zred)Ð→ H1

dR(X ,Y , Z)

and

(3.10) b∶H1
dR(X ,Y , Z)Ð→ H1

dR(X ,Yred , Zred)

such that b ○ a = id. Wemay therefore consider the representation

H1
dR,B∶MCrvop Ð→B

(X ,Y , Z)z→ (H1
dR(X ,Yred , Zred),H1

dR(X ,Y , Z), a, b),

where a and b are themorphisms (3.9) and (3.10). By construction Π2 ○H1
dR,B = H1

dR
and from (3.7) we have Π1 ○H1

dR,B = H1
dR ○ (−)ét, where (−)ét is the morphism of

quivers

(−)ét∶MCrv Ð→ Crv, (X ,Y , Z)z→ (X ∖ Zred ,Yred).

By [12,_eorem 2], there exists a faithful exactQ-linear functor FaB∶ECMM1 →B

and two isomorphisms of functors γ∶ FadR ○H
1
dR → H1

dR,B, δ∶Π2 ○FaB → FadR such that

Π2 ○ FaB ○H
1
dR

Π2⋆γ //

δ⋆H1
dR

��

Π2 ○H1
dR,B

=
��

FadR ○H
1
dR

= // H1
dR

is commutative.
Wemay apply [12, Proposition 6.6] to Π1 to obtain the existence of aQ-linear exact

and faithful functor ΠECM∶ECMM1 → ECMdR
1 and isomorphisms of functors

Π1 ○ FaB Ð→ FdR ○ΠECM , ΠECM ○H
1
dR Ð→ H1

dR ○ (−)ét

such that the diagram

Π1 ○ FaB ○H
1
dR

//

Π1⋆γ
��

FdR ○ΠECM ○H
1
dR

// FdR ○H1
dR ○ (−)ét

=
vv

Π1 ○H1
dR,B = // H1

dR ○ (−)ét

commutes. (See [12, Proposition 6.7] for uniqueness.)
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Remark 3.14. Let IB∶mod(k)→B be the functor that maps V to (V ,V , Id, Id). _e
diagram

ECMdR
1

FdR //

IECM

��

mod(k)

IB
�� %%

ECMM1
FaB //

FadR

77
B

Π2 // mod(Q)

is commutative up to isomorphisms of functors.

Proposition 3.15 _e composition ΠECM ○ IECM is isomorphic to the identity. More-
over, the functor IECM is fully faithful.

Proof Since (−)ét ○ (−) is the identity on the quiver Crv, the ûrst assertion is an
immediate consequence of the uniqueness statement [12, Proposition 6.7]. Let M ,N
be objects in ECMdR

1 and α∶ IECM(M) → IECM(N) be amorphism in ECMM1. Note
that for such an α, we have Π1 ○ FaB(α) = Π2 ○ FaB(α) = FadR(α). Let β = ΠECM(α).
It is enough to show that IECM(β) = α and since FadR is faithful, it is enough to show
this equality a�er applying FadR. We have

FadR(IECM(β)) = FdR(β) = FdR(ΠECM(α)) = Π1 ○ FaB(α) = Π2 ○ FaB(α) = FadR(α).
_is concludes the proof.

4 Review of Laumon 1-motives and Their de Rham Realization

In this section, we recall necessary material introducing notations [4, 14].

4.1 Recall thatwe areworking over a ûeld k of characteristic zero. LetAò be the category
of aõne schemes over k, and let S be the category of sheaves of Abelian groups on
the fppf site on Aò . For F ∈ S , we abbreviate F(R) ∶= F(SpecR) for a k-algebra R,
and we put Lie(F) ∶= ker[F(k[є]/(є2))→ F(k)].

4.2 We shall consider full subcategories ofS .
Let S0 be the full subcategory of S consisting of objects that are represented by

connected commutative algebraic groups G over k [14, (4.1)]. We identify such a G
with the object in S represented by G.

Let Sl be the full subcategory of S0 consisting of linear commutative algebraic
groups over k. We write Suni (resp. Smul) for the full subcategory of Sl consist-
ing of unipotent (resp. multiplicative) groups. For any L ∈ Sl , there is a canonical
decomposition L ≅ Luni × Lmul, where Luni ∈ Suni and Lmul ∈ Smul. _e functor
Suni → mod(k), L ↦ L(k) is an equivalence by which we o�en identify them.

Let Sa be the full subcategory of S0 consisting of Abelian varieties. Recall that
any G ∈ S0 canonically ûts in an extension 0→ G l → G → Gab → 0, where Gab ∈ Sa
and G l ∈ Sl . We ease the notation by putting Guni = (G l)uni and Gmul = (G l)mul.
We call Gsa ∶= G/Guni the semi-Abelian part of G.
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Let S−1 be the full subcategory of S consisting of formal groups over k without
torsion [14, (4.2)]. We write Sinf (resp. Sét) for the full subcategory of S−1 con-
sisting of connected (resp. étale) formal groups. For any F ∈ S−1, there is a canon-
ical decomposition F ≅ Finf × Fét, where Finf ∈ Sinf and Fét ∈ Sét. _e functor
Lie∶Sinf → mod(k) is an equivalence, with a quasi-inverse V ↦ V ⊗k Ĝa , where Ĝa
denotes the formal completion of Ga .

4.3 Following [14, (5.1.1)], deûne a Laumon 1-motive to be a complex [F → G] in S such
that F ∈ S−1 (placed at degree −1) and G ∈ S0 (placed at degree 0). We denote the
category of Laumon 1-motives over k by M a

1 (or by M a
1 (k) if we wish to stress the

dependency on k). _ere is an equivalence (M a
1 )op →M a

1 , called theCartier duality.

4.4 A Laumon 1-motive [F → G] is called a Deligne 1-motive if Finf = 0 and Guni = 0.
Denote by M1 the full subcategory of M a

1 consisting of Deligne 1-motives. Along
with this, we denote by M uni

1 (resp. M inf
1 ) the essential image of an obvious full

faithful functor

Suni Ð→M a
1 , U z→ U[0] ∶= [0→ U],

(resp. Sinf Ð→M a
1 , F z→ F[1] ∶= [F → 0]).

4.5 Let M = [F → G] ∈ M a
1 . We deûne a ûltration on M by

ûl0M M = M ⊃ ûl1M M = [Fét → G] ⊃ ûl2M M = [0→ Guni] ⊃ ûl3M M = 0.

We put GriM M ∶= ûliM M/ûli+1
M M, so that

Gr0M M ≅ Finf[1], Gr1M M ≅ [Fét → Gsa] =∶ MDel , Gr2M M = ûl2M M = Guni[0].

We have deûned functors

Gr0M ∶M a
1 Ð→M inf

1 , Gr1M ∶M a
1 Ð→M1,Del , Gr2M ∶M a

1 Ð→M uni
1 .

Note that all these functors are exact, and that Gr0M (resp. Gr2M ) is a le� (resp. right)
adjoint to the inclusion M inf

1 ↪ M a
1 (resp. M uni

1 ↪ M a
1 ). Following [4], we also

deûne (recall that Gsa = G/Guni) M× ∶= M/ûl2M M = [F → Gsa]. _e functor M ↦
M× is a le� adjoint of the inclusion {G ∈ M a

1 ∣ Guni = 0}↪M a
1 .

4.6 We call M = [F → G] ∈ M a
1 unipotent free if Guni = 0. For such M, it was shown

[4, (2.2.3)] that there is an extension M♮ = [F → G♮] ∈ M a
1 ofM by ExtM a

1
(M ,Ga)∗

such that it is universal among extensions ofM by an object ofM uni
1 . (Here ∗ denotes

k-linear dual. Recall that by convention we identify a k-vector space with an object
ofSuni.)

4.7 Now take any M = [u∶ F → G] ∈ M a
1 . Note that M× and MDel (introduced in §4.5)

are unipotent free. By [4, (2.3.2)], an exact sequence 0 → MDel → M× → Finf[1] → 0
induces an exact sequence 0→ (MDel)♮ → (M×)♮ → F⃗inf → 0, where

F⃗inf ∶= [Finf → Lie(Finf)] ∈ M a
1 .
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Let us write (MDel)♮ = [u♮Del∶ Fét → G♮
Del], (M×)♮ = [u♮×∶ F → G♮

×]. _en we get an
exact sequence

(4.1) 0→ Lie(G♮
Del)→ Lie(G♮

×)→ Lie(Finf)→ 0,

which admits a canonical splitting given by Lie(u♮×).
We also need the following remark. _e universality of (M×)♮ induces maps vM

and v♮M in the following commutative diagram with exact rows.

(4.2) 0 // Ext(M× ,Ga)∗ //

vM
��

(M×)♮ //

v♮M
��

M× //

=
��

0

0 // Guni // M // M× // 0

4.8 _e sharp extension M♯ = [F → G♯] of M = [F → G] ∈ M a
1 is deûned to be the

pull-back of (M×)♮ by the canonical surjection M → M×. (If M is unipotent free,
then M♯ = M♮.) _ere is a commutative diagram with exact rows and columns:

(4.3) 0

��

0

��
Guni

= //

��

Guni

i
��

0 // Ext(M× ,Ga)∗ //

=
��

M♯
p
//

q
��

M //

��

0

0 // Ext(M× ,Ga)∗ // (M×)♮ //
v♮M

;;

��

M× //

��

0

0 0

Note that the dotted arrow v♮M makes the lower right triangle commutative by (4.2),
but it is not necessarily the case for the upper le� triangle. _e middle vertical exact
sequence in (4.3) admits a canonical splitting s∶M♯ → Guni characterized by i ○ s =
p − (v♮M ○ q). Hence there also is an exact sequence

0Ð→ Lie(Guni)Ð→ Lie(G♯)Ð→ Lie(G♮
×)Ð→ 0

equipped with a canonical splitting. Combined with (4.1), we obtain a canonical de-
composition

(4.4) Lie(G♯) ≅ Lie(G♮
Del)⊕ Lie(Finf)⊕ Lie(Guni).

4.9 Following [4, (3.2.1)], we call an exact functor

RdR∶M a
1 Ð→ mod(k), RdR([F → G]) ∶= Lie(G♯)
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the sharp de Rham realization. By (4.4), we have a canonical decomposition

(4.5) RdR(M) ≅ RdR(MDel)⊕ Lie(Finf)⊕ Lie(Guni)

for any M = [F → G] ∈ M a
1 .

4.10 Let M1,Q ∶= M1 ⊗Z Q be theQ-linear Abelian category of Deligne 1-isomotives (1.1).
Recall from §3.5 that EHMQ

1 is the universal Q-linear category associated with the
Betti homology functor (3.5) (with K = Q). L. Barbieri-Viale and J. Ayoub [1] showed
the following important result,whichwill be a key ingredient in the proof of ourmain
result. (Actually, they proved a stronger statement with integral coeõcients.)

_eorem 4.1 We have an equivalence ofQ-linearAbelian categoriesEHMQ
1

∼Ð→M1,Q.

_is functor is induced by a functor Crv →M1 via universality (see Remark 5.3).
We will construct its modulus version in the next section.

5 1-motives of a Curve With Modulus and the Main Theorem

In this section, we associate a Laumon 1-motive LM(X ,Y , Z) ∈ M a
1 with a smooth

proper k-curve X and two eòective divisors Y , Z on X with disjoint support. We shall
see functorial properties that yield two functors

LM∶MCrv Ð→M a
1 , LM∶MCrv Ð→M a

1 .

5.1 Let X be a smooth proper k-curve and Y an eòective divisors on X. We denote by
J(X ,Y) ∈ S0 the generalized Jacobian of X with modulus Y in the sense of Rosen-
licht and Serre [18,21]. Recall that J(X ,Y) is the connected component of the Picard
scheme Pic(XY) of a proper k-curve XY that is obtained by collapsing Y into a single
(usually singular) point [21, Chapter IV, §3–4]. It can also be deûned as the Albanese
variety attached to a pair (X ,Y) [19, Example 2.34], [20, §3.3].

Let X′ be another smooth proper k-curve and Y ′ an eòective divisor on it. Let
f ∶X → X′ be a k-morphism. When Y ⩽ f ∗Y ′, we have a pull-back f ∗∶ J(X′ ,Y ′) →
J(X ,Y) deduced by the functoriality of the Picard scheme. When

Y − Yred ⩾ f ∗(Y ′ − Y ′
red), Yred ⩾ ( f ∗Y ′)red ,

we have a push-forward f∗∶ J(X ,Y)→ J(X′ ,Y ′) by [20, Proposition 3.22].

Lemma 5.1 _ere exists a canonical isomorphism (Proposition 3.3)

(5.1) Lie J(X ,Y)uni ≅ U(X ,Y).

Proof If Y = ∅, then J(X ,Y) is anAbelian variety so that J(X ,Y)uni = 0, and hence
the lemma holds. We suppose Y /= ∅ in what follows. Consider an exact sequence of
sheaves on X: 0 → IY → IYred → IYred/IY → 0. We have H0(X , IYred) = 0 since Y is a
non-empty eòective divisor. It follows that

H0(X , IYred/IY) ≅ ker(H1(X , IY)→ H1(X , IYred)).
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By [21, Chapter V, §10, Proposition 5], there are canonical isomorphisms

H1(X , IY) ≅ Lie J(X ,Y), H1(X , IYred) ≅ Lie J(X ,Yred).
Now the lemma follows from an exact sequence

0Ð→ Lie J(X ,Y)uni Ð→ Lie J(X ,Y)Ð→ Lie J(X ,Y)sa Ð→ 0

and a canonical isomorphism J(X ,Y)sa = J(X ,Yred).

5.2 Let X be a smooth proper k-curve and Z an eòective divisor on X. We construct an
object F(X , Z) ∶= F(X , Z)inf × F(X , Z)ét ∈ S−1 as follows. First, we deûne

F(X , Z)ét ∶= ker[π0(Z)Ð→ π0(X)],
where the map is the one induced by the closed immersion Z → X. Here, for any
k-varietyV ,we deûne π0(V) ∈ S−1 by declaring π0(V)(U) is the free Abelian group
on the set of connected components ofU ×k V for U ∈ Aò . _is depends only on the
reduced part of V . Next we deûne (Proposition 3.3, see also [13, §5.3])

(5.2) F(X , Z)inf ∶= V(X , Z)⊗k Ĝa .

Let X′ be another smooth proper k-curve and Z′ an eòective divisor on it. Let
f ∶X → X′ be a k-morphism. _ere is a pull-back f ∗∶ F(X′ , Z′) → F(X , Z) (resp. a
push-forward f∗∶ F(X , Z) → F(X′ , Z′)) when Z − Zred ⩾ f ∗(Z′ − Z′red) and Zred ⩾
( f ∗Z′)red (resp. Z ⩽ f ∗Z′). On the inûnitesimal (resp. étale) part, they are deûned
by Corollary 3.5 (resp. pull-back and push-forward of cycles).

5.3 We recall Russell’s results [19, §2.1]. Let V be a Noetherian reduced scheme. Deûne
DivV ∈ S to be the sheaf that associates with Spec(R) ∈ Aò the group of all Cartier
divisors on V ⊗k R generated locally on Spec(R) by eòective Cartier divisors which
are �at over R. _ere is a canonical “class” map

(5.3) cl∶DivV Ð→ PicV
to the Picard scheme PicV of V . Let Div0V denote the inverse image under cl of the
connected component Pic0X of PicX . We have Div0V(k) = H0(V ,K ×

V /O×
V) (the group

of Cartier divisors on V ) and Lie(Div0V) = H0(V ,KV/OV), where KV is the sheaf
of the total ring of fractions ofOV . In [19, Proposition 2.13] it was shown that for any
F ∈ S−1 and a pair of maps ainf ∶Lie(F) → Lie(Div0V), and aét∶ F(k) → Div0V(k),
there exists a uniquemap

(5.4) a = (ainf , aét)∶ F Ð→ DivV
that induces amap ainf (resp. aét) via Lie (resp. by taking sections over Spec k).

Let X be a smooth proper k-curve and let Y , Z be two eòective divisors on X with
disjoint support. We apply the above argument to V = XY , where XY is the curve we
discussed in §5.1. Since Y and Z are disjoint,wemay identify Z as a closed subscheme
of XY . We deûne

τ′inf ∶Lie(F(X , Z)inf) = H0(X , I−1
Z IZred/OX) = H0(XZ , I−1

Z IZred/OXY )
Ð→ H0(X ,KXY /OXY ) = Lie(Div0XY

)
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to be themap induced by the inclusion I−1
Z IZred ⊂ KXY . Also, we deûne

π0(Z)(k) = Z0(Z)Ð→ DivXY
(k) = Div(XY)

by sending D ∈ Z0(Z) to OXY (D). It restricts to

τ′ét∶ F(X , Z)ét(k) = ker[π0(Z)→ π0(X)]Ð→ Div0XY
(k).

Using them, we deûne

τ(X ,Y , Z) ∶= cl ○ (τ′inf , τ′ét)∶ F(X , Z)Ð→ Pic0XY
= J(X ,Y),

wherewe used the notations from (5.3) and (5.4). We then deûne a Laumon 1-motive
attached to (X ,Y , Z) by

(5.5) LM(X ,Y , Z) ∶= [F(X , Z) τ(X ,Y ,Z)ÐÐÐÐÐ→ J(X ,Y)] ∈ M a
1 .

From this deûnition it is evident that

(5.6) LM(X ,Y , Z)Del = LM(X ,Yred , Zred).

5.4 Let X′ be another smooth proper k-curve and let Y ′ , Z′ be two eòective divisors on
X′ with disjoint support. Let f ∶X → X′ be a k-morphism. If f deûnes a morphism
in MCrv, then the square

F(X′ , Z′)
τ(X′ ,Y ′ ,Z′) //

f ∗

��

J(X′ ,Y ′)

f ∗

��
F(X , Z)

τ(X ,Y ,Z) // J(X ,Y)

commutes. Similarly if f deûnes amorphism in MCrv, then the square

F(X , Z)
τ(X ,Y ,Z) //

f∗
��

J(X ,Y)

f∗
��

F(X′ , Z′)
τ(X′ ,Y ′ ,Z′) // J(X′ ,Y ′)

commutes. _is enables us to make the following deûnition.

Deûnition 5.2 We deûne a functor LM∶MCrvop → M a
1 (resp. LM∶MCrv →

M a
1 ) by setting LM(X ,Y , Z) = LM(X ,Y , Z) = LM(X ,Y , Z), and LM( f ) = f ∗

(resp. LM( f ) = f∗) for amorphism f in MCrv (resp. in MCrv).

Remark 5.3. _e composition of LM with Crv → MCrv from (3.8) factors through
M1 (see §4.4). _is induces the functor in _eorem 4.1 via universality.

Proposition 5.4 _ere is an isomorphism of functors RdR ○ LM→ H1
dR.

Proof Let (X ,Y , Z) ∈ MCrv. By (4.5), (5.1), (5.2), and (5.6), we have

RdR ○ LM(X ,Y , Z) = RdR(X ,Yred , Zred)⊕U(X ,Y)⊕ V(X , Z).
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Moreover, by [5, Corollary 2.6.4] there is a canonical isomorphism

RdR(X ,Yred , Zred) ≅ H1
dR(X ,Yred , Zred).

Now the proposition follows from (3.4).

Remark 5.5. _ere is also an isomorphism of functors RdR ○ LM → tH1
dR considered

as functors MCrv → mod(k), see (3.3).

Remark 5.6. (_is remark will not be used in the sequel.) For any (X ,Y , Z) ∈ MCrv,
we ûnd that LM(X ,Y , Z) and LM(X , Z ,Y) are Cartier dual to each other. In other
words, using a functor Sw∶MCrv → MCrv deûned by Sw(X ,Y , Z) = (X , Z ,Y), we
get a commutative diagram.

MCrv

Sw
��

LMop
// (M a

1 )op

Cartier dual
��

MCrv
LM

//M a
1

5.5 Let M a
1,Q ∶= M a

1 ⊗ZQ be theQ-linearAbelian category of Laumon 1-isomotives (1.1).

Proposition 5.7 Any Laumon 1-motive M = [F u→ G] is a quotient in M a
1,Q of

LM(X ,Y , Z) for some object (X ,Y , Z) ofMCrv.

Remark 5.8. IfM is such that F = 0, then (X ,Y , Z) can be chosen as Z = ∅ Similarly,
ifM is such that G l = 0, then (X ,Y , Z) can be chosen as Y = ∅. _iswill be apparent
from the proof given below.

Proof We divide the proof into three steps.
Step 1. (Cf. [21, ChapterVII, §2, no. 13,_eorem. 4].) We ûrstprove theproposition

assuming that k is algebraically closed, and that both uinf ∶Lie(Finf) → Lie(G) and
uét∶ Fét → G are injective. Choose a Z-basis e1 , . . . , er of Fét, and put p i ∶= uét(e i) ∈
G (i = 1, . . . , r). Let p0 ∈ G be the identity element. We take a one-dimensional
closed integral subschemeC′0 onG that contains p0 , p1 , . . . , pr as regular points. Also,
choose a k-basis t1 , . . . , ts′ of Lie(Finf), and put v i ∶= uinf(t i) ∈ Lie(G), i = 1, . . . , s′.
We extend v1 , . . . , vs′ to a k-basis v1 , . . . , vs′ , . . . , vs of Lie(G). For each i = 1, . . . , s,we
take a one-dimensional closed integral subscheme C′i on G that passes p0 regularly
and that has tangent v i at p0. For i = 0, 1, . . . , s, we let C i → C′i be the normalization.
We denote the preimage of p j in C i by the same letter p j . (Here j = 0, . . . , r for
i = 0, and j = 0 for i = 1, . . . , s.) Let X i be the smooth completion of C i . Let Yi be a
modulus for the morphism C i → C′i ↪ G. _is means that Yi is an eòective divisor
supported on X i ∖C i and that C i → G factors as C i → J(X i ,Yi)

g i→ G. We also deûne
eòective divisors Z0 ∶= (p0) + (p1) + ⋅ ⋅ ⋅ + (pr) ∈ Div(X0), Z i ∶= 2(p0) ∈ Div(X i),
i = 1, . . . , s′, and Z i ∶= 0, i = s′ + 1, . . . , s. Let X be the disjoint union of X0 , . . . , Xs ,
and let Y = Y0 + ⋅ ⋅ ⋅ + Ys , Z = Z0 + ⋅ ⋅ ⋅ + Zs .
By deûnition, we have F(X , Z)ét = F(X0 , Z0) = Div0Z0

(X0), hence we can deûne
an isomorphism F(X , Z)ét → Fét by ∑r

i=1 n i(p i − p0) ↦ ∑r
i=1 n i e i , n1 , . . . , nr ∈ Z.

https://doi.org/10.4153/CJM-2017-037-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-037-x


Nori Motives of Curves With Modulus and Laumon 1-motives 889

Also, by deûnition, we have F(X , Z)inf =⊕s′
i=1 F(X i , Z i) =⊕s′

i=1 k ⋅ v i , hence we can
deûne an isomorphism F(X , Z)inf → Finf by ∑s′

i=1 a iv i ↦ ∑s′
i=1 a i t i , a1 , . . . , as′ ∈ k.

We have deûned an isomorphism f ∶ F(X , Z)→ F. Finally, we deûne g∶ J(X ,Y)→ G
as the sum of g i ∶ J(X i ,Yi)→ G over i = 0, . . . , s. Since the image of

Lie(g i)∶Lie(J(X i ,Yi))Ð→ Lie(G)

contains v i , we ûnd Lie(g)∶Lie(J(X ,Y))→ Lie(G) is surjective, hence g∶ J(X ,Y)→
G itself is also surjective. It is straightforward to see that f and g deûne an epimor-
phism LM(X ,Y , Z)→ M in M a

1 . (Here we do not need to tensor with Q.)
Step 2. We drop the assumption that k is algebraically closed, but keep the assump-

tion that both uinf and uét are injective. By Step 1, we can ûnd a ûnite extension k′/k
such that the base change of M to k′ satisûes the conclusion of the proposition. _e
Weil restriction functor

Rk′/k ∶M a
1,Q(k′)Ð→M a

1,Q(k), Rk′/k([F → G]) = [Rk′/k(F)→ Rk′/k(G)]

is exact. (Here we denote by M a
1,Q(k) and M a

1,Q(k′) for the category of Laumon
1-isomotives over k and over k′.) Moreover, for any (X ,Y , Z) ∈ MCrvk′ we have
Rk′/kLMk′(X ,Y , Z) = LMk(Xk ,Yk , Zk), where for a k′-scheme S we write Sk for
the k-scheme S with structure morphism S → Spec k′ → Spec k. (_is follows from
a general fact that the Picard functor commutes with base change.) _is proves the
proposition in this case.

Step 3. We prove the proposition in the general case. Let F2 ∶= ker(u),
M1 ∶= [F/F2 → G], M2 ∶= [F2 → 0]. _en there is a non-canonical isomorphism
M ≅ M1 ⊕M2 in M a

1,Q. Now we apply the result from Step 2, and we are done.

5.6 Henceforth,we suppose that k is a number ûeld. Note that M a
1,Q is aQ-linearAbelian

category. By Propositions 2.1 and 5.4, we obtain aQ-linear exact faithful functor

(5.7) LM∶ECMM1 →M a
1,Q ,

and two invertible natural transformations LM ○H
1
dR → LM, RdR ○ LM → FadR. _e

main result of this article is the following theorem.

_eorem 5.9 Suppose that k is a number ûeld. _e functor LM∶ECMM1 →M a
1,Q in

(5.7) is an equivalence.

6 Filtration on Nori Motives With Modulus

We continue to assume that k is a number ûeld. In this section,we construct on every
object of ECMM1 a two steps ûltration that mirrors the one on Laumon 1-motives
deûned in §4.5.

6.1 Consider themorphism of quivers

(6.1) MCrv Ð→MCrv, (X ,Y , Z)z→ (X ,Y , Zred).
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Note that if a morphism f ∶X → X′ of k-curves deûnes a morphism (X ,Y , Z) →
(X′ ,Y ′ , Z′) in MCrv, then it also deûnes amorphism (X ,Y , Zred) → (X′ ,Y ′ , Z′red)
in MCrv, by our deûnition ofMCrv (see §3.2).

If (X ,Y , Z) is a k-curve with modulus, let us observe that by construction

ûl1MLM(X ,Y , Z) = LM(X ,Y , Zred).

Hence the square

(6.2) MCrvop LM //

(−,−,−red)
��

M a
1,Q

fil1M
��

MCrvop LM //M a
1,Q

commutes and Proposition 2.4 shows the existence of aQ-linear exact functor

ûl1∶ECMM1 → ECMM1

and two invertible natural transformations

ρ∶ûl1M ○ LMÐ→ LM ○ ûl1 ρ∶ûl1 ○H
1
dR Ð→ H

1
dR ○ (−,−,−red),

such that the corresponding diagram as in (2.1) is commutative.
Let us now show that there exists a natural transformation ûl1 → Id that is a

monomorphism for every object in ECMM1. Let (X ,Y , Z) be a k-curve with mod-
ulus. Since Zred ⩽ Z, the identity of X deûnes an edge (X ,Y , Z) → (X ,Y , Zred)
that provides a natural transformation ι∶ (−,−,−red) → Id of functors from MCrvop

with values in MCrvop. Note that this transformation induces the monomorphism
ûl1LM(X ,Y , Z)→ LM(X ,Y , Z) in M a

1,Q and that the square

ûl1M ○ LM

ιM⋆LM
��

LM ○ (−,−,−red)

LM⋆ι
��

LM LM

is commutative. Wemay therefore apply Proposition 2.5 to obtain a natural transfor-
mation ι∶ûl1 → Id that makes the squares

(6.3) ûl1 ○H
1
dR

ρ //

ι⋆H1
dR

��

H
1
dR ○ (−,−,−red)

H1
dR⋆ι
��

H
1
dR H

1
dR

ûl1M ○ LM
ρ //

ι⋆LM
��

LM ○ ûl1

LM⋆ι
��

LM LM

commutative. Note that by Remark 2.6, for every object A in ECMM1 themorphism
ι∶ûl1A→ A is amonomorphism.
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6.2 So far we have constructed the ûrst step of the ûltration. Let us now construct the
second one. Let D be the full subquiver of MCrv whose vertices are the k-curves
with modulus (X ,Y , Z) such that Z is reduced.

We denote by M inf=0
1,Q the kernel of the exact functor Gr0M . _is is the category of

Laumon 1-isomotiveswithout inûnitesimal part and by deûnition it is the full subcat-
egory ofM a

1,Q of objects M such that Gr0M (M) = 0, i.e., such that ιM ∶ûl1M (M)→ M
is an isomorphism. Similarly we denote by ECMMinf=0

1 the kernel of the exact functor
Gr0∶ECMM1 → ECMM1 constructed in §6.1. _e compatibility given in (6.3) ensures
that the functor (5.7) induces an exact functor LM∶ECMMinf=0

1 →M inf=0
1,Q .

Proposition 6.1 _e universal Q-linear Abelian category associated with the repre-
sentation H1

dR∶Dop → mod(Q) is equivalent to ECMMinf=0
1 .

Proof Let us denote by C the associated category and by Dop H1
CÐÐ→ C

FCÐ→ mod(Q)
the canonical factorization of the restriction of H1

dR to Dop. Since the restriction of
H

1
dR to Dop takes its values in the Abelian subcategory ECMMinf=0

1 , the universal
property of Nori’s category ensures the existence of a Q-linear exact faithful functor
IC ∶C → ECMMinf=0

1 and two invertible natural transformations γ∶ IC ○H
1
C → H

1
dR

and δ∶ FadR ○ IC → FC such that the square

FadR ○ IC ○H
1
C

FadR⋆γ //

δ⋆H1
C

��

FadR ○H
1
dR

FC ○H
1
C H1

dR

is commutative. To construct a quasi-inverse to the functor IC let us go back to the
construction of ûl1 in §6.1. Observe that (6.1) takes its values in D and that the square
(6.2) can be reûned in a square

MCrvop LM //

(−,−,−red)
��

M a
1,Q

fil1M
��

Dop LM∣D //M inf=0
1,Q .

By Propositions 2.4 and 2.5, this shows the existence of a Q-linear exact functor
ûl1C ∶ECMM1 → C and an invertible natural transformation IC ○ ûl1C → ûl1.

Let us denote by Iinf=0 the inclusion functor of ECMMinf=0
1 into ECMM1. Since

ûl1○Iinf=0 is isomorphic to the identity, the composition IC ○ûl1C ○Iinf=0 is isomorphic
to the identity. _is shows that the faithful functor IC is an equivalence and that
ûl1C ○ Iinf=0 is a quasi-inverse.

Now consider themorphism of quivers

D Ð→ D , (X ,Y , Z)z→ (X ,Yred , Z).
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(_is is indeed amorphism, because if f ∶X → X′ is amorphismof k-curves and if ef-
fective divisors Y ⊂ X and Y ′ ⊂ X′ satisfy Y ⩽ f ∗Y ′, thenwe have Yred ⩽ ( f ∗Y ′)red ⩽
f ∗(Y ′

red).) Since the square

Dop LM //

(−,−red ,−)
��

M inf=0
1,Q

Gr1M
��

Dop LM //M inf=0
1,Q

is commutative, Propositions 2.4 and univinf=0 show the existence of aQ-linear exact
functor3 Gr1∶ECMMinf=0

1 → ECMMinf=0
1 and two invertible natural transformations

ρ∶Gr1M ○ LMÐ→ LM ○Gr1 , ρ∶Gr1 ○H
1
dR Ð→ H

1
dR ○ (−,−red ,−),

such that the corresponding diagram, as in (2.1), is commutative.
Note that for every Laumon 1-isomotive M, there is a canonical epimorphism

ûl1M (M) → Gr1M (M). In particular, if M is without inûnitesimal part, there is a
canonical epimorphism πM ∶M → Gr1M (M). Since Yred ⩽ Y , the identity of X in-
duces an edge from (X ,Yred , Z) to (X ,Y , Z) in D .

Remark 6.2. Note that if Y is not reduced, then the identity of X does not deûne an
edge from (X ,Y , Z) to (X ,Yred , Zred) inMCrv. _is is themain reason for introduc-
ing the subquiver D .

_is provides a natural transformation πD ∶ IdDop → (−,−red ,−) of functors from
Dop with values in Dop. Note that the square

LM∣D
πM⋆LM∣D

��

LM∣D
LM∣D⋆πD

��
Gr1M ○ LM∣D LM∣D ○ (−,−red ,−)

commutes. Wemay therefore applyProposition 2.5 to obtain anatural transformation
π∶ Id→ Gr1 that makes the squares

H
1
dR

π⋆H1
dR
��

H
1
dR

H1
dR⋆πD

��

Gr1 ○H
1
dR

ρ // H
1
dR ○ (−,−red ,−)

LM

πM⋆LM
��

LM

LM⋆π
��

Gr1M ○ LM
ρ // LM ○Gr1

commutative. Note that in the above squares, all natural transformations are between
functors on Dop or ECMMinf=0

1 . By Remark 2.6, for every object A in ECMMinf=0
1 ,

themorphism π∶A→ Gr1(A) is an epimorphism.
Let A be an object in ECMM1. _en ûl1(A) belongs to ECMMinf=0

1 and we set

ûl2(A) ∶= Ker[ûl1(A)→ Gr1(ûl1(A))].
3Note that the notation might be misleading: Gr1 is not yet the set of graded pieces associated to a

ûltration.
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Note that by deûnition Gr1(A) ∶= Gr1(ûl1(A)).

7 Proof of the Main Theorem

In this section, we assume that k is a number ûeld. We complete the proof of _eo-
rem 5.9.

7.1 Recall from Proposition 3.15 that we have a fully faithful functor IECM∶ECMdR
1 →

ECMM1. _e composition of IECM with LM∶ECMM1 → M a
1,Q factors through the

category M1,Q of Deligne 1-isomotives. _is induces a functor ECMdR
1 → M1,Q by

universality.

Proposition 7.1 _e functor ECMdR
1 →M1,Q is an equivalence.

Proof _is follows from (3.6),_eorem4.1, Proposition 3.12, and the Cartier duality
for M1,Q.

Let ECMMuni
1 be the intersection of the kernel of the exact functors Gr0 and Gr1

constructed in §6.1 and §6.2. An object A in ECMM1 belongs to the full subcategory
ECMMuni

1 if and only if the canonical monomorphism ûl2(A) → A is an isomor-
phism. Since the functor LM is compatible with the ûltration, it induces a Q-linear
exact faithful functor (see §4.4) LM∶ECMMuni

1 → M uni
1,Q . Note that M uni

1,Q is simply
the category of unipotent commutative algebraic groups over k and that the functor
M uni

1,Q → mod(k) given by the restriction of the de Rham realization RdR is nothing
but the functor that associateswith a unipotent commutative algebraic k-group its Lie
algebra and is therefore an equivalence.
For the proof of the next proposition, we need an elementary lemma.

Lemma 7.2 For any µ ∈ Z>0, k is generated by {aµ ∣ a ∈ k} as aQ-algebra.

Proof Write k = Q(γ) with γ ∈ k. _en γ can be written as aQ-linear combination
of γµ , (γ + 1)µ , . . . , (γ + µ − 1)µ . _e lemma follows from this.

Proposition 7.3 _e functor LM∶ECMMuni
1 →M uni

1,Q is an equivalence.

Proof We deûne a subquiver MPo of MCrv as follows. _e vertices are given by
Pn ∶= (P1 , n[∞],∅) ∈ MCrv for any integer n ≥ 2. _e edges from Pn to Pm are of
two types:

an automorphism of P1 that ûxes∞, when n = m ≥ 2.(7.1)

the identity map on P1, when m ≥ n ≥ 2.(7.2)

Let w∶mod(k) → mod(Q) be the forgetful functor. Consider the representation T =
w ○ RdR ○ LM∣MPo∶MPoop → mod(Q) and its canonical factorization

MPoop TÐ→ U
FTÐ→ mod(Q),
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where U = comod(CT) is Nori’s universal category (see Remark 2.2). Note that
the restriction of the representation H

1
dR to the subquiver MPo takes its values in

ECMMuni
1 . Hence, by the universal property ofNori’s construction (see_eorem 2.1),

there exist a Q-linear exact faithful functor U ∶U → ECMMuni
1 , and two invertible

natural transformations α∶U ○ T → H
1
dR and β∶w ○ RdR ○ LM ○U → FT such that the

diagram

MPo

T $$

H1
dR // ECMMuni

1
LM //M uni

1,Q
RdR // mod(k) w // mod(Q)

U
FT

99

U

OO

is commutative. Since the functor LM is faithful, to show the proposition it is enough
to show that RdR ○LM○U ∶U → mod(k) is an equivalence of categories (note that the
functor U will then also be an equivalence). It suõces to see that CT is the Q-linear
dual of the algebra k, and this amounts to checking that for every full subquiver E
of MPo with ûnitely many objects, EndQ(T ∣E ) = k. We may assume E of the form
{P2 , . . . ,Pn} for some integer n ⩾ 2. Write P1 = Proj(k[T , S]) and put t = T/S,
s = S/T so that ∞ ∈ P1 is deûned by s = 0. By (5.1) and (5.5), the representation T
maps Pn to the Q-vector space sk[s]/(sn). We compute the action ofmorphisms on
this space in three instances:
(a) Let n ⩾ 2 and consider the edge e∶Pn → Pn of type (7.1) given by t ↦ at, where a

is a ûxed element in k×. _en T(e) is the k-linear map represented by a diagonal
matrix (a−1 , a−2 , . . . , a1−n) with respect to the k-basis {s, s2 , . . . , sn−1},

(b) Let n ⩾ 2 and consider the edge e∶Pn → Pn of type (7.1) given by t ↦ t − 1. _en
T(e) maps s = 1/t to 1/(t − 1) = s + s2 + ⋅ ⋅ ⋅ + sn−1. (We will not need to know
T(e)(s i) for i > 1.)

(c) Let m ⩾ n ⩾ 2 and consider the edge of type (7.2). _en T(e) is themap

sk[s]/(sm)Ð→ sk[s]/(sn)
induced by the identity on sk[s].
Let α be an element in EndQ(T ∣E ). _en α is given by a family

(α(i))n
i=2 ∈

n
∏
i=2
EndQ(T(Pi))

such that for every edge e∶Pi → P j in MPo

(7.3) α i ○ T(e) = T(e) ○ α j .

We write α(i) = (α(i)µν )µ ,ν=1, . . . , i with α(i)µν ∈ EndQ(k)(≅ Md(Q) with d = [k ∶Q]). Let
us deûne aQ-algebra embedding m∶ k → EndQ(k) by m(a)(x) = ax (a, x ∈ k).

_e condition (7.3) for all edges of the form (a) implies that

(7.4) m(a)−µα(i)µν = α(i)µν m(a)−ν for all a ∈ k×.

Since m(a) for a ∈ Q lies in the center of EndQ(k), (7.4) applied to, say, a = 2 yields
α(i)µν = 0 if µ /= ν. In view of Lemma 7.2, it also yields that α(i)µµ belongs to the centralizer
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of the image ofm,which is k itself as k is amaximal commutative subring of EndQ(k).
We write α(i)µµ = m(a(i)µ ) with a(i)µ ∈ k. Applying the condition (7.3) for all edges of
the form (b),we obtain a(i)1 = a(i)µ for all µ. Finally, (7.3) for all edges of type (c) yields
a(i)1 = a(1)1 for all i. We have shown that α = a(1)1 ∈ k. _is completes the proof.

Let ECMMinf
1 be the kernel of the exact functor ûl1 constructed in §6.1. By a dual

argument, we obtain the following proposition.

Proposition 7.4 _e restriction of the functor LM∶ECMM1 → M a
1,Q to the subcate-

gory ECMMinf
1 induces an equivalence of categories between ECMMinf

1 andM inf
1,Q (see

§4.4).

7.2 We ûnally prove our main theorem.

Proof of_eorem 5.9 To prove _eorem 5.9 it is enough to show that we are in a
situation where the criteria of Proposition 2.3 apply. _e ûrst condition is obviously
satisûed and the second one follows from Proposition 5.7. It remains to prove that the
third condition is also satisûed.

Let A be an object in ECMM1, M an object in M a
1,Q, and u∶LM(A) → M a mor-

phism in M a
1,Q. By applying the functor RdR, we get amorphism RdR(u)∶ FadR(A) →

RdR(M) ofQ-vector spaces. Note that u induces a commutative diagram in M a
1,Q:

LM(ûl2(A)) // LM(ûl1(A)) //

��

LM(A)

��
LM(Gr1(A)) LM(Gr0(A))

ûl2M (M) //
��

ûl1M (M) //

��

  
M

��

!!

Gr1M (M)
  

Gr0M (M)
!!

Applying the functor RdR yields a commutative diagram:
(7.5)
FadR(ûl

2(A)) // FadR(ûl
1(A)) //

��

FadR(A)

��
FadR(Gr1(A)) FadR(Gr0(A))

RdR(ûl2M (M)) //
��

v2

RdR(ûl1M (M)) //

��

!!
RdR(M)

��

##

v

RdR(Gr1M (M))
!!

v1

RdR(Gr0M (M))
##

v0
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where we set v = RdR(u), v0 ∶= RdR(Gr0M (u)), v1 ∶= RdR(Gr1M (u)), and v2 ∶=
RdR(ûl2M (u)) to simplify notations.
By construction of the category ECMM1 (see Remark 2.2), there exists a ûnite sub-

quiver E ofMCrv such that in the diagram

FadR(ûl
2(A)) // FadR(ûl

1(A)) //

��

FadR(A)

��
FadR(Gr1(A)) FadR(Gr0(A))

all objects are canonically endowed with an End(H1
dR∣E )-module structure and all

morphisms are End(H1
dR∣E )-linear. Using Propositions 7.3, 7.4, and 7.1, by allowing E

to be bigger,wemay assume that the kernels of themaps v0 , v1 , v2 are sub-End(T ∣E )-
modules. An easy diagram chase in (7.5) shows that the kernel of v is a sub-End(T ∣E )-
module of FadR as well. _is concludes the proof.
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