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Abstract. Lorenz knots are the periodic orbits of a certain geometrically defined
differential equation in R3. This is called the 'geometric Lorenz attractor' as it is
only conjecturally the real Lorenz attractor. These knots have been studied by the
author and Joan Birman via a 'knot-holder', i.e. a certain branched two-manifold
H. To show such knots are prime we suppose the contrary which implies the existence
of a splitting sphere, S2. The technique of the proof is to study the intersection
S2nH. A novelty here is that S2 n H is likewise branched.

Introduction
In two previous papers [1], [2], Joan Birman and the author have begun a study of
the periodic orbits of certain flows <f>, on a 3-manifold M3, often U3 or S3. Our
attempt is to bring parts of knot theory to bear, as in particular a periodic orbit of
<t>, is a 1-sphere embedded in M3 and thus a knot. We conjectured the theorem of
the title of this paper in [1].

We are especially interested in how the various periodic orbits of a single flow
(or ordinary differential equation) are related to one another. The principal tool
introduced in [1], [2] was the 'knot holder' for <t>,, i.e. a 2-dimensional branched
manifold H<= M3 and semi flow <£„ defined for f>0 on H. The idea is that the
family of all periodic orbits of the original flow <f>, on M3 are pushed down into the
2-dimensional setting of <£, on H. The isotopy properties of the orbits are preserved
by this process. The overall goal is to obtain global theorems as to which families
of knots occur.

The reader is referred to [1], [2] for material on knot holders; we summarize
some of this here.

A knot holder H, consists of finitely many ''joining' and 'splitting' charts put
together by sewing each bottom to exactly one top and vice versa. The joining chart
has the defect that flow lines come together along the branch set ft and thus <£, is
not well defined for t < 0. Likewise the flow leaves splitting charts at the bottom
and hence $, is not defined for some t > 0. The interesting orbits are those which
remain in H for all t > 0. A certain symbolic dynamics of knot holders was worked
out in [2, § 5] and will be used in this paper.
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B

joining chart

B, B,

splitting chart

The simplest knot holders consist of just 2 charts, one of each kind. There is a 2
parameter family of these and we will adopt the notation L(u, v), u,veZ. This
involves a convention on twists;

Sew together
with u
half twists
[No 'knots'
and not
linking the
right-hand side]

Sew together
with v
half twists
[No'knots'
and not
linking the
left-hand side]

The knot holder Liu, v)

ours is that left-handed twists are positive, right-handed negative, as in our example.
In addition there is the symmetry L(u, v) = L(v, u) via rotation of IT about the
vertical; also the mirror reflection L(u, v) of L(u, v). We say L(u, v) is left-handed,
L(u, v) right-handed. The Lorenz knot holder is L(0,0), and derives its name from
the 'Lorenz attractor'; in effect, L(0,0) is the 'preturbulent' version of the differential
equations

x = — ax + y,

y= Rx-y —xz,

z= -bz + xy,
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where cr = 10, b = § and i? is about 16. That is to say, by perturbation methods one
finds that the periodic solutions to the Lorenz equations are exactly those of L(0,0).
Though no one has succeeded in giving an analytic derivation of the nature of the
'Lorenz attractor', R = 28 or nearby, most people believe the 'model' as described
by Guckenheimer [3], [4] and Williams [5] corresponds to reality. This model is
essentially that given by L(0,0), except that in any one of the attractors, certain of
the periodic orbits of L(0T0) would be missing. It is to be hoped that the techniques
developed here will aid in studying the more general problem of prime-factorization
of knotted periodic orbits. In particular, the machinery developed here proves
slightly more than the title:

THEOREM. For any t)>0, the knots in L(0, v) and L(0, v) are prime.

Example. For u ̂  0, v ^ 0, L(u, v) and L(u, v) contain composite knots.

Definition. A knot K is said to be prime provided it is not the connected sum of
any 2 knots. K c R3 is said to be the connected sum of the knots Kl and K2 provided
there is a smooth 2-sphere S2<= IR3 such that S2 intersects K transversally in exactly
2 points, say K nS2 = {a, b\, so that if a is an arc on S2 joining a to b, then a u y,
is equivalent to Kh where y1 = K n (interior of S2) and y2 = K n (exterior of S2).

We close the introduction with a brief discussion of the 'symbolic dynamics' of
the knot holder L(u, v). See [1] or [2] for more details. Note that each L(u, v)
has the homotopy type of the wedge of two one-spheres. We take the generators
of the fundamental group to be x on the left and y on the right. Orient x and y in
the direction of the flow, </>,. Then the periodic orbits of <j>, correspond 1-to-l to
the cyclic permutation classes of positive words in x and y. See [1] or [2]. Similarly
for other knot holders, except that more than 2 symbols may be required. We use
the xy word of periodic orbits below beginning in § 3.

I would like to thank several people for helpful conversations, in particular Joan
Birman and the referee; the latter found an error in my earlier version in addition
to making several good suggestions. Some of the work on this paper was carried
out while the author was at Boston University.

0. Examples with composite knots

Example. In the knot holder L(u, v) or L(u, v) with u ̂  0, v^O, the knots corre-
sponding to x"ym are all composite for n, m sufficiently large.

Proof. In fact n > 4, m > 4 always suffice. We will only give these examples in certain
cases:

(a) x2y2 in L(3, 3) and L(2, 2)
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In both cases we get the granny knot = the direct sum of two left handed trefoil
knots. In L(3, —3) x2y2 is the square knot, i.e. the direct sum of a left handed and
a right handed trefoil knot. Similarly for \u\, \v\si3 x2y2 is composite in L(u, v).

(b) In L(—1, —1) x4y4 is the right handed granny knot.

In L(l, 1) x3y3 is the granny knot,
(d) In L(0, -1) x2y4x2y is the square knot.
(c)

1. Basic procedure
The proof proceeds as follows: we assume we have a composite knot K lying in
our knot holder H and satisfying the definition above. We then proceed to put the
two-sphere S2 in a nice position relative to H and K. For the time being we deal
with a general knot holder H. First we may assume S2nH is transverse at each
point. (Beginning at the branch line, then proceeding to the two dimensional part,
as usual.) Next we smooth out the intersection S2nH. We may assume S2nH
consists of a branched 1-manifold, the branch occurring only at the branch line of
L. This is standard.

Next, we know that S2 n H is roughly along the flow lines of <£„ since it intersects
the orbit K in at most 2 points. Thus by small pushes, we may assume that S2nH
is along the flow lines of <£, except at short stretches where it either doubles back,
or moves transversely from one side to the other.

LEMMA 1.1. By a small push, we can remove any doubling back arc that occurs just
below the branch line.
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Proof. This is a picture:

u
The heavy line, here and below, is S2 n H.

LEMMA 1.2. ('No double entry lemma'.) At no point does S2nH cut across two
adjacent strands of the knot as in the figure:

Key to diagrams:

n
the knotholder

H

/ /

/ /
the knot

K
S2nH

Proof. In this case the knot K would be passing from one side of the sphere to the
other, both times, which is absurd.

2. Segments in S2nH

PROPOSITION. We may deform S2 so that S2nH lies entirely along flow lines of <£,
with the exception of U-joints, edge joints, trivial closed curves and short diagonal
stretches. Each of these exceptional sets lies just above some branch line. Only arcs
which connect 2 points of the branch set contain diagonal stretches.

This proposition is a summary of the following:

LEMMA 2.1. We may adjust S2 such that S2nH consists of components which either
(a) are trivial simple closed curves, i.e. those which intersect no branch line and bound
disks; or (b) are the union of arcs which connect two points on the branch set union
the boundary of H. These arcs are called segments of S2nH and consist of 4 types:

(1) almost straight arcs - except for possibly a short diagonal stretch immediately
above a branch point, they lie on a flow line and connect two points of dH u ft;

(2) U-joints - these lie immediately above a branch line and connect 2 of its points;
(3) edge joints - these lie immediately above a branch line and connect a point of

this branch line to the boundary, dH;
(4) double edge joints - these connect 2 points on opposite sides of dH and are

essentially parallel to the branch set.

Remark about the proof. A good image (suggested by the referee) is to 'comb' hair
straight which is fixed at the bottom. You comb straight down almost to the bottom
and leave all the 'tangles' at the bottom. The bottom is of course the branch line.
The tangles include all of the exceptional sets. If an arc a of S2 n H intersects the
branch line at a point a, let p be the flow line leaving the branch set at a. Then
one pushes a so as to agree with ft down until one is near the branch set, where
we must allow it to do its own thing.
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At times it is preferable to comb upwards, especially after the initial combing.
That is we start at the bottom and straighten an intersection arc of S2 n H so as to
remain on a flow line. In upward combing, only the almost straight arcs are changed;
the (/-joints, edge joints and double edge joints are left unchanged. The advantage
of upward combing is that one can comb a loop off of a disk edge. This is because
the periodic orbit at a disk edge is a repellor, so, proceeding backwards, it acts as
an attractor. See 5.1 below.

Proof. If there is any doubling back, one pushes the intersection so as to decrease
a max or increase a min until one arrives near a point of the boundary or a branch
point. One simply pushes an offending minimum up through a branch line, via
lemma 1. Maxima come in 2 types: when they arrive at a branch line they become
[/-joints or edge joints. Maxima could be pushed into the boundary, since the flow
</>< leaves H along local maxima of dH, as in the figure

/TX
These create 2 'edge maxima', which can be pushed downward until they arrive at
a branch line; they would then be edge-joints.

Now if we have an arc which begins at a boundary or branch point p, and proceeds
upward to a branch point, we may deform it to lie along the flow line through p,
with no trouble until we arrive at the upper branch line.

This works just as well at a branch line, since there is at most one point of the knot
on this part of S2nH. We might have to leave, however, a diagonal stretch
immediately above the branch line, to avoid an infinite loop. But this is O.K.

3. Minimality assumption
In order to complete the proof, we assume that we are in a minimal situation: to wit

(a) the number of symbols in our knot K is the smallest of any composite knot
carried by K, and

(b) the number of segments (see §2) in the intersection S2nH is the least
possible integer relative to the knot K, and

(c) the number of branch points of the intersection S2 n H is least possible relative
to (a) and (b).

We then proceed to a contradiction by showing the intersection is not minimal.
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4. U-strings

Definition. By a U-string at a branch line /3 is meant a finite sequence Uu U2,..., Un

of U-joints at /3, such that U,nt/ i + 1 is an end point of both [/, and Ui+1,
i = l,...,n-l.

We also allow either Ux or [/„ or both to be an edge joint. We allow as a
degenerate case, a 'double edgejoint', i.e. a segment of S2 n H passing horizontally
from one edge to another. This would be just above, and essentially parallel to, a
branch line.

LEMMA 4.1. U-strings do not double back.

Proof. Assume the contrary and look at an extreme point of the U-string:

Then there is a segment y of j8 cut off by U-joints on both sides.

First we claim that at most one of the 2 (7-joints is pierced by our knot. In fact
one sees that any such piercing is toward a single side of S2, the y-side.

(That is to say, the side of S2 containing y, or at least that part of it near the
boundary of y.) But K pierces S2 only twice, once entering the y-side, and once
leaving.
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Now look at the [/-joint cutting off the arc y. We draw the case in which this
[/-joint is pierced by the knot K. The other case is similar. Thus near y we have
a 'tunnel' formed by S2, which we can deform as follows:

Note first that 2 branch points have been removed from S2 n H. Next the two newly
introduced local max and min look like so:

But since the lower ones can be pushed down we need to see how they end up. In
one case we get 2 edge loops.

But in any case we get at most 2 segments. The upper edge was formed from joining
segments labelled 1 and 2 in our diagram. These could be part of the same segment,
a [/-joint. In this case, we have created
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a new trivial loop, which doesn't count at all. In either case we have a reduction in
the number of segments by one. Finally, the original [/-joint labelled 3 has been
removed, for a total of at least two segments less. This contradicts the minimality
and proves our lemma.

LEMMA 4.2. Each segment of a U-string, including end joints if any, has an arc of
the knot K on its free side, 'guarding' it.

Proof. The deformation indicated in the proof of the previous lemma is possible,
unless an arc of K 'guards' the appropriate U-joint:

guarded [/-joints unguarded

Note that an arc of K passing through a [/-joint or an edge-joint is not enough to
'guard it'. The edge-joint case:

We have a reduction of at least one in segments.

5. There is an edge joint at a disk edge
To prove this proposition we first rule out the trivial case in which S2 does not
intersect the branch line. For then S2nH lies in a disk lying in H. Some component
of S2rtH hits our knot; this component is a 1-sphere and bounds a disk lying in
H. Since our knot enters this disk, it also leaves it, and these are the intersections
of S2 with the knot. Thus one of the components of our composite knot lies in a
disk which is absurd.

At this point we need to begin using our assumption that H = L(0, v), v s 0.
So we begin at a point of S2 on the branch line and proceed upward from it in

our search. We may be forced to use [/-strings to continue our upward progress,
and in this case we must be careful. But even without using [/-strings, we may a
priori get caught in an infinite loop. Thus we must study the possible loops, or simple
closed curves in S2nH; we have already dealt with the trivial loops - those not
intersecting the branch line. We now deal with the second simplest type.

LEMMA 5.1. Each non-trivial loop A of S2 n H contains a U-string.

Proof. Suppose A is a loop of S2 n H which intersects the branch line and contains
no [/-string. Then A is the union of short diagonal stretches plus more important

https://doi.org/10.1017/S0143385700002339 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002339


156 R. F. Williams

sub-intervals which lie along the flow lines. These latter are of two types, x-arcs
which pass around the knot holder on the left (or x-side) and y-arcs which pass
around on the right. But the tangent bundle to A in K must be untwisted because
A lies in S2 where it has an untwisted tangent bundle. To complete the proof of
5.1 we need the formula in the following:

LEMMA 5.2. // A is a loop with no U-strings then the twist # of
A = ( # x-arcs) + (# y-arcs)(v/2 +1) - 1 .

Proof. Here v is the number of half twists in our knot-holder H = L(0, v), which
explains the contribution of v/2 in the formula. The other part is well known - for
example the curve xy in case v = 0 has twist # = 1.

Hence, as A must have twist # = 0, there are two possibilities: (1) A has only an
x-arc, and (2) v = 0 and A has only a y-arc. As the two cases are perfectly similar
we assume case (1) holds.

Next, note that if A does not intersect our knot, it can be pushed into the hole
at the disk edge. This reduces the number of segments and thus contradicts the
minimality assumption. Now assume our orbit does intersect the knot. Then it must
intersect it only along the diagonal stretch and only at one point, say q.

Let a be the point of the branch set on the disk edge and let b be the point of
our loop on the branch set. Now proceeding upward on our knot from q we arrive
at a point p on the branch set between a and b. See the diagram. We claim p is
the leftmost point on the branch set, as otherwise the knot would either be spinning
trivially and thus not minimal, or two distinct segments of the knot K would be
entering the left side at [a, b~\. This last would contradict the no-double-entry lemma
1.2. Now comb the loop upward (§ 2) and we arrive at a loop which misses the
knot entirely, reducing us to the earlier case above.

therefore

impossible

thus comb up and push off

FIGURE A
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Thus we turn our attention to loops which contain a [/-string. We need first to
assess the contribution of the U- joints to the twist number of the normal bundle
to a loop. Thus suppose we have 2 straight arcs a, /3 connected by a U- joint chain.
We take notation so that proceeding upward we have a first, then the (/-joint chain
y, then /8. Let y have m segments.

(5.3) For the purpose of computing the contribution of y to the twisting number,
we may assume it has either one cusp or none at all.

Proof. If y has more than one cusp, then let y0 be, say, the rightmost [/-joint
connecting 2 cusps. Now the operation of folding y0 down below the branch line
reduces the number of cusps by 2, and we claim this does not change y's contribution
to the twist number. (We don't claim this is a legitimate perturbation to S2 as
usually it is not. It serves only to compute the twist contribution.) See the accompany-
ing figure.

Thus we end up with either one or none at all.

(5.4) We need to develop some notation to monitor our path. Proceeding upward,
we trace out a path with 3 kinds of segments: x-arcs, y-arcs and [/-strings. We use
x's and y's to monitor the first. We further subdivide the [/-string paths as neutral,
N, in the case where it has an even number of cusps, and otherwise as R or L
depending upon whether we pass along it to the right or left. Thus our path upwards
is monitored by an ordered string of symbols such as xNyLxR... . Of course if we
trace out a loop A only the cyclic order is significant so that xLyL = yLxL.

LEMMA 5.5. The U-joint y contributes +\ in the cases Ly and Rx and —\ in the
cases Lx and Ry.

Proof. See figure B.

- 5 twist Lx

! twist

- j twist

twist

FIGURE B
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LEMMA 5.6. The twisting number of the normal bundle to A is given by

#x-arcs + (v/2 + l)(# y-arcs)-l+j(#Ly+ #Rx- #Lx- #Ry).

The symbols in the parenthesis mean the number of occurrences of each case, as
above.

Proof. This is just a combination of our previous formula 5.2 together with our
consideration of cusps, above.

LEMMA 5.7. The only possible loops are those with the symbol
(1) Nx for any v>0;
(2) Ny for v = 0;
(3) Ry, o = l;
(4) LxRy or RyLx, r = 0; or
(5) LxLx or RxRy, u = 0.

Proof. Let there be n-syllables, such as Nx, Rx, Ly, Then by our formula 5.6
there are at least n +l 's and at most n -5's. Hence the twisting # > n - n/2-1 =
n / 2 - 1 . Thus n < 2 and we have only a few cases to check. We list the arithmetic
in the following table. Here P means (# Ly + # Rx - # Lx - # Ry).

n # x # y RHS of formula => 's conclusions

1 1 0 1 + 0-1+P/2 P = 0 Nx
1 0 1 0 + (t;/2 + l ) - l + P/2] fP = O v = 0,Ny

o = l,Ry
2 1 1 l + (o/2 + iy

RxLy
2 2 0 2 + 0-1 + P/2 P = - 2 LxLx
2 0 2 0 + 2+U-1 + P/2 u = 0,P = - 2 RyRy,u = 0

PROPOSITION 5.8. There must be an edge joint at a disk edge, that is to say, an edge
joint at the side (or one of the two sides) at which H = L(0, v) is not twisted.

Proof. We look at a component T of S2 n H which contains a point of the branch
set. We proceed upward from such a point seeking an edge joint. We always proceed
upwards making use of the {/-strings whenever we encounter them according to
the following prescription:

(5.8.1) In the case H = L(0, v), v>0, we always proceed along a {/-string to its
leftmost point and proceed upward from there. This way at any point of T on the
branch line we either:

(a) can proceed further upward using lines not previously encountered;
(b) have traced out a loop; then this loop has symbol Nx as H = L(0, v) and

v>0; or
(c) encounter an edge joint; this must be on the left side of H and hence we are

done.
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Clearly case (a) can occur only finitely many times and case (c) only once. Thus it
will complete the proof of (5.8.1) to show that case (b) cannot occur. To this end
assume it does occur with x-arc £ joining points a and b on the branch line, where
a is to the left of b, and [/-string y joining a to b. Then a is the left most end
point of the [/-string y, so that the x-arcs proceeds upward from a, as in the
following figure:

There is an arc of our knot guarding the leftmost of y's [/-joints, say at a point c.
Then the arc of the knot leaving c passes around to its next point d on the branch
set. Then d is to the right of c and thus to the right of a. Hence p pierces £ But
by the same token, the arc a of our knot arriving at c must also pierce £ since it
must begin to the left of c and hence inside the loop A. This contradicts the no
double entry lemma and completes the proof of 5.8.1.

(5.8.2) In the case H = L(0,0), we use a mixed strategy. Having arrived at a
[/-string we proceed upward along its leftmost point only half the time, to wit, in
case we arrived at the [/-string along an oc-line. However, if we arrive at a [/-string
on a y-line, we use the rightmost point for our upward process. This means in
particular that the symbols xR and yL never occur. This rules out case 4 of (5.7)
and case 3 is ruled out as v = 0. Thus whenever we are at a point of the branch we
either:

(a) can proceed further;
(b^ trace out an exceptional loop with symbol Nx or Ny;
(b2) trace out a loop with a symbol of type 5 in the list of (5.7); or
(c) arrive at an edge joint.

Now if case (c) occurs we are done as both of H's edges are disk edges. But by our
previous argument in (5.8.1) we cannot have case (b]) so that it will suffice to show
that case (b2) cannot occur.

To this end, assume we do encounter either hxLx or RyRy (v = 0). As these are
alike, we will deal with LxLx. Let the rightmost point of our loop A be A; note
that from A we must have a [/-string going left, say ending with B on the branch
line. From B we have an x-arc which arrives at a point, say C on the branch set.
We claim C is between A and B. To see this, assume not; then C is to the left of
B as by our choice A is the rightmost point. We have:
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and we are trapped, as there is no way for the next x-arc to get back as far right
as A This leaves only the case that C is between B and A.

This is ruled out, for example, as follows: there must be an arc of K guarding the
[/-joint at C. Let one such arc of K enter along an x-line a, at a point E. Then E
is between D and C. Let 0 be the next arc of the knot leaving E. Then ;3 crosses
both of the x-lines of A, since A and C are to the right of E. But then a must also
cross both of the x- lines of A as

it begins on the branch set at a point to the left of E and thus to the left of A and
C. But this makes a total of 4 points on S2nK though there are only two. This
contradiction shows that case (b2) cannot occur and completes the proof of (5.8).

6. Reduction at a disk edge
Thus we have a [/-string which ends at an edge-joint at a disk edge. There is the
soecial case in which our [/-string is a double edge joint, but the argument below
works in this (rather trivial) case as well.

Case 1. Assume that our edge joint does not end on the disk edge itself but at p
on the outer edge. Let q be the other end point of the edge joint ending at p and
let e be the nearby end point of the branch set /3. We know there is an arc of K
guarding the edge joint pq, say at a point be p. Now there are two kinds of arcs of
the knot K arriving at eq, those coming from another point of eq and those arriving
from afar. But as each arc of K arriving at eq from afar pierces pq and as two
pierces are impossible by § 1, there is only one of this kind, arriving say, at a. Then
a is the point of K n fi closest to e. But now note that the entire section y of K
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passing from a to b does so around the disk, with no other points of K between a
and b. Hence the section y can be deleted without affecting the knot. But this
contradicts the minimality of the knot, so that case 1 does not occur.

Case 2. The t/-string ends on the disk of the disk edge.

We again label our points e, p, q. Now since the component of S2nH containing
pq enters D2, it must leave it again, after perhaps several passages through D2.

There are three cases (see figure below). First it might leave D2, finally oh the
upper part of the boundary. In this case it can only pass back to the branch set /3.
Secondly, it could leave D2 on the lower arc of 3D2 but still pass back to the branch
line p. Finally, it could leave on the lower arc and proceed to a boundary point of
H. These three cases are drawn below. We have indicated beneath each one, the
rather obvious deformation which decreases the number of segments without
introducing branch points. Thus in any case our minimality assumption is contradic-
ted. This completes the proof of the theorem.
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7. Rogues Gallery
This final section is devoted to showing why we were forced to make such a
roundabout proof. Recall that up to § 5 our analysis is good for all knot holders.

L(0, -2) with trivial loop (xy).

A composite knot holder H' with S2nH' a tree.

At the beginning of § 5 we used the fact that H = L(0, v) or L(0, v) for v > 0.
The argument given there would not apply for v = — 2 as indicated by the loop
corresponding to xy. It has a trivial tangent bundle in H = L(0, —2).

Secondly, we show by an example that one can have a tree with (/-string top as
intersection S2nH. The knot-holder is not any of the L(u, v) holders, but rather
an ad hoc example. We have shaded the part of H' which is behind the separating
sphere S2. This S2 can be thought of as a plane roughly parallel to the paper. The
intersection S2nH' is a 'tree' with a (/-string top. Note that either side of S2

contains a knot holder equivalent to L(0,0). By an argument just like that of
[2; 6.1c] one can see that this last example contains all knots of Kt#K2, where
both Kx and K2 are Lorenz knots.

As a last example, we give the simplest example we know of a knot holder with
composite knots. In fact our H" is a sub-knot-holder of the holder for the planetary
orbits of the figure eight knot. See § 6 of [2].

https://doi.org/10.1017/S0143385700002339 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002339


Lorenz knots are prime 163

H", a composite knot holder with S2 n H" a loop plus 2 edge joints.
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