## Supplement to a Note on Recurrent Sequences

By C. E. Walsh, Dublin.<br>(Received 5th December, 1932. Read 20th January, 1933.)

A lemma used in the above paper ${ }^{1}$ can be extended to cover the case of a sequence $S_{n}$ determined by a recurrence relation of the form

$$
\begin{equation*}
S_{n}=a_{n}^{1} S_{n-1}+a_{n}^{2} S_{n-2}+\ldots+a_{n}^{r} S_{n-r} \tag{1}
\end{equation*}
$$

$r$ being any positive integer.
For convenience denote $\left|a_{n}^{r}\right|$ by $b_{n}^{r}$ everywhere. Let us suppose that an inequality of the form

$$
\begin{equation*}
\left|S_{p}\right| \leqq K k_{p} \prod_{t=1}^{p-1} l_{t} \tag{2}
\end{equation*}
$$

holds for $p=2,3, \ldots, n-1$. The constant $K$ can be determined from the initial values of $S_{n}$, when $k_{n}$ and $l_{n}$ have been found.

Taking moduli in (1), the inequality (2) is seen to be true for $p=n$ also, if

$$
b_{n}^{1} k_{n-1} \prod_{t=1}^{n-2} l_{t}+b_{n}^{2} k_{n-2} \prod_{t=1}^{n-3} l_{t}+\ldots+b_{n}^{r} k_{n-r}^{n-r-1} \prod_{t=1}^{n} l_{t} \leqq k_{n} \cdot \prod_{t=1}^{n-1} l_{t}
$$

Choosing $b_{n}^{1}$ as $k_{n}$ everywhere, and dividing across by $b_{n}^{1} \prod_{t=1}^{n-2} l_{t}$, we obtain

$$
k_{n-1}+\frac{b_{n}^{2} k_{n-2}}{k_{n} l_{n-2}}+\frac{b_{n}^{3} k_{n-3}}{k_{n} l_{n-2} l_{n-3}}+\ldots+\frac{b_{n}^{r} k_{n-r}}{k_{n} l_{n-2} l_{n-3} \ldots l_{n-r}} \leqq l_{n-1}
$$

This will clearly be satisfied if $k_{n} \leqq l_{n}$ always, and

$$
\begin{equation*}
k_{n-1}+\frac{b_{n}^{2}}{k_{n}}+\frac{b_{n}^{3}}{k_{n} k_{n-2}}+\ldots++\frac{b_{n}^{r}}{k_{n} k_{n-2} k_{n-3} \ldots \ldots k_{n-r+1}}=l_{n-1} \tag{3}
\end{equation*}
$$

But equation (3) contains the other condition $k_{n} \leqq l_{n}$. Hence (2) is satisfied for all $p$ if $k_{n}=b_{n}^{1}$ always, and $l_{n_{-1}}$ is then found from (3), by substitution there for $k_{n}$.

[^0]The theorems of the previous note can now be extended, using the lemma in this wider form. Theorems of another type may perhaps be indicated here.

From a recurrence relation of the form

$$
\begin{equation*}
u_{n}=a_{n}^{1} u_{n+1}+a_{n}^{2} u_{n+2}+\ldots+a_{n}^{r} u_{n+r}+c_{n} \theta_{n} \tag{4}
\end{equation*}
$$

where $\lim \theta_{n}=0$, we can derive the relation

$$
\begin{equation*}
u_{n}=A_{m}^{n} u_{m+1}+B_{m}^{n} u_{m+2}+\ldots+L_{m}^{n} u_{m+r}+\sum_{t=n}^{m} \lambda_{n}^{t} \theta_{t} \tag{5}
\end{equation*}
$$

and $n \leqq m+1$. When $n=m+1, A_{m}^{n}=1$, while $B_{m}^{n}$ etc., and $\lambda_{n}$ all vanish.

Because of (4), a recurrence relation

$$
A_{m}^{n}=a_{n}^{1} A_{m}^{n+1}+a_{n}^{2} A_{m}^{n+2}+\ldots+a_{n}^{r} A_{m}^{n+r}
$$

exists for $A_{m}^{n}$. In addition $A_{m}^{m+1}$, which we regard as the first term of the sequence $A_{m}^{n}$, is unity. There is a similar recurrence relation for the other coefficients $B_{m}^{n}$ etc., and for the $\lambda$ 's. The lemma may thus be used to fix limits for these coefficients, having imposed suitable conditions on the $a$ 's and on $c_{n}$.

When a condition

$$
\sum_{t=n}^{m}\left|\lambda_{n}^{t}\right|<R
$$

holds, $R$ being independent of $m$ and $n$, it follows that

$$
\sum_{t=n}^{m} \lambda_{n}^{t} \theta_{t} \rightarrow 0
$$

as $n \rightarrow \infty$, uniformly with respect to $m$, since $\lim \theta_{n}=0$. If in addition each of the other terms $A_{m}^{n} u_{m+1}$ etc. on the right hand side of (5) tends to zero as $m$ tends to infinity, $n$ being fixed, then $\lim u_{n}=0$.

The following well known theorem ${ }^{1}$ is a special case of this kind.
If $\lim \frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}=l, b_{n} \geqq b_{n+1}$ always, and $\lim a_{n}=\lim b_{n}=0$, then $\lim a_{n} / b_{n}=l$.

[^1]For, writing $a_{n}=b_{n}\left(l+u_{n}\right)$, the hypotheses yield the relation

$$
u_{n}=\frac{b_{n+1}}{b_{n}} u_{n+1}+\left(1-\frac{b_{n+1}}{b_{n}}\right) \theta_{n}
$$

where $\theta_{n}, b_{n}, b_{n} u_{n}$ all tend to zero. The sequence $u_{n}$ is easily seen to obey the conditions of the preceding paragraph, and so $\lim u_{n}=0$, as required.


[^0]:    ${ }^{1}$ Proc. Edinburgh Math. Soc. (2), 3 (1932), 147-150.

[^1]:    1 Bromwich, Infinite Series (1926), 413.

