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Viscoplastic lines: printing a single filament of
yield stress material on a surface
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This study presents the spreading of a single filament of a yield stress (viscoplastic) fluid
extruded onto a pre-wetted solid surface. The filaments spread laterally under surface
tension forces until they reach a final equilibrium shape when the yield stress dominates.
We use a simple experimental set-up to print the filaments on a moving surface and
measure their final width using optical coherence tomography. Additionally, we present a
scaling law for the final width and determine the corresponding prefactor using asymptotic
analysis. We then analyse the level of agreement between the theory and experiments, and
discuss the possible origins of discrepancies. The process studied here has applications in
extrusion-based thermoplastic and bio-three-dimensional printing.
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1. Introduction

Spreading of non-Newtonian liquids on surfaces is of widespread interest in many
fabrication, coating and printing applications (Derby 2010; Mackay 2018; Lohse 2022).
Among them are the extrusion-based three-dimensional (3-D) printing techniques, where
digitally designed objects are built via line-by-line and then layer-by-layer deposition of
ink through a nozzle. A diverse range of materials can be used in 3-D printing for various
manufacturing purposes, from soft tissues and synthetic bones in biomedical applications
(Placone & Engler 2018) to food pastes (Zhu et al. 2019), energy materials (Tagliaferri,
Panagiotopoulos & Mattevi 2021) and ceramics (Faes et al. 2015). These materials,
depending on the application, are printed as single filament or monolayer (e.g. for
conductive circuit printing; Postiglione et al. 2015; Zhang et al. 2016; Gnanasekaran
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et al. 2017; Valino et al. 2019) or, more commonly, with multilayer printing (Lewis 2006;
Ngo et al. 2018). The characteristics of the single-line depositions can influence directly
the product quality for single-filament printing, and can also affect the overall quality
of multilayer printing via setting up the first-layer deposition. Hence understanding the
underlying physics of deposition of a single line of inks and the effects of rheological
properties is essential to improve the design of extrusion-based 3-D printers or to design
new inks based on the rheology of complex fluids (Ewoldt & Saengow 2021). We will
address the deposition of a single filament of viscoplastic (or yield stress) fluids. Such
materials are neither solids nor liquids. When the external stress is below the yield stress,
the material behaves effectively like an elastic solid, but when the stress exceeds the
yield stress, the material deforms plastically and flows like a viscous liquid (Barnes 1999;
Coussot 2014; Balmforth, Frigaard & Ovarlez 2014; Bonn et al. 2017). Viscoplasticity is
a common feature of many industrial fluids, such as waxy oil and cosmetic and dairy
products. Furthermore, viscoplastic fluids represent a large group of polymeric inks used
in 3-D printing (Lewis 2006; O’Bryan et al. 2017), where, depending on the application,
the values of the ink’s yield stress varies (M’barki, Bocquet & Stevenson 2017; Paxton
et al. 2017; Siqueira et al. 2017; Eom et al. 2019; Kiyotake et al. 2019; del Mazo-Barbara
& Ginebra 2021; Siacor et al. 2021). While many inks feature a relatively large yield stress
of hundreds of pascals, many others are much softer, with yield stress in tens of pascals.
Examples of the latter category can be found in conductive inks and energy materials
used in direct writing (Zhang et al. 2016; Tagliaferri et al. 2021), bioprinting hydrogels
(Rodell, Kaminski & Burdick 2013; Mouser et al. 2016; Wilson et al. 2017), kaolin-based
materials (Sun et al. 2018), colloidal inks (Eom et al. 2019) and cellulose suspension
(Jiang et al. 2020). The main focus of the present work is to study the spreading of such
soft viscoplastic inks, where the values of yield stress are comparable with the driving
spreading stresses.

Spreading and deposition of viscoplastic fluids share similarities and also present
different characteristics in comparison to Newtonian fluids (Bonn et al. 2009). Like
Newtonian (and viscoelastic) fluids, viscoplastic fluids (if soft enough) spread due to
surface tension and gravity, on time scales associated with the apparent viscosity. The
most distinctive trait of viscoplastic spreading, however, might manifest in the final shape.
Theoretically, a Newtonian free-surface flow on a fully wetting surface spreads (due to
gravity or surface tension) until it is finally completely flat (Tanner 1979; Tuck & Schwartz
1990; Backholm et al. 2014; Bergemann, Juel & Heil 2018; Jalaal, Seyfert & Snoeijer
2019c). In contrast, in the same situation, a viscoplastic fluid eventually stops at a finite
time, when the stress everywhere inside the material falls below the yield stress. Hence,
contrary to a Newtonian liquid, a viscoplastic liquid reaches a characteristic final shape
(Dubash et al. 2009; Liu et al. 2016; Jalaal, Stoeber & Balmforth 2021) on a fully wetting
surface. Finding the final shape for spreading viscoplastic filaments is indeed the main
objective of this study. Note that in practice, it might be difficult to distinguish the
deposition behaviour of a viscoplastic fluid from a highly viscous Newtonian fluid or a
viscoelastic liquid with long characteristic elastic time scales. Moreover, the final shape
of the complex fluid could be affected by other factors such as time-dependent material
properties like thixotropy (Uppal, Craster & Matar 2017; Oishi, Thompson & Martins
2019b; Sen, Morales & Ewoldt 2021) and solidification (Tavakoli, Davis & Kavehpour
2014; Jalaal et al. 2018; Koldeweij et al. 2021).

The present study relates to a number of previous research lines in the literature. One
is the gravity-driven spreading and large-scale 3-D printing of yield stress materials,
in particular concrete (Roussel & Coussot 2005; Flatt, Larosa & Roussel 2006; Ancey
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2007; Liu et al. 2016; Gosselin et al. 2016; Buswell et al. 2018; Garg et al. 2021; Valette
et al. 2021). The major differences between the present study and these works are the
characteristic length scales and the driving mechanisms. While gravity is the main force
of spreading in large-scale 3-D printers, surface tension is the dominant factor at a small
scale or when gravity is absent (Brutin et al. 2009; Diana et al. 2012; D’Angelo et al.
2022). This changes the underlying physics, where the competition of yield stress and
capillary forces determines the final shape of the liquid. We refer to the phenomenon of
capillary-driven yield stress fluids as plastocapillarity. Also related to the present study
are the previous investigations on the impact and spreading of viscoplastic droplets on
dry and wet surfaces (Luu & Forterre 2009; German & Bertola 2010; Saïdi, Martin &
Magnin 2010; Blackwell et al. 2015; Jalaal, Balmforth & Stoeber 2015; Oishi, Thompson
& Martins 2019a; Oishi et al. 2019b; Martouzet et al. 2021; Sen et al. 2021), where,
depending on the regime parameters, different factors such as inertia, elasticity, gravity,
thixotropy and surface tension can determine the dynamics of the droplets. In the present
work, we will focus on a different geometry (filaments) on a small scale, and a regime and
type of material where surface tension and yield stress effects dominate.

To address the problem, we will use experimental and theoretical tools. The paper is
organized as follows. Section 2 presents the experimental details, including the set-up
and the used fluids. Section 3 provides the results, a simple scaling law, and a more
detailed description of the empirical observations based on viscoplastic lubrication theory.
Section 4 concludes the results and presents future perspectives.

2. Experiments

2.1. Set-up
The experimental set-up is a ‘simplified 3-D printer’ (see figure 1). The fluid was injected,
using a syringe pump, at a constant rate Q through a hydrophobic nozzle with inner
diameter 0.912 mm. The substrate was a glass plate, pre-wetted with a thin layer of the
same fluid at constant height h∞ ≈ 40 μm. The pre-wetting layer not only simulates
the condition of a fully wetted surface but also allows us to avoid any complexity due
to the (triple) contact line (Oron, Davis & Bankoff 1997; Craster & Matar 2009; Jalaal
et al. 2021; Martouzet et al. 2021). Pre-wetting was done just before the experiments to
minimize evaporation effects. The distance between the nozzle and the surface of the
pre-wetted film was fixed at 350 ± 10 μm. Changing this distance by 75–400 μm did
not change the results. The substrate was placed on a linear motor (Thorlabs LTS300/M).
When the flow is established through the nozzle, the linear motor moves (constant velocity
U = 10 mm s−1 and initial acceleration 50 mm s−2) and a viscoplastic line begins to
form on the surface. The substrate motion continued until a line of length 80 ± 2 mm
was obtained. Note that the short delays between the pump’s function and the substrate’s
motion disturb the filament’s shape at the beginning and end (∼5 mm on each side). We
perform the measurements far from these areas. Also, measurements were performed 20 s
after the deposition to ensure that the final equilibrium shape was obtained. As the line is
printed, it travels under a lens of an optical coherence tomography (OCT) scanner to obtain
the shape of the interface. OCT is a non-invasive optical technique that uses low-coherence
interferometry to obtain depth scans (Fercher et al. 2003). A series of these depth scans
is then used to form a cross-sectional image. The technique has been used to study
evaporating droplets (Edwards et al. 2018), flow inside channels (Daneshi et al. 2019), and
spreading and solidification of droplets of complex fluids (Jalaal et al. 2018). The current
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Figure 1. Experimental set-up for the investigation of printing a single line of viscoplastic fluids. The shown
dimensions in the schematic are not to scale. A filament of a yield stress (viscoplastic) fluid is printed on
a moving pre-wetted substrate. After extrusion from the nozzle, the filament spreads on the surface until it
reaches a final width. We denote the final half-width of the filament as Rf . An optical coherence tomography
(OCT) scanner is used to measure the final width of the filaments. An example of the OCT image is shown in
the top-left of this figure, where blue and red lines highlight the interface of the filament and the substrate. The
dashed vertical lines show the edge of the filament, where the surface becomes flat.

experimental set-up did not allow for an accurate measurement of dynamic of spreading.
Nonetheless, using OCT provides many advantages for our system. In the set-up, the flat
pre-wetted film, unlike the curved surface of the printed line, forms high-intensity patterns
of vertical lines. This is due to the over-saturation of the reflected light on a flat surface.
Hence, by detecting the edge of these patterns (vertical dashed white lines in figure 1), we
were able to obtain easily the width of the filament with accuracy O(10 μm). Furthermore,
by adding microparticles (3 μm polystyrene from microparticles GmbH) to the fluid, we
were able to roughly inspect the flow inside the printed lines and ensure that the flow
along the length of the filament (z-direction in figure 1) was negligible, and therefore the
spreading was mainly across the width (x–y plane in figure 1). Experiments were repeated
at least 10 times for each data point (total of ∼300 experiments). All measurements were
performed at steady state when the filaments had reached their final shape. For each
experiment, the OCT scans were performed for four cross-sections of the line, and the
values were averaged.

2.2. Fluids
We used a mixture of Milli-Q water and a commercial hair gel at five different
concentrations. The final materials are basically aqueous mixtures of Carbopol that
are pH-neutralized with triethanolamine (Dinkgreve et al. 2016). The samples were
centrifuged before the experiments to remove bubbles. An Anton Paar MCR 302 rheometer
with a rough cone-and-plate configuration (2◦ angle) was used to characterize the
rheological properties of the liquids. For each sample, we obtained the steady-state flow
curves as well as viscoelastic response in an oscillatory shear test. Figure 2 shows an
example of measurements for one of the samples. Similar to what has been reported
previously (Kim et al. 2003; Dinkgreve et al. 2016; Jalaal et al. 2019b), the fluids show
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Figure 2. (a) Flow curve (shear stress versus shear rate) for sample 4 (see table 1). The inset shows the viscous
stress (τ − τ0) versus the shear rate. The symbols are the measurements, and the red lines are the corresponding
Herschel–Bulkley fits. (b) Storage modulus (G′, circles) and loss modulus (G′′, squares) for sample 3 as a
function of strain. The vertical grey line shows the critical strain at which stress is equal to the yield stress
(from the Herschel–Bulkley fit). The inset shows the variation of shear stress versus the strain. The red line is
a linear fit with the slope G′

0 ≈ 223. The normal lines highlight the critical strain and the yield stress.

Sample τ0 (Pa) K (Pa sn) n G′
0 (Pa) G′′

0 (Pa)

1 102.0 34.3 0.39 365 22.9
2 84.2 27.9 0.40 327 20.4
3 66.2 21.1 0.40 282 19.6
4 46.6 13.33 0.41 223 13.2
5 29.8 8.57 0.42 149 8.8
6 4.0 1.46 0.51 25.1 1.7

Table 1. Values of yield stress τ0, consistency index K, shear index n, small strain elastic modulus G′
0 and

loss modulus G′′
0.

a Herschel–Bulkley-type behaviour where the viscosities drop with the shear rate, and at
low shear rates, the stress values converge to the yield stress. We therefore characterize the
material properties by fitting the following equations to the flow curves (see figure 2a):

τ − τ0 = Kγ̇ n, (2.1)

where τ0 is the yield stress, K is the consistency index, and n is the shear index.
The fitting values for six samples are listed in table 1. Oscillatory tests reveal the
elastic-dominated behaviour at low strains/stresses with almost constant elastic and loss
moduli. We quantified these values by averaging the values of G′ and G′′ at a small strain
region, when γ < 1 (see table 1). At large deformations, when stress exceeds the yield
stress, the values of G′ and G′′ drop significantly, and the material behaves mostly like a
viscous fluid with weak elasticity (see also Donley et al. 2020).

The densities of the fluids (ρ) are almost the same as for water (Jalaal et al. 2019b).
Like other yield stress fluids, the surface tension of the materials (σ ) is hard to measure.
Previous attempts in the literature (Jørgensen et al. 2015) mostly report slightly smaller
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Figure 3. (a) Dimensional final half-width of the printed line for different flow rates and yield stress values.
The dashed line shows the radius of the nozzle (≈0.46 mm). (b) Dimensionless half-width of the lines as a
function of the plastocapillary number J . The experimental repetitions data are plotted as small transparent
points, and the large circles are the average values with standard deviations as the error bars. Equation (3.3) is
plotted as the solid line. The dashed line is a power-law fit through the experiments, Rf /L = 1.859J −0.156.

values than the surface tension of water. We therefore use σ = 0.072 N m−1 in our
calculations, but one should take this value likely as an upper bound.

3. Analysis

The experimental results for the final half-width of the filament Rf , for different flow
rates Q and yield stresses τ0, are shown in figure 3(a). As the yield stress increases, the
filaments spread less, hence the values of Rf reduce. Meanwhile, for a given yield stress
value, a larger flow rate results in a larger deposited volume of the filament and therefore
larger Rf . The latter is more pronounced when the yield stress is small. When the value of
yield stress is large, the filament is less affected by the surface tension, after the extrusion
from the nozzle. Therefore, the final half-width of the filament approaches the radius of
the nozzle (shown by the horizontal dashed line).

The experimental conditions were selected such that the filaments’ cross-sectional
features are small compared to the capillary length scale lc = (σ/ρg)1/2. We define the
characteristic length scale of the filament as L = √

A, where A(Q, U) is the cross-sectional
area of the filament obtained by processed OCT images. Depending on the fluid and Q, the
values of L vary between 0.2 mm and 0.9 mm. The filaments were deposited at relatively
low flow rates, Q = 10–30 ml h−1. Given the high apparent viscosity of the liquids and
small characteristic length scales of the filaments, the inertial effects are negligible. To this
end, one could define a Reynolds number for a Herschel–Bulkley fluid (Jalaal, Kemper &
Lohse 2019a) as Re = ρU2/(K(U/L)n + τ0), which compares the inertial and (apparent)
viscous forces, and also a Weber number We = ρU2L/σ , which compares inertial and
capillary forces. For the experimental parameters here, Re ∼ We ∼ O(10−4), showing
the negligible inertial effects. Additionally, the small size of the filaments suggests that
the gravitational effects are also relatively small in comparison with the surface tension
effects. The latter could be seen in small values of the Bond number (Bo = ρgL2/σ , with,
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0.01 < Bo < 0.13), which compares the pressure due to the gravitational acceleration (g)
to capillary pressures. The importance of elastic effects is less obvious, given the large
nonlinear variation of viscoelastic properties of the liquid under different strains (see
figure 2b). An estimation for the elastic time scale can be made as λ ≈ (K/G′)1/n (Bird,
Armstrong & Hassager 1987; Luu & Forterre 2009). For G′ at the critical strain γ0, when
stress is close to the yield stress, we measure λ ≈ 0.1–1 s. In our experimental set-up,
it takes 7–12 s for filaments to spread fully on the surface. Hence the elastic time scales
are smaller than the experimental time scales, suggesting that the elastic effects might be
small. Note that such a rough comparison of time scales does not necessarily show that
elasticity has no effect on the dynamics and final shape of the filament. We will discuss this
further in § 4. However, a rough comparison of relaxation time scales and the experimental
time scales suggests that, at least to a first approximation, the elastic effects are small
for the range of experimental conditions here. Hence the final width of the filament is a
function of the yield stress τ0, surface tension coefficient σ , and the flow rate Q. The latter,
in our set-up, determines mainly the volume of the line (∼A). Therefore, the final width
can be found to be a function of a single dimensionless group, namely the plastocapillary
number

J = τ0L
σ

. (3.1)

This number determines the yield stress ratio to the characteristic capillarity pressure.
As the plastocapillary number increases, the plasticity effects become more pronounced
compared to the capillary pressure, hence one can expect a line with a smaller width. In
the context of 3-D printers, for a millimetric filament with surface tension close to that of
water, the capillary pressure is O(10 Pa), meaning that inks with yield stress O(10 Pa) or
smaller are soft enough to spread easily on the surface. If J � 1, then one could expect a
very stiff filament that sustains its shape after extruding from the nozzle. This means that
Rf /L → 1/

√
π when J → ∞.

Figure 3(b) shows the normalized value of the final half-width of filaments (Rf /L)
versus the plastocapillary number for all collected experimental data. The normalized
data suggest a power-law relationship between Rf /L and J . We attempt to find this
relationship in the following.

3.1. Scaling law
Consider a viscoplastic filament that is spreading under capillary actions and comes to a
halt due to the yield stress. The final shape of such a filament could be approximated by
balancing the forces acting on the filament (Jalaal et al. 2021). In this case, the driving
force (Fσ ) is due to the capillary action, and the resisting force is due to the yield stress
(Fτ0), acting mainly on the base of the filament. These forces can be estimated as

Fσ = σκHf b and Fτ0 = τ0Rf b, (3.2a,b)

where Hf is the final height of the filament, κ ≈ Hf /R2
f is a characteristic curvature, and

b is the length of the filament. The cross-sectional area of the filament could be estimated
as A = L2 ∼ HfRf . Using this, and balancing the forces in (3.2a,b), we arrive at

Rf /L = ΩJ −1/5, (3.3)

where Ω is a prefactor. Equation (3.3) reveals a relatively weak power-law relationship
between the normalized half-width of the filament and the plastocapillary number; as the
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plastic effects become larger, the filament spreads less. Generally, the values of prefactor
Ω can be a function of gravity, pre-wetted film thickness, elasticity, etc. However, for
the range of experimental parameters presented here, Ω can be estimated as a constant,
representing the limit of pure plastocapillarity. In the following, we present a thin-film
approximation of the present problem, in which we also aim to find the value of Ω .

3.2. Thin-film approximation
We apply a lubrication theory for a shallow and inertialess flow of Bingham viscoplastic
fluids (shear index n = 1) without gravity effects. Following the previous analyses
of viscoplastic lubrication theory (Balmforth 2019), and after scaling the length by
L, velocity by σ/μ, and time by Lμ/σ , we arrive at the following dimensionless
depth-integrated evolution equation:

ht = 1
6

[
−hxxxY2 (3h − Y)

]
x
, with Y = max (0, h − J /|hxxx|) , (3.4)

where h(x, t) is the height of the filament, and subscripts denote partial derivatives. In
(3.4), Y(x, t) is the yield surface, corresponding to the position in which the stress is equal
to the yield stress. When J = 0, we have Y = h and hence (3.4) reduces to the well-known
thin-film equation for Newtonian fluids (Oron et al. 1997; Craster & Matar 2009). Equation
(3.4) represents the planar (two-dimensional) version of the viscoplastic lubrication theory
for droplet spreading (Jalaal et al. 2021). Note that the dynamics of the thin film spreading
likely differs for Herschel–Bulkley fluids where n /= 1; however, the final shape should
still be well approximated in the limit studied here.

To explore the dynamics of filament spreading, we solve (3.4) using a finite difference
method. In our solution, the length of the domain is large enough such that the filament
never arrives at the boundaries. The initial shape of the filament was h(x, t = 0) =
max(0, 1 − x2)3 + h∞ (Jalaal et al. 2021). The first and second derivatives of the initial
condition are zero at x = 1 where it connects the interface of the filament to a pre-wetted
film of thickness h∞ and has a height of almost unity at the centre with zero derivatives.
Note that the pre-wetted film removes a genuine triple contact line and the complexities
due to stress singularity (Bonn et al. 2009; Snoeijer & Andreotti 2013). Figure 4(a) shows
the numerical solutions of the thin-film equation for J = 0.02. The filament yields fully
under surface tension forces at t = 0, and spreads on the surface. Later in the process, the
influence of yield stress becomes more evident as the surface tension forces decrease. The
filament eventually stops deforming when stress inside the filament falls below the yield
stress (Y → 0). The variations of half-width R(t) and maximum height H(t) of spreading
filaments for different plastocapillary numbers are shown in figure 4(d,e), respectively. In
the beginning of the spreading, the dynamics follows the Newtonian spreading (Tanner
1979), for which R(t) ∼ t1/7 and H(t) ∼ t−1/7, but eventually the curves deviate from the
Newtonian limit and approach a constant value that corresponds to the final half-width
and height of the filaments. The larger the value of the plastocapillary number, the sooner
the filaments approach a final shape. Also, similar to what has been presented in the
experiments, the filaments spread less as the value of the plastocapillary number increases.

To compare the theoretical results of the final shapes with the experiments, we use the
asymptotic limit of (3.4) for Y → 0, at which the flow is ceased. Hence in dimensional
form, we have σh hxxx = τ0. It is more convenient to re-scale the equation at this limit
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Figure 4. (a) Finite difference solution of (3.4). The 3-D dimensional plot is a quasi-representation of a line
printing with J = 0.02 at t = 104. The solid black line notes the final half-width. (b) The cross-section of the
line at five different times. (c) Comparison of the theoretical final shape (where ĥ = h/Hf and x̂ = x/Rf ) with
two experimental examples of samples 1 and 6 at Q = 10 ml h−1, where the width and height are normalized
with the theoretical prediction. The variations of (d) half-width (R) and (e) maximum height (H) of the
filament are shown as functions of time for different values of J . The dashed black lines show the scaling
laws for Newtonian (J = 0) limits.

with final height and half-width, i.e. ĥ = h/Hf and x̂ = x/Rf . Hence

ĥ ĥx̂x̂x̂ = Λ, where Λ = τ0R3
f /σH2

f . (3.5)

The equation above governs the final shape of the filament with constant cross-sectional
area A = 2HfRfI, where I = ∫ 1

0 ĥ dx̂ is a priori unknown. From the definitions of Λ

and A, we find the same relationship as in (3.3), with Ω = (Λ/I2)1/5. We solve (3.5)
as a boundary value problem (cf. the recent work on droplet spreading for the details of
numerical method and boundary conditions, Jalaal et al. 2021) to find the final shape of
the filament and Λ ≈ 3.53 and I ≈ 0.58, and therefore Ω ≈ 1.59. Figure 4(c) compares
the obtained theoretical shape with two examples of experimental data with smallest and
largest yield stress. While theory predicts the shape of the fluid with small yield stresses
very well (red line versus the OCT image), such agreement is less pronounced for the fluid
with a higher yield stress. A comparison of (3.3) with the obtained Ω from the asymptotic
analysis above is shown in figure 3(b). While the theoretical prediction works fine for
small values of J , the comparison suffers from discrepancies at higher values. Fitting
the data with a power-law function results in Rf /L = 1.859J −0.156, showing the theory
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underpredict the prefactor and overpredict the magnitude of the power law by about 15 %
and 28 %, respectively. The difference between theory and experiments could be due to
both theoretical and experimental limitations. We will discuss these limitations in the next
section and provide suggestions for future work.

4. Conclusion and discussion

We have studied experimentally and theoretically the printing mechanism of a single
filament of a complex fluid with viscoplastic rheology. The study was focused on the
plastocapillarity regime, where surface tension is the driving mechanism and yield stress
is the resisting one. The experimental set-up offers a simple configuration to study
several fundamental aspects of 3-D printing of complex fluids. Additionally, optical
coherence tomography (OCT) provides the opportunity to measure easily and accurately
the geometrical features of the filaments, and potentially gives insight into the flow inside
the filament. Our primary interest was the final width of the filaments. Theoretically, we
solved the viscoplastic lubrication equations governing the cross-sectional spreading of
the filaments. We also found a simple scaling law for the final half-width of the filament,
Rf /L = 1.59J −1/5, where the prefactor was obtained via an asymptotic analysis. Given
the complexity of the problem, and the limitations of the model, the comparison between
the experimental and theoretical results shows some discrepancy (see figure 3). In
experiments, the explicit effects of the pre-wetted film are not yet fully clear. It is expected
that a finite thickness of the film affects the spreading (Blackwell et al. 2015; Sen, Morales
& Ewoldt 2020) and possibly slightly increases the final width of the filament (Jalaal et al.
2021). For the present study, we fixed the values of the pre-wetted film at the thinnest
thickness available for our experimental conditions. This allowed us to focus on our main
goal, finding the final width of the filament in a capillary-driven regime. One extension of
the present work could be a systematic study on the effect of the pre-wetted film thickness
on the spreading and final shape of the filament. The experiments were also performed
on normal glass surfaces. For droplet spreading on solid surfaces, it has been shown that
‘apparent slip’ could change the dynamics and equilibrium shape of droplets (Jalaal et al.
2015; Martouzet et al. 2021). Like the pre-wetted film, the ‘slippery’ condition of the
substrate could result in a larger final width. Hence these might explain the underprediction
of the theory in figure 3(b). Therefore, another extension of the work could then be to
study systematically the spreading of filaments on rough or chemically treated surfaces
to investigate the effect of ‘slip’. The theory presented here ignores the elastic effects.
In practice, however, materials feature viscoelastic properties below and above the yield
stress. Given that viscoelastic properties can influence the spreading and the final shape of
the filament, further investigation is required. A possible extension of our work includes
mathematical models with elasto-viscoplastic (EVP) characteristics (Saramito 2007; de
Souza Mendes 2011; Dimitriou & McKinley 2014; Saramito & Wachs 2017). Such models
could potentially be implemented in thin-film limit or numerical simulations that solve
for two phases with moving boundaries (Izbassarov & Tammisola 2020; Sanjay, Lohse
& Jalaal 2021). Using EVP models, one should be able to study explicitly different elastic
effects. Also note that the presented theory assumes that the cross-sections of the filaments
have a large aspect ratio (they are shallow). While this is valid for most of the experimental
parameters, for the largest yield stress, this aspect ratio is around 6. The theory could
be improved in non-asymptotic fashion, by retaining the full surface curvature or using
numerical simulations to go beyond the lubrication limit.
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Our work has direct applications in the coating and 3-D printing industries, where
spreading and printing filaments of viscoplastic fluids play a key role. However, by
studying a single filament of soft yield stress materials, we have not addressed a number of
relevant questions in the broad context of 3-D printing. Further extensions of the present
study include the spreading and welding (coalescence) of multiple filaments next to each
other (Colanges et al., personal communication 2023; Kern, Sæter & Carlson 2022) or
on top of each other. Additionally, the regime of very large plastocapillary numbers still
requires more investigation, where the deformations due to surface tension are much
smaller and localized. Such investigations are required to fully address the printability
of ink in relationship to rheology and fluid mechanics of 3-D printing. Moreover, a more
systematic study of the flow of viscoplastic fluids near the nozzle, its effects on the filament
shapes, printing on dry surfaces when contact angle dynamics plays an important role, and
printing more complicated line geometries like corners (Friedrich & Begley 2020) are still
required. Finally, the present study focuses mostly on the final state of the filaments. More
systematic experimental and theoretical studies on the spreading of filaments with complex
rheology are yet to be done to reveal the dynamics of spreading. This is of great importance
when the material itself features rheological properties such as shear-thinning, elasticity,
aging and thixotropy (Chen et al. 2018; Corker et al. 2019; Sen et al. 2021, 2020), factors
that were not studied in the present work.

The OCT easily furnishes cross-sectional images of the filament at small scales and the
points it merges to the pre-wetted film. Further improvement of the system can result in
simultaneous measurement of the dynamics of the spreading, rheological features of the
fluid, and the flow field inside the filaments (Manukyan et al. 2013; Trantum et al. 2014;
Edwards et al. 2018; Jalaal et al. 2018).
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