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Abstract

The l0-minimisation problem has attracted much attention in recent years with the development of
compressive sensing. The spark of a matrix is an important measure that can determine whether a
given sparse vector is the solution of an l0-minimisation problem. However, its calculation involves a
combinatorial search over all possible subsets of columns of the matrix, which is an NP-hard problem.
We use Weyl’s theorem to give two new lower bounds for the spark of a matrix. One is based on the
mutual coherence and the other on the coherence function. Numerical examples are given to show that
the new bounds can be significantly better than existing ones.
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1. Introduction
Compressive sensing (CS) is an innovative idea in the fields of signal processing and
information theory (see, for example, [1, 2, 7, 9, 12]). Compressive sensing suggests
that one can recover certain signals from far fewer samples than traditional methods
by means of the optimisation problem:

min ‖x‖0 such that Ax = b, (1.1)

where ‖x‖0 represents the number of nonzero entries of a vector, A ∈ Cm×n (m < n)
is a full row rank matrix, b ∈ Cm is a nonzero vector and x ∈ Cn is the goal to be
calculated; (1.1) is called the l0-minimisation problem [6]. It is an NP-hard problem.
Its solution requires a combinatorial search through all possible solutions, which is
not feasible. Fortunately, the problem can be computationally tractable for some
coefficient matrices with special properties. One such property involves the spark of a
matrix [3], defined as follows.

Definition 1.1. Given a matrix A ∈ Cm×n, the spark of A, denoted by spark(A), is the
smallest number of columns from A that are linearly dependent.
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Recall that rank(A) is the largest number of columns from A that are linearly
independent. While there is an apparent resemblance between the definitions of rank
and spark, they are essentially different. For a given matrix A, computing rank(A) is
tractable, but computing spark(A) involves a combinatorial search over all possible
subsets of columns of A, which is an NP-hard problem [10].

From the definition, provided A has no zero column, 2 ≤ spark(A) ≤ rank(A) + 1.
(The coefficient matrix in compressive sensing always meets the condition imposed
here [3, 5].) The following theorem from [3] establishes the importance of spark(A)
by showing that it can be used to determine whether a sparse vector is the solution of
an l0-minimisation problem.

Theorem 1.2. If a linear system Ax = b has a solution x satisfying ‖x‖0 < 1
2 spark(A),

then this solution is necessarily the sparsest one, that is, the solution of problem (1.1).

The spark of a matrix has applications in other fields. For example, in coding theory,
it can be used to calculate the minimum distance of a code. In psychometrics, it is
termed the Kruskal rank and is employed in the context of studying the uniqueness of
tensor decomposition [5].

From Theorem 1.2, it can be observed that the larger spark(A) is, the bigger the
signal space among which compressive sensing can guarantee an exact recovery. Thus,
good lower bounds for the spark of a matrix are significant. In this paper, we give two
new lower bounds for spark(A). The new lower bounds are presented in Section 3
after reviewing some preliminaries. Numerical examples to show the performance of
the new bounds are given in Section 4.

2. Preliminaries

In this section, we review two existing lower bounds for the spark of a matrix.
Throughout, [n] represents the set {1, 2, . . . , n}, card(S ) denotes the cardinality of the
set S , ak indicates the kth column of the matrix A and λi(A) is its ith largest eigenvalue.

2.1. Lower bound for the spark of a matrix based on mutual coherence. The
mutual coherence of a matrix [4] gives a way of measuring the dependence between
its columns.

Definition 2.1. The mutual coherence, µ(A), of a matrix A ∈ Cm×n is the largest
absolute normalised inner product between different columns from A, that is,

µ(A) = max
1≤i≤n

|aT
i a j|

‖ai‖2‖a j‖2
.

Clearly, the mutual coherence of a matrix A satisfies µ(A) ≤ 1, by the Cauchy–
Schwarz inequality. For the identity matrix, the mutual coherence is zero because
different columns are orthogonal. For a nonzero m × n matrix with more columns than
rows, that is, n > m, µ(A) is strictly positive. The next theorem gives a lower bound for
the spark of a matrix in terms of the mutual coherence.
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Theorem 2.2 [3, 5]. For a given matrix A ∈ Cm×n,

spark(A) ≥ 1 +
1

µ(A)
.

2.2. Lower bound for the spark of a matrix based on the coherence function.
The coherence function of a matrix [6] can be viewed as a generalisation of the mutual
coherence.

Definition 2.3. Let A ∈ Cm×n be a matrix with l2-normalised columns, a1, a2, . . . , an,
that is, ‖a j‖2 = 1 ( j = 1, 2, . . . , n). Given p > 0, the lp-coherence function µp of the
matrix A is defined for s = 1, 2, . . . , n − 1 by

µp(s) = max
i∈[n]

max
{(∑

j∈S

|(ai, a j)|p
)1/p ∣∣∣∣∣ S ⊂ [n], card(S ) = s, i < S

}
.

It can be seen that for any p > 0, µp(1) = µ(A). At first glance, computing the
coherence function for large s is exponential and prohibitive, but this is not true [5].
Calculating the Gram matrix G = AT A, taking the absolute value of each entry and
sorting each row in descending order yields a nonnegative matrix H = (hi j)n×n. The
first entry of every row of H is 1, corresponding to the main diagonal entry of G. Then

µp(s) = max
1≤i≤n

( s+1∑
j=2

hp
i j

)1/p
.

Thus, the computational cost of calculating the lp-coherence function is mainly
spent in obtaining the Gram matrix and sorting every row of a nonnegative matrix of
order n. The l1-coherence function is also called the Babel function. Tropp [11] used
it to give sufficient conditions under which both orthogonal matching pursuit and basis
pursuit can converge to the solution of an l0-minimisation problem. The next theorem
gives a lower bound for spark(A) in terms of the l1-coherence function.

Theorem 2.4 [5]. If the matrix A ∈ Cm×n has l2-normalised columns a1, a2, . . . , an, that
is, ‖a j‖2 = 1 ( j = 1, 2, . . . , n), then

spark(A) ≥ min
1≤p≤n

{p | µ1(p − 1) ≥ 1}.

Remark 2.5. If A ∈ Cm×n has l2-normalised columns, then µ1(p − 1) ≤ (p − 1)µ(A) for
p = 2, . . . , n. Thus,

min
1≤p≤n

{p | µ1(p − 1) ≥ 1} ≥ 1 +
1

µ(A)
.

Consequently, the lower bound for the spark of a matrix in terms of the l1-coherence
function is better than the lower bound involving the mutual coherence.
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3. Two new lower bounds for the spark of a matrix

3.1. A new lower bound for the spark of a matrix based on mutual coherence.

Theorem 3.1. For a given matrix A ∈ Cm×n,

spark(A) ≥ 1 +
1

µ(A)2 . (3.1)

Remark 3.2. Since µ(A) ≤ 1 for an arbitrary matrix A,

1 +
1

µ(A)2 ≥ 1 +
1

µ(A)
. (3.2)

By (3.2), Theorem 3.1 gives a better lower bound for the spark than Theorem 2.2.

Our proof of Theorem 3.1 uses Weyl’s theorem (Lemma 3.3) in matrix analysis.

Lemma 3.3 [8, Corollary 4.3.15]. Assume that M, N ∈ Cn×n are two Hermitian
matrices. Let λ1(M) ≥ λ2(M) ≥ · · · ≥ λn(M) and λ1(N) ≥ λ2(N) ≥ · · · ≥ λn(N) be their
eigenvalues arranged in nonincreasing order. Then

λi(M) + λn(N) ≤ λi(M + N) ≤ λi(M) + λ1(N).

Lemma 3.4. Let B = (bi j) ∈ Cn×n be a Hermitian matrix. Then every disc

Dk =

{
z ∈ R | |z − bkk| ≤

( n∑
j=1
j,k

|bi j|
2
)1/2}

contains at least one eigenvalue of B for k = 1, 2, . . . , n.

Proof. Construct a Hermitian matrix C = (ci j) ∈ Cn×n as follows. The entries of C in
the kth row and column are zeros except for the diagonal entry and the rest of C is the
same as the matrix B, that is,

C =



b11 · · · 0 · · · b1n
...

...
...

...
...

0 · · · bkk · · · 0
...

...
...

...
...

bn1 · · · 0 · · · bnn


.

Then bkk is an eigenvalue of C. Let M = C,N = B −C. By Lemma 3.3,

λn(B −C) ≤ λi(B) − λi(C) ≤ λ1(B −C).

Thus, B has at least one eigenvalue λ(B) satisfying

λn(B −C) ≤ λ(B) − bkk ≤ λ1(B −C). (3.3)
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It can be calculated that

|λI − (B −C)|=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ · · · −b1k · · · 0
...

...
...

...
...

−bk1 · · · λ · · · −bkn
...

...
...

...
...

0 · · · −bnk · · · λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= λn−2

(
λ2 −

n∑
j=1
j,k

b jibi j

)
= λn−2

(
λ2 −

n∑
j=1
j,k

|bi j|
2
)
.

Thus, the eigenvalues of B −C are( n∑
j=1
j,k

|bi j|
2
)1/2

, 0, . . . , 0︸  ︷︷  ︸
n−2 times

and −

( n∑
j=1
j,k

|bi j|
2
)1/2

.

From (3.3),

−

( n∑
j=1
j,k

|bi j|
2
)1/2
≤ λ(B) − bkk ≤

( n∑
j=1
j,k

|bi j|
2
)1/2

. �

Lemma 3.4 is similar to the Gershgorin disc theorem, but more precise since( n∑
j=1
j,k

|bi j|
2
)1/2
≤

n∑
j=1
j,k

|bi j| for k = 1, 2, . . . , n.

Proof of Theorem 3.1. Note that the spark and the mutual coherence of a matrix are
invariant under column scaling. Without loss of generality, we can assume that A is a
matrix with l2-normalised columns. In this case, the Gram matrix G = AT A satisfies

gii = 1, 1 ≤ i ≤ n,
|gi j| ≤ µ(A), 1 ≤ i, j ≤ n, i , j.

Consider an arbitrary p × p leading minor from G = AT A. From Lemma 3.4, if this
submatrix satisfies

∑p
j=1, j,k |gi j|

2 < 1 for 1 ≤ i ≤ p, the minor will be nonsingular. From
the definition of mutual coherence,

∑p
j=1, j,k |gi j|

2 ≤ (p − 1)µ(A)2. Thus, the condition
(p − 1)µ(A)2 < 1, that is, p < 1 + 1/µ(A)2, implies the nonsingularity of every p × p
leading minor. Thus, any p columns from A are linearly independent and (3.1) follows
from the definition of the spark. �

3.2. A new lower bound for the spark based on the coherence function.

Theorem 3.5. If the matrix A ∈ Cm×n has l2-normalised columns a1, a2, . . . , an, that is,
‖a j‖2 = 1 for j = 1, 2, . . . , n, then

spark(A) ≥ min
1≤p≤n

{p | µ2(p − 1) ≥ 1}. (3.4)
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Proof. Assume that µ2(p − 1) < 1. Then, in every p × p leading minor from G = AT A,
the quadratic sum of the absolute values of the off-diagonal entries in any row is less
than one. By Lemma 3.4, G has no zero eigenvalue, so it is nonsingular. Thus, any
p columns from A are linearly independent. The inequality (3.4) follows from the
definition of the spark. �

Remark 3.6. From Definitions 2.1 and 2.3, µ2(p − 1) ≤
√

p − 1µ(A). Suppose that√
p − 1µ(A) < 1, that is, p < 1 + µ(A)−2. Then µ2(p − 1) < 1. Thus,

min
1≤p≤n

{p | µ2(p − 1) ≥ 1} ≥ 1 +
1

µ(A)2 . (3.5)

The inequality (3.5) shows that min1≤p≤n{p | µ2(p − 1) ≥ 1} is a better lower bound for
the spark than 1 + µ(A)−2. On the other hand, calculating 1 + µ(A)−2 is simpler since
it does not involve mass sorting.

Theorem 3.7. If the matrix A ∈ Cm×n has l2-normalised columns a1, a2, . . . , an, that is,
‖a j‖2 = 1 for j = 1, 2, . . . , n, then

min
1≤p≤n

{p | µ2(p − 1) ≥ 1} ≥ min
1≤p≤n

{p | µ1(p − 1) ≥ 1}. (3.6)

Proof. Assume that t ∈ [n] satisfies

max
1≤i≤n

( s+1∑
j=2

h2
i j

)1/2
=

( s+1∑
j=2

h2
t j

)1/2
.

Then, for s = 1, 2, . . . , n − 1,

µ2(s) = max
1≤i≤n

( s+1∑
j=2

h2
i j

)1/2
=

( s+1∑
j=2

h2
t j

)1/2
≤

s+1∑
j=2

ht j ≤ max
1≤i≤n

s+1∑
j=2

hi j = µ1(s)

and this yields (3.6). �

Theorem 3.7 indicates that min1≤p≤n{p | µ2(p − 1) ≥ 1} is a better lower bound for
the spark of a matrix than min1≤p≤n{p | µ1(p − 1) ≥ 1}. The inequalities (3.2), (3.5)
and (3.6) show that min1≤p≤n{p | µ2(p − 1) ≥ 1} is the best lower bound for the spark
among the four lower bounds.

4. Numerical examples
In this section, two examples are given to show the performance of our proposed

lower bounds.

Example 4.1. Let A be the matrix

1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1
1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1


.
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Table 1. The four lower bounds for the spark of the matrix A in Example 4.1.

1 +
1

µ(A)
min

1≤p≤n
{p|µ1(p − 1) ≥ 1} 1 +

1
µ(A)2 min

1≤p≤n
{p|µ2(p − 1) ≥ 1}

Lower bound 4 5 7 8

Table 2. The four lower bounds for the spark of the random partial Fourier matrix A in Example 4.2.

1 +
1

µ(A)
min

1≤p≤n
{p|µ1(p − 1) ≥ 1} 1 +

1
µ(A)2 min

1≤p≤n
{p|µ2(p − 1) ≥ 1}

Lower bound 9 10 61 112

It can be calculated that µ(A) = 0.4286. The four lower bounds for the spark are
shown in Table 1.

Note that 1 + µ(A)−1 = 3.3332 and 1 + µ(A)−2 = 6.4437. Since spark(A) is a positive
integer, we obtain spark(A) ≥ 4 and spark(A) ≥ 7 from the respective inequalities
spark(A) ≥ 1 + µ(A)−1 and spark(A) ≥ 1 + µ(A)−2. Even for this small matrix, the lower
bound in Theorem 3.1 can be much better than the existing lower bounds.

Example 4.2. Suppose that A ∈ C200×600 is a random partial Fourier matrix, that is,
the rows of A are randomly selected from a Fourier matrix of order 600. It can be
calculated that µ(A) = 0.1298. The four lower bounds for the spark are shown in
Table 2.

It can be seen from Table 2 that the lower bounds in Theorems 3.1 and 3.5 are much
better than the existing ones for this class of examples.
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