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Abstract

Let B be an abstract Segal algebra with respect to A. For a nonzero character φ on A, we study
φ-amenability, and φ-contractibility of A and B. We then apply these results to abstract Segal algebras
related to locally compact groups.
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1. Introduction

Let A be a Banach algebra and φ ∈ σ(A), consisting of all nonzero characters on A.
Kaniuth et al. [7, 8] introduced and studied the concept of φ-amenability for Banach
algebras as a generalization of left amenability of Lau algebras. In fact, A is called
φ-amenable if there exists a bounded net (aα) in A such that

φ(aα)→ 1 and ‖aaα − φ(a)aα‖→ 0

for all a ∈A. Any such net is called a bounded approximate φ-mean.
Moreover, the notion of (right) character amenability was introduced and studied

by Monfared [9]. Character amenability of A is equivalent to A being φ-amenable for
all φ ∈ σ(A) and A having a bounded right approximate identity.

For φ ∈ σ(A), the notion of φ-contractibility of A was recently introduced and
studied by Hu et al. [4]. In fact, A is called φ-contractible if there exists a (right)
φ-diagonal for A; that is, an element m in the projective tensor product A ⊗̂A such
that

φ(π(m))= 1 and a ·m= φ(a)m

for all a ∈A, where π denotes the product morphism from A ⊗̂A into A given by
π(a ⊗ b)= ab for all a, b ∈A.

Several authors have studied various notions of amenability for abstract Segal
algebras; see, for example, Samea [13] and Tewari and Parthasarathy [14]. Here,
we characterize character amenability and character contractibility of abstract Segal
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algebras. We then give some applications of our results to abstract Segal algebras on a
locally compact group G.

2. Character amenability and contractibility of abstract Segal algebras

Let A be a Banach algebra with the norm ‖ · ‖A. Then a Banach algebra B with the
norm ‖ · ‖B is an abstract Segal algebra with respect to A if:

(1) B is a dense left ideal in A;
(2) there exists M > 0 such that ‖b‖A ≤ M‖b‖B for all b ∈ B;
(3) there exists C > 0 such that ‖ab‖B ≤ C‖a‖A‖b‖B for all a, b ∈ B.

We begin this section with the following result.

THEOREM 2.1. Let A be a Banach algebra and let B be an abstract Segal algebra
with respect to A. Then the following statements are equivalent.

(a) B is character amenable.
(b) A= B, and A is character amenable.
(c) A is Banach algebra isomorphic to B and A is character amenable.

PROOF. (a)⇒ (b). Suppose that B is character amenable. Then B has a bounded right
approximate identity (eα). Since B is an abstract Segal algebra, there exists C > 0
such that

‖ab‖B ≤ C‖a‖A‖b‖B

for all a, b ∈ B. So, for each b ∈ B,

‖a‖B = lim
α
‖aeα‖B ≤ C‖a‖A lim inf

α
‖eα‖B

≤ C

(
sup
α
‖eα‖B

)
‖a‖A.

On the other hand, there exists M > 0 such that ‖a‖A ≤ M‖a‖B . Thus the norms
‖ · ‖A and ‖ · ‖B are equivalent on B. Since B is dense in A, it follows that A= B and
A is character amenable.

(b)⇒ (c). Since B is an abstract Segal algebra with respect to A, there exists M > 0
such that

‖a‖A ≤ M‖a‖B

for all a ∈A. Thus B is Banach algebra isomorphic to A by the open mapping
theorem. The implication (c)⇒ (a) is trivial. 2

Before we give our next result, let us present an elementary lemma.

LEMMA 2.2. Let A be a Banach algebra and let B be an abstract Segal algebra with
respect to A. Then σ(B)= {φ|B : φ ∈ σ(A)}.

PROOF. Since B is dense in A, it follows that φ|B 6= 0 and so φ|B ∈ σ(B). Now
suppose that ψ ∈ σ(B). Then there exists b0 ∈ B such that ψ(b0)= 1. Thus for each
b ∈ B,

ψ(b)= ψ(bb0).
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By assumption, there exists C > 0 such that ‖bb0‖B ≤ C‖b‖A‖b0‖B for all b ∈ B and
consequently

|ψ(b)| = |ψ(bb0)| ≤ C‖b‖A‖b0‖B.

This shows that ψ is continuous on B with respect to the norm ‖ · ‖A. Since B is dense
in A, it follows that ψ has a unique extension φ ∈ σ(A). 2

PROPOSITION 2.3. Let A be a Banach algebra and let B be an abstract Segal algebra
with respect to A and φ ∈ σ(A). Then A is φ-amenable if and only if B is φ|B -
amenable.

PROOF. Suppose that A is φ-amenable. Then there is a bounded approximate φ-mean
(aα) in A. Fix b0 ∈ B such that φ(b0)= 1 and set

bα := aαb2
0 ∈ B

for all α. Since B is an abstract Segal algebra with respect to A, there exist C > 0 and
M > 0 such that for each b ∈ B,

‖bbα − φ(b)bα‖B ≤ C‖baα − φ(b)aα‖A‖b0‖A‖b0‖B

≤ MC‖baα − φ(b)aα‖A‖b0‖
2
B → 0

and
φ(bα)= φ(aα)→ 1.

Since (aα) is ‖ · ‖A-bounded, it follows that (bα) is ‖ · ‖B -bounded. Thus B is φB -
amenable.

Conversely, suppose that B is φ|B -amenable. Then there is a bounded approximate
φ|B -mean (bα) in B. Fix b0 ∈ B such that φ(b0)= 1 and set

aα := b0bα

for all α. Since B is an abstract Segal algebra, there exists M > 0 such that for each
a ∈A,

‖aaα − φ(a)aα‖A = ‖ab0bα − φ(a)b0bα‖A

≤ ‖ab0bα − φ(a)φ|B(b0)bα‖A+‖φ(a)φ|B(b0)bα−φ(a)b0bα‖A

≤ M(‖ab0bα − φ|B(ab0)bα‖B+|φ(a)| ‖φ|B(b0)bα − b0bα‖B)

→ 0

and
φ(aα)= φ|B(bα)→ 1.

Since ‖ · ‖A ≤ M‖ · ‖B , it follows that (aα) is a ‖ · ‖A-bounded approximate φ-mean
in A, and therefore A is φ-amenable. 2

As a consequence of Proposition 2.3 we have the following result.

COROLLARY 2.4. Let B be an abstract Segal algebra with respect to a character
amenable Banach algebra A. Then B is φ-amenable for all φ ∈ σ(B). Moreover, B is
character amenable if and only if A= B.
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PROPOSITION 2.5. Let B be an abstract Segal algebra with respect to a Banach
algebra A and φ ∈ σ(A). Then A is φ-contractible if and only if B is φ|B -contractible.

PROOF. Suppose that A is φ-contractible. Then there is a φ-diagonal m ∈A ⊗̂A
for A. Thus, φ(π(m))= 1 and aπ(m)= φ(a)π(m) for all a ∈A. Since B is a dense
left ideal in A, there exists b0 ∈ B such that φ(b0)= 1 and so

b1 := b0π(m) ∈ B.

Now, for each b ∈ B we have

bb1 = φ(b)b1 and φ(b1)= 1.

It is clear that b1 ⊗ b1 ∈ B ⊗̂ B is a φ|B -diagonal for B.
For the converse, suppose that m ∈ B ⊗̂ B is a φ|B -diagonal for B. Then π(m) ·

m=m and aπ(m) ∈ B for all a ∈A. We conclude that φ(π(m))= 1 and

a ·m= a · (π(m) ·m)= aπ(m) ·m= φ(a)m

for all a ∈A; that is, m is a φ-diagonal for A. 2

3. Applications to group algebras

Let G be a locally compact group with left Haar measure λG and let L p(G),
1≤ p ≤∞, be the usual Lebesgue space with respect to λG as defined in [2]. The
convolution product of two measurable functions f and g at x ∈ G is defined by

( f ∗ g)(x)=
∫

G
f (y)g(y−1x) dλG(y),

whenever the integral exists. Then L1(G) endowed with the norm ‖ · ‖1 and the
convolution product ∗ is a Banach algebra, called the group algebra of G. Let Ĝ
denote the dual group of G consisting of all continuous homomorphisms ρ from G
into the circle group T, and define φρ ∈ σ(L1(G)) to be the character induced by ρ on
L1(G); that is,

φρ(h)=
∫

G
ρ(x) f (x) dλG(x) ( f ∈ L1(G)).

It is known that there is no other character on L1(G); that is,

σ(L1(G))= {φρ : ρ ∈ Ĝ};

see, for example, [6, Theorem 2.7.2] or [2, Theorem 23.7].
Recall that G is called amenable if L1(G) is φ1-amenable; or equivalently, there is

a bounded approximate φ1-mean in L1(G).
Before we give our first result in the section, recall from [5] that every Segal algebra

is an abstract Segal algebra with respect to L1(G) but not conversely; see also [10, 11].
The linear subspace S1(G) of the convolution group algebra L1(G) is said to be a Segal
algebra on G if it satisfies the following conditions.

(1) S1(G) is dense in L1(G).
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(2) S1(G) is a Banach space under some norm ‖ · ‖s and for each f ∈ S1(G)

‖ f ‖1 ≤ ‖ f ‖s .

(3) S1(G) is left transition invariant and the map x 7→ δx ∗ f of G into S1(G) is
continuous.

(4) ‖δx ∗ f ‖s = ‖ f ‖s for all f ∈ S1(G) and x ∈ G.

PROPOSITION 3.1. Let G be an amenable locally compact group. Then any abstract
Segal algebra S(G) with respect to L1(G) is φ-amenable for all φ ∈ σ(S(G)).
Moreover, S(G) is character amenable if and only if S(G)= L1(G).

PROOF. Since G is amenable, it follows that L1(G) is amenable, and so L1(G)
is character amenable by [9, Corollary 2.4]. The proof is now complete by
Corollary 2.4. 2

EXAMPLE 3.2. Let G be a compact group endowed with the normalized Haar
measure. Then the convolution Banach algebra L∞(G) is a symmetric abstract Segal
algebra with respect to L1(G). Since G is amenable, the convolution Banach algebra
L∞(G) is φ-amenable for all φ ∈ σ(L∞(G)) by Proposition 3.1. We can show that
L∞(G) has a right approximate identity if and only if G is finite. To see this, suppose
that L∞(G) has a right approximate identity. Thus L∞(G) ∗ L∞(G) is dense in
L∞(G), but it is well known that

L∞(G) ∗ L∞(G)⊆ L∞(G) ∗ L1(G)⊆ C(G),

where C(G) is the set of all continuous functions on G. This will yield that C(G) is
dense in L∞(G) with the uniform norm. Thus C(G)= L∞(G) and consequently G
is finite by [3, Lemma 37.3]. The converse is clear.

THEOREM 3.3. Let G be a locally compact group and let ρ ∈ Ĝ. Then the following
statements are equivalent.

(a) G is compact.
(b) All abstract Segal algebras on G are φρ-contractible.
(c) There is an abstract Segal algebra on G which is φρ-contractible.

PROOF. (a) ⇒ (b). Fix ρ ∈ Ĝ. Since G is compact, it follows that ρ ∈ L1(G) and
f ∗ ρ = φρ( f )ρ for all f ∈ L1(G) and

φρ(ρ)=

∫
G
ρρ dλ=

∫
G
|ρ|2 dλ= 1.

It is clear that m= ρ ⊗ ρ is a φρ-diagonal for L1(G). Thus L1(G) is φρ-contractible
and hence any abstract Segal algebra on G is φρ-contractible by Proposition 2.5.

(a)⇒ (c). This implication is trivial.
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(c) ⇒ (a). Suppose that there is an abstract Segal algebra with respect to L1(G)
which is φρ-contractible. Then L1(G) is φρ-contractible by Proposition 2.5. It follows
that there is a φρ-diagonal for L1(G), say m. Thus, φρ(π(m))= 1 and

f ∗ π(m)= φρ( f )π(m)

for all f ∈ L1(G). So, if we put

g := ρπ(m) ∈ L1(G),

then φ1(g)= 1 and f ∗ g = φ1( f )g for all f ∈ L1(G); indeed,

ρ f ∗ π(m) = (ρ f ∗ π(m)) ∗ π(m)

= φρ(ρ f ∗ π(m))π(m)

= φ1( f )π(m).

It follows that G is compact; see, for example, [12, Exercise 1.1.7]. 2

COROLLARY 3.4. Let G be a locally compact group and let S(G) be an abstract
Segal algebra with respect to L1(G) and ρ ∈ Ĝ. Then G is amenable if and only if
S(G) is φρ-amenable.

PROOF. Suppose that S(G) is φρ-amenable. Then L1(G) is φρ-amenable by
Proposition 2.3. Thus L1(G) has a bounded approximate φρ-mean, say ( fα). Now,
we define hα := ρ fα for all α. It follows that

φ1(hα)= φρ( fα)→ 1

and
f ∗ hα = f ∗ ρ fα = ρ(ρ f ∗ fα)

for all f ∈ L1(G). Consequently,

‖ f ∗ hα − φ1( f )hα‖1 = ‖ f ∗ ρ fα − φ1( f )ρ fα‖1
= ‖ρ f ∗ fα − φ1( f ) fα‖1
= ‖ρ f ∗ fα − φρ(ρ f ) fα‖1→ 0.

Therefore, (hα) is a bounded approximate φ1-mean in L1(G), and so G is amenable.
The converse is trivial by Proposition 3.1. 2

Let G be a locally compact group and let A(G) be the Fourier algebra of G as
defined in [1]. Then σ(A(G)) consists of all point evaluations φx (x ∈ G) defined by
φx ( f )= f (x) for all f ∈ A(G).

THEOREM 3.5. Let G be a locally compact group and let S A(G) be an abstract Segal
algebra with respect to A(G). Then the following statements are equivalent.

(a) G is discrete.
(b) S A(G) is φx -contractible for all x ∈ G.
(c) S A(G) is φx -contractible for some x ∈ G.
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PROOF. Suppose that G is discrete. Then χ{x} ∈ A(G) for all x ∈ G, where χ{x} is the
characteristic function of {x}. Choose f0 ∈ S A(G) such that

‖ f0 − χ{x}‖A(G) < 1/2.

Then | f0(x)− 1|< 1/2, and so f0(x) 6= 0. Thus,

χ{x} =
1

f0(x)
f0χ{x} ∈ S A(G).

Moreover, φx (χ{x})= χ{x}(x)= 1 and, for each f ∈ S A(G),

f χ{x} = f (x)χ{x} = φx ( f )χ{x}.

Hence, it is clear that χ{x} ⊗ χ{x} is a φx -diagonal for S A(G), and consequently,
S A(G) is φx -contractible. That is, (a) implies (b). That (b) implies (c) is trivial.

For (c)⇒ (a), suppose that S A(G) is φx -contractible. Then there is a φx -diagonal
for S A(G), say m. Thus

π(m)(x)= φx (π(m))= 1

and
f π(m)= φx ( f )π(m)= f (x)π(m)

for all f ∈ S A(G). Now let y ∈ G and choose g ∈ A(G) such that g(y)= 0 and
g(x)= 1 and also take h ∈ S A(G) such that h(x)= 1. Therefore, hg ∈ S A(G)
satisfies φx (hg)= h(x)g(x)= 1, and so

0= hgπ(m)(y)= φx (hg)π(m)(y)= π(m)(y).

It follows that χ{x} = π(m). Since π(m) is a continuous function on G, we conclude
that G is discrete. 2
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