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PROJECTIVE ELEMENTS IN CATEGORIES WITH 
PERFECT 0-CONTINUOUS MAPS 

HANS VERMEER AND EVERT WATTEL 

0. In t roduc t ion . In 1958 Gleason [6] proved the following : 

THEOREM. In the category of compact Hausdorff spaces and continuous 
maps, the projective elements are precisely the extremally disconnected spaces. 

The projective elements in many topological categories with perfect 
continuous functions as morphisms have been found since that time. For 
example: In the following categories the projective elements are precisely 
the extremally disconnected spaces: 

(i) The category of Tychonov spaces and perfect continuous functions. 
[4] [11]. 

(ii) The category of regular spaces and perfect continuous functions. 
[4] [12]. 

(iii) The category of Hausdorff spaces and perfect continuous 
functions. [10] [1]. 

(iv) In the category of Hausdorff spaces and continuous &-maps the 
projective members are precisely the extremally disconnected ^-spaces. 
[14]. 

In 1963 Iliadis [7] constructed for every Hausdorff space X the so 
called Iliadis absolute £[X], which is a maximal pre-image of X under 
irreducible ^-continuous maps. Moreover he proved that in the category 
of Hausdorff spaces and perfect irreducible ^-continuous surjections the 
projective elements are precisely the extremally disconnected spaces. 

Our aim is to study the projective members in the following categories: 

(v) ^ 2 +( resp . J^ 2 ) : the category of iJ-closed Urysohn spaces (resp. 
Hausdorff spaces) and perfect ^-continuous functions. See also [10], [15]. 

(vi) c^3|5(resp. ^ V ) : the category of those spaces X such that Xs — 
the semi-regularization of X — is T3i (resp. r 3 ) , and perfect ^-continuous 
functions. 

(vii)J^"~2+ (resp. ̂ 2 ) : the category of Urysohn spaces (resp. Hausdorff 
spaces) and perfect ^-continuous functions. 

In the first section we state a collection of preliminary remarks. In 
the second section we study the image spaces under ^-continuous maps 
of compact Hausdorff spaces. In the third section we show that in each 
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of the categories projective objects have to be compact. This leads to 
the theorem: 

The projective elements inffl2+,3r^ andffT-f are precisely the compact 
extremally disconnected spaces. 

For the category ^ 2 + this theorem is proved by Mioduszewski and 
Rudolf, (cf. [10], [15]). We consider b o t h 3 T ^ a n d ^ V , because of the 
following characterization of 3/~z\s\ 

Xs is r 3 i if and only if X has an if-closed T2+ extension [13]. The 
property for a T2+ space X to have such an extension is surprisingly 
strong. This becomes clear if we consider the category of all T2+ spaces 
for which we show in last section: 

The projective elements in3T^ are precisely the finite spaces. 

As a corollary to this theorem we obtain our main result: 

The projective members of J^2 and ^2 are precisely the finite spaces. 

R. G. Woods [15] asked for a characterization of the projective 
elements of these categories in his survey paper on absolutes. 

1. Preliminaries. We adopt the following conventions and definitions. 

(a) All spaces are assumed to be Hausdorff. 
(b) A space is called r 2 + , or Urysohn if: 

Vx, y e X3 Ux3 Uy such that C\UX C\ C\Uy = 0. 

where Ux and Uy denote open neighborhoods of x and y respectively. 
(c) A function f:X —> Y is called perfect if: 

/ is closed, 
V;y £ Y if"1 (y) is compact. 
(d) A function fiX —> Y is called ^-continuous, if 

V* V£//<*> 3 Vx such that f[C\xVx] C C\YUf(x). 

Note that if Y is regular, then any ^-continuous function into it is 
continuous. Moreover, ^-continuous functions may cause unexpected 
problems, e.g., it is well known that if fiX —> Y is ^-continuous then 
flX —> f[X] need not be ^-continuous. In (h) we give the standard 
example of this fact. 

However, if flX —> Y is ^-continuous and Y C Z then also fiX—>Z 
is ^-continuous. 

If f:X-+ Y is ^-continuous and if A C X then f\AlA —> Y is 
^-continuous. 

If flX—> Y is ^-continuous, if Z is a dense subset of Y and if 
f[X] C Z, then also flX-^Z is ^-continuous. 
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(e) X is called semi-regular if the collection of regular open sets (i.e., 
sets U with int (CI U) = U) is a base for the topology of X. 

For every space X we define the space XS} the semi-regularization of 
X, by taking the collection of regular open sets of X as a base for the 
space Xs on the same underlying set. 

Note that the identity id:X s —> X is perfect and ^-continuous; if X 
is T2 (resp. T2+) so is Xs. 

(f) The Katëtov-extension K[X] of X is defined by: 

K[X] = I U { F I F open non-fixed ultrafilter on X\ 

with topology 
X is open in K[X]. 
For every F G K[X]\X the collection {{F\ \J F\F (? #~} is a local 

base a t ^ ~ (see [8]). 
(g) Note that if X is discrete, then (K[Z]) S = f3X ($X is the Cech-

Stone compactification of X). 
(h) Consider the countable discrete space co. Now parts (e) and (g) 

imply that id:/3co —» K[CO] is perfect and ^-continuous, and so the em­
bedding id *.co* —> K[O>] is ^-continuous, but clearly 

id:co* —> id (co*) = K[CO]\CO 

is not ^-continuous, because K[CO]\CO is discrete. 
(i) In [7] the Iliadis-absolute E[X] of a space X is constructed as 

follows: E[X] is the subset of the fixed ultrafilters of the Stone space of 
the Boolean algebra of the regular open sets of X. E[X] is extremally 
disconnected and r 3 i . A function 

limx:E[X] -» X 

is defined by 

Hmx(F) = H {C\x(F)\FeF\. 

The function \imx:E[X] -» X turns out to be an irreducible, perfect, 
^-continuous surjection. E[X] and l im x :£[X] -» X have the following 
property: 

If / : Y-» X is any irreducible, perfect, ^-continuous surjection, then 
there exists a g:E[X] —» F which is ^-continuous, perfect and irreducible 
such t h a t / o g = limx. If Fis extremally disconnected then g:E[X] -» F 
is a 0-homeomorphism. 

£[Z] 

/ \ 
g >' \ l im 

/ \ 
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(j) A r2-space is called minimal Hausdorff if, and only if, every strictly 
weaker topology on the same underlying set fails to be Hausdorff. If X is 
ff-closed then Xs is minimal Hausdorff. If X is moreover a Urysohn 
space, then Xs is compact (see e.g. [13]). 

(k) A space P is defined to be projective in a category if for each 
morphism yp:P —> X and each surjection / : Y —> X there exists a mor-
phism g'.P —> F in the category such that \[/ = f o g. 

(1) If P is a projective object in each of the categories with perfect 
^-continuous functions then P has to be semi-regular because the map 
from Ps to P is ^-continuous and perfect. However, if P is not semi-
regular then the map from P onto Ps is not closed and hence not perfect 
and so the diagram cannot be completed. 

(m) A semi-regular space which is extremally disconnected is a 
Tychonov space. 

(n) If X is projective in any of the categories 34?2+, 34?2, ^2+, ^~2, 
&~z\s, ^~zs then X is extremally disconnected and Tychonov (see e.g. 
[10]). 

2. ^-cont inuous funct ions. 

2.1 PROPOSITION. If X is compact and f'.X —> Y is 6-continuous then: 
(i) / is perfect. 
(ii) If Y is T2+, then f[X] is regularly embedded (i.e., for each point 

y of Y\f[X] there exists a neighborhood Oy of y and an open set Of[X] D f[X] 
which are disjoint, (i.e., f[X] is a B-closed subset of Y. cf. [3])). 

Proof, (i) We show that f[X] is a closed subset of Y. Suppose not. 
Then 3 y £ Y\f[X] such that \/Uy we have Uy C\ f[X] ^ 0. Let <%y be 
the neighborhood filter of y. Now the collection 

{uvnf[x]\uve <%v] 
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is a filter. So 

\t'{uvr\j[x])\uv e<%v) 
is a centered system on X. Since X is compact, there exists an accumula­
tion point x. (i.e., \/Vx neighborhood of x: VXC\ f~l(UxC\ f[X]) 5* 0.) 

Now there exist open neighborhoods 0y of y and 0/(.T) of f(x) which 
are disjoint. Also 

oyr\c\Y (orix)) = 0. 
We can find a neighborhood Vx of x such that 

f(C\xVx) CC\y (0Hx)) 

and therefore f(Vx) A 0 , = 0, which implies 

vx r\ /-> (ov r\ fix] ) = 0. 

This is a contradiction. 
Since every closed subset B of X is compact and the map f\B\B —> F 

is ^-continuous we obtain that the image of a closed set is closed, and 
that / is a closed mapping. 

A similar argument shows that }~l(y) C X is closed and hence com­
pact for every y G F, because the image of an accumulation point of 
f~l(y) can never be separated from y. 

(ii) Repeat the proof for the filter 

ici(uy) n nx]\uw e <%,]. 
2.2 COROLLARY, (i) If f is a perfect ^-continuous map from a compact 

space X into a Hausdorff space Y then also the map f:X —» F5 is perfect 
and ^-continuous. 

(ii) If X is compact and f is a ^-continuous surjection then f[X] is 
H-closed and f[X]s is minimal Hausdorff. (see 1(f)). 

2.3 PROPOSITION. Let X be a compact Hausdorff space and let f be a 
compact and irreducible function of X onto a set Y. Then there exists a 
minimal Hausdorff topology on Y such that f is Q-continuous. 

Proof. Let stf be the subcollection of all images of closed sets in X. We 
can use s/ as a closed base for a topology on F. We only need to show 
that F with this topology is Hausdorff (i) and t h a t / i s ^-continuous (ii). 

(i) F is Hausdorff. Let y and z be two different points of F. Then 
f~l(y) and f~l(z) are two disjoint closed subsets of X which can be 
separated by two disjoint open sets U and V. X\U and X\V together 
cover X and 

f(X\U)\Jf(X\V) = Y. 
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Then Y\f{X\U) and Y\f(X\V) are two disjoint open neighborhoods 
of y and z in Y. 

(ii) / is ^-continuous. Choose a point x £ X and a neighborhood U of 
3/ = f(x) in F. Then F\£/ is closed in F; and 

Y\U = H {/(Gi)|Gf closed i n l , ^ 7} 

since y g Y\U, 3 * such that y g f(Gt) ; / ^ ( y ) H G, = 0; and x g X\G*. 
We now claim that f(X\Gt) C Cl y (£7). Suppose not. Then there 

exists a point /> in X\Gi such t h a t / ( p ) $ Cl r(£7). Hence there exists 
an open set V = Vf(P) disjoint from U: 

Y\Vf(v) = H {/(£,) | 3 , closed in X and 7 G /} 

and we find a j G / s u c h tha t / (£) g / ( £ , ) . However , / ^ , ) U/(G<) = F 
since £/Pi F = 0 and that Bj U G f = I follows since / is irreducible. 
However this is a contradiction since p is in neither. 

We should consider the above proposition as a way to obtain a 
^-continuous quotient of a compact space when the ordinary quotient is 
not Hausdorff. Our proposition states that it is possible when the involved 
decomposition is irreducible and compact, and that the decomposition 
space will be minimal Hausdorff. 

3. Compactness of projective objects. In this section we show that 
in each of the categories ̂ 2 , ^ 2 + , ^ 2 , - ^ 2 + , i ^ V and&~%\* the projective 
objects need to be compact. For the latter two categories we obtain that 
the projective objects are precisely the compact extremally disconnected 
compact ones. The technique we use is to show that for a non-compact 
X there exists a space F and a perfect ^-continuous m a p / : X —» F such 
that the related map fs:X —> Ys need not be closed although the map 
id : F5 —> F is obviously perfect and ^-continuous. 

3.1 PROPOSITION. In each of the categories^\\*,&'*\$~<i+,!?'^ J^ 2 and 
J^?+ projective objects are always compact. 

Proof. Suppose that X is a projective object in one of the considered 
categories. From l.{l)(m)(n) we obtain that projective objects in those 
categories are extremally disconnected and completely regular and this 
solves the matter already in the categories J^2 and J^2+. For the other 
four categories we consider two special cases first: (i) X contains no 
isolated points, (ii) X contains a dense subset D of isolated points. 

Case (i): If X is an extremally disconnected space without isolated 
points then the same properties are shared by fiX. It is well known 
that pX is for such a space a retract of some /3 F for a discrete space F. 

Because f$X has no isolated points we conclude that X C 0X C @Y\Y. 
Let h:X —> pYbe such an embedding. Note that h[X] cannot be a closed 
subset of j8 F because X is not compact. Let K Y be the Katëtov extension 
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of F, then K Y is defined on the same underlying set as /? F and hence it 
is a ff-closed Urysohn space with /3F as its semi-regularization. So KY 
fits in all four categories. 

Let hK be the map from X into K Y which corresponds to h, then the 
corresponding map hK:X —> KY is perfect and ^-continuous, and the 
identity mapping id:/3Y —» KY is perfect ^-continuous one to one and 
onto. 

X 

/ \ 

/ V 

However, the mapping h itself is not perfect since the image of the 
closed set X is not closed. We conclude that X cannot be projective. 

Case (ii): Suppose that X is an extremally disconnected space which 
has a dense set D of isolated points. Because of 1.(1) (m) we find that X 
has to be completely regular and extremally disconnected and therefore 
D C X C PD. Choose a point p from (3D\X and define X+ to be 
I U {p}. Define N+ to be the convergent sequence N VJ {oo j and let 
Y = X+ X N+. Define a subspace Z of F by 

Z = {(x,n)\x e D\ \J {(x, oo)|x G X+] 

and define a space Z# from Z by making j/)) X | o o ) U D X i V extra open. 
The space Z# is a Urysohn space and its semi-regularization is Z because 
the extra open set of Z# is dense in Z. Since Z is obviously completely 
regular we obtain that both Z# and Z are in all four considered categories. 
The mapping id:Z —> Z# is ^-continuous, perfect and onto, the mapping 
f*\X —* Z* defined by /#(x) = (x, oo ) is also ^-continuous and perfect; 
however, the mapping f'.X—^Z cannot be perfect since the image of X 
is not closed in Z because the point p * oo is in its closure. This shows 
that X cannot be a projective element. 

Next let X be an arbitrary non-compact extremally disconnected 
Tychonov space. Then X = Xd VJ Xn in which Xd is the closure of all 
isolated points of X, which is clopen, and Xn is the complement of Xd. 
Now at least one of the two clopen parts is non-compact and we can 
repeat either the first or the second case argument to show that X 
cannot be projective. (Note that a clopen subspace of a projective space 
is projective.) 

As we already mentioned in the introduction the following theorem is 
well known (see e.g. [10] and [15]), but we present another proof. 
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3.2 THEOREM. The projective objects in ^ 2 + are precisely the compact 
extremally disconnected spaces. 

Proof. A projective object inJ^2+ needs to be compact and extremally 
disconnected (cf. l .(m)). 

Conversely, we suppose that X is a compact e.d. space, and that 
f:X —» F and g'.Z -» Y are two morphisms in the category, and that g 
is moreover surjective. According to l.(j) the spaces Zs and Ys are 
compact. So the spaces Zs and Ys are regular and the function fs:X —> Ys 

is continuous and hence perfect, and gs\Zs -» Ys is continuous. Since X 
is projective in the category of regular spaces we obtain a mapping 
h:X —» Zs such that gs o h = /g . Let ft':X —» Z be the induced mapping; 
then we obtain that h' is ^-continuous and hence perfect (cf. 2.1) and 
moreover g oh1 = f. We obtain that X is projective. 

Remark. The same proof does not work in the cases &\\s and $~V since 
the mappings fs and gs need not be closed. 

3.3 LEMMA. In each of the categories3?~\\s, 3?~V, ^~2+, ^ 2 , ^ 2 we have 
that X is projective if and only if for each morphismf'.X —•» F /ftere exists a 
morphism h:X —» £ [F] swcft / t o / = limF o ft. 

* ' ' T 

E[Y] ^ F 
h m r 

Note that E[Y] is always a member of the category in each of the 
cases, cf. (l.i). 

Proof. =>. This is obvious from the definition of projectivity. 
<=. We consider the following diagram: It is easy to find a closed 

subspace Z' of Z such that the mapping gf = g\Z' is ^-continuous perfect 
and irreducible. We do not assume that the space Z' is necessarily an 
element of the considered category; it is sufficient to choose it f rom^ 2 -

A 

••-"'" v 
Z T - ^ Y 

The space E[Z'] is an extremally disconnected space which is mapped 
perfect, irreducible and ^-continuously onto F by the mapping g' 0 limZ'. 
According to Iliadis [7] the spaces E[Z'] and E[Y] are homeomorphic 
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and g' o limZ' = limF. From our assumptions it follows that there exists 
a mapping h\X —> E[Z'] such that limr o h = f. 

E[Z>]< 

Although Z' need not be in our category, the spaces E[Z'] and Z both 
are and the mapping idz> o lim Z' is closed, perfect and ^-continuous 
and so is 

<̂ Y and $~ 34 are precisely the 

idZ' o lim Z' o h:X —> Z. 

This proves the lemma. 

3.4 THEOREM. The projective objects in 3/ 
compact extremally disconnected spaces. 

Proof. According to 3.1 we know that any projective element in those 
categories needs to be compact and extremally disconnected. 

Conversely, according to 3.3 we only have to show that for a compact 
extremally disconnected space X and for each map f:X —-» F there exists 
a mapping h:X —> E[Y] such that \imY o h = f. Let Ys be the semi-
regularization of F; th.enfs:X —-> Ys is perfect and continuous since Ys 

is regular and X is compact according to our assumptions. By the 
regularity of Ys and the fact that limy is ^-continuous and perfect we 
can quickly deduce that l im r , regarded as a function from E[Y] to Ys, 
is a closed map. As it is obviously also compact, irreducible and con­
tinuous (since Ys is regular), it follows from the uniqueness of the 
Iliadis-absolute (see l(i)) that E[Y] = E[YS] and l i m r : £ [ F ] -> Ys is a 
closed, continuous and compact map. Since X is projective in ^~3, we 
find that there exists a mapping h:X —» J5[FS] such that 

limy8 oh = fs 

and since h is ^-continuous and perfect we obtain that 

limF o h = f 

and we have found the required factorization of/ over JS[F]. 
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4. Finiteness of projective objects. In this section we show that the 
only projective objects of the categories J^2+, $~i andJ^ 2 are the finite 
discrete spaces. In order to do this we have an example which shows 
that the ordinary circle can be mapped ^-continuously into a space such 
that the image is discrete and the absolute of the image space contains 
no compact subsets of large cardinality. 

4.1 LEMMA. Let X be an infinite compact extremally disconnected space. 
Then X can be mapped onto the circle S. 

Proof. Since X has a countable discrete subset D, then we can map 
this set onto the rationals in S. This map can be extended over X 
because D is C*-embedded in X (see [5]). 

4.2 PROPOSITION. Let f:X —> Y be a perfect d-continuous map from a 
compact extremally disconnected space X into a Urysohn space Y. Suppose 
that there exists a compact subset B of the Iliadis absolute E[Y] such that 
lim (B) = f[X]. Let g'.Z -» Y be any perfect ^-continuous surjection of a 
Urysohn space Z onto Y. Then there exists a map h:X —» Z in 3T^ such 
that go h = f. 

Proof. In order to prove that there exists an h:X —> E[Y] such that 
go h = / we consider E[Y] X X. Define 

HCB XX CE[Y] X X 

by 

H = {(b,x)\b G B,x G X, lim (b) = / ( « ) } . 

We first show that H is closed in B X X. 
Let (b} x) (? H. Then lim (b) ^ f(x). We can separate lim (b) and/(x) 

by two disjoint closed neighborhoods Ub and Uf(X) of lim (b) (resp. f(x)). 
In B there exists a neighborhood Vb of b such that lim (Vb) C CI Ub, and 
similarly there is a neighborhood Vx of x in X such t h a t / f ^ ) C Uf(X). 
Clearly Vb X Vx is an open neighborhood of (b, x) in B * X which is 
disjoint from H. We conclude that H is closed and compact. 

Next we choose a minimal closed subset PL' of H such that the pro­
jection TX:PP —>X is perfect and onto and therefore irreducible. The 
projection -KX has to be a homeomorphism on Hr since X is extremally 
disconnected and hence the extremal pre-image under continuous 
irreducible maps in compact Hausdorfr. (See l(i).) 

We now define h:X —* E[Y] by 

h(x) = TTEIY] {TTX~1{X) H H'). 

Finally we can choose an arbitrary closed subset Z' of Z such that the 
mapping g\Z':Z' —» Y is irreducible. Iliadis [7] showed that in that case 
E[Z'] = E[Y] up to a homeomorphism and we find the required mapping 

https://doi.org/10.4153/CJM-1981-068-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-068-6


882 H. VERMEER AND E. WATTEL 

h as the composition of h! with 

\imz\E[Z'] -> Z' and id2 :Z' -> Z 

and obtain 

h = id 2 o lim2 oh'\X^>Z and go / î = / . 

4.3 Remark. This proposition has also a converse. If there exists an 
h:X —> E[ Y] such that g o h = f then the image fe[X] is compact because 
E[Y] is completely regular and hence h is continuous. We choose B to 
be h[X]. 

4.4 PROPOSITION. A space X is projective in^2 if and only if X is also 
projective inffli. 

Proof. =». If X is projective i n^" 2 then X is compact Hausdorff and 
extremally disconnected, and since X is a member of ffli in that case X 
has to be projective inJ^V 

<=. If X is projective i n J ^ then also in this case X is compact and e.d. 
Suppose that / : X —» F is perfect and ^-continuous, then so is / ' : X —> K F. 
Iliadis [7] proved that E[KY] = I3E[Y] and that the inverse image of F 
under the map limKy is still -E[F]. 

Since X is projective in J4?2 we obtain a mapping h:X —> £ [ K F ] such 
that 

limKy o fe = f 

and the range of h is in the domain of l im r and therefore limF o h = f. 
Observe that E[Y] is dense in E[KY], (cf. l .d). From 3.3 we obtain that 
X is projective inJ^V 

E[Y] 

E[KY] 

4.5 THEOREM. The projective objects in the categories^'2+, ^ \ and^f^ 
are precisely the finite objects. 

Proof. Assume that X is an infinite projective member of the category 
^"2+. Then X is compact and extremally disconnected. Let E be the 
unit circle which we represent as the reals modulo 1 and let Z be the set of 
integers. According to 4.1 there exists a continuous map from the com-

= pE[Y] • - • KY 

lim^y 
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pact extremally disconnected set X onto 6. We define the following 
topology on F = Ë X Z . Every point (c, z) with z ^ 0 is open. For every 
point (c, 0) and every e between 0 and 1 we define a basic open neigh­
borhood 

Ben(c) = {(d, z)\c — e < d S c,z < —n) 

U {(d ,g) |c+ e > ^ c , 2 > w ) U {(c,0)}. 

In the topology generated in this way the circle So = S X {0} is a closed 
and relatively discrete nowhere dense subset. The space F is obviously 
semi-regular. The mapping / : S —> F defined by/(c) = (c, 0) is perfect 
and ^-continuous, because for every basic neighborhood Ben(c) of (c, 0) 
the neighborhood (c — e, c + e ) is mapped into Cl y (Ben(c) ). According 
to 4.1 X can be mapped onto S by a perfect ^-continuous map. It follows 
that X can be mapped onto F by a perfect ^-continuous map k such 
that ft(fë) = So, where So denotes S*{0}. Because F is Urysohn, 
l im:£[F] -» F is a morphism in^"2+- Since X is projective in^~2+, there 
exists a morphism h:X -» E[Y] in^"~2+ such that limy o h = k. By 4.3 
MX] is a compact subset B of £ [F ] , and 5 is obviously mapped onto (So 
by lim r . 

Let F + be the subspace of F consisting of all (c, z) with z > 0, and 
let F~ be the subspace of F consisting of all (c, z) with 2 < 0. Both F + 

and F~~ are regular open and their union is dense. So they define a 
partition of E[Y] into two disjoint clopen parts called A+ (resp. A~). Let 
B+ = A+r\B and B~ = A~ n 5 . 

If we put F* to be the disjoint topological sum of Cl y ( F + ) and 
Cl y ( F " ) then 

E[Y] = E[Y*] = A+ \J A-. 

Let Ys
+ (resp. F5~) be the semi-regularization of Cl y (F+) (resp. 

Cl y ( F - ) ) . Then there exists a copy S + of So in Fs+ and a copy S~ in 
Fs~. Both those copies have the topology of the Sorgenfrey circle. More­
over, the spaces Fs+ and Y~ are both regular and we obtain that the 
mapping 

l imy*:£[F]-> Y* 

is a continuous perfect surjection. Now limy*[5+] and limy*[£~] have 
to be compact subsets of the Sorgenfrey line and hence both are count­
able, because the Sorgenfrey line does not contain uncountable compact 
subsets. This is a contradiction since the union of those images has to 
cover So- We obtain that no projective member of^~2+ is infinite. 

The previous part shows that there is no perfect ^-continuous mapping 
h:X —> E[ Y] with limy oh = f for any compact extremally disconnected 
space X. Since all objects and morphisms used here are also in the 
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category^2 we obtain that no projective member of ̂ 2 is infinite, and 
with the previous proposition we also find that the projective members 
of J^2 are finite. 
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