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Abstract. We augment the body of existing results on embedding finite
semigroups of a certain type into 2-generator finite semigroups of the same type.
The approach adopted applies to finite semigroups the idempotents of which form a
band and also to finite orthodox semigroups.
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1. Introduction. In this paper, we will be concerned with the possibility of
embedding a finite semigroup S into a finite 2-generated semigroup T that shares
properties with S. In particular, we show that any finite orthodox semigroup S may
be embedded in a finite orthodox semigroup T generated by two group elements
and that any finite orthodox monoid S1 may be embedded as a semigroup into a
finite 2-generated orthodox monoid T whose subband of idempotents satisfies the
same semigroup identities. Prior to that we prove that if S1 is a finite monoid whose
idempotents E(S1) form a subsemigroup, then S1 may be embedded in a 2-generated
finite monoid T whose idempotents also form a subsemigroup and belong to the same
variety of bands. For background on semigroups, we refer to standard texts such as [4]
or [5].

Any semigroup S may be embedded in the full transformation semigroup T = TS1

(we shall sometimes write S ≤ T to denote that S is a subsemigroup of T). Since
this natural ‘Cayley’ embedding preserves finiteness, it follows at once that any finite
semigroup S embeds in the (regular) 3-generator semigroup Tn, where n = |S1|. We
denote the corresponding semigroups of partial transformations on a set X by PTX

and if |X | = n we write this as PTn.
In 1952, Trevor Evans proved in [2] that any countable semigroup embeds in a

2-generator semigroup although that fact is implicit in the paper [11] of Sierpinski
published (in French) in 1935 where it was shown that any countably infinite collection
of mappings in TX embeds in a 2-generator subsemigroup of TX . The first explicit proof
that a finite semigroup may be embedded in a 2-generated finite semigroup dates from
1960 and is due to B.H. Neumann [10] who employed a wreath product construction.
The short proof of this fact recorded here however is indicative of the approach of the
present paper.

THEOREM 1.1. Any finite semigroup S may be embedded in a finite semigroup T =
〈α, β〉 where α is an idempotent and β is a nilpotent.

Proof. Without loss we assume that S = S1 = {α0, α1, . . . , αn−1} with S ≤ TX for
some finite set X and where we take α0 = ι, the identity mapping, in this instance
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with domain X . Our semigroup T ≤ PTZ where Z = X × {0, 1, 2, . . . , n}. We also put
αn = ι. The designated generators α and β are defined as follows:

(x, i) · α = (x · αi, 0) (0 ≤ i ≤ n),

(x, i) · β = (x, i + 1) (0 ≤ i ≤ n − 1).

In particular βn+1 = 0, the empty mapping and α is idempotent:

(x, i) · α2 = (x · αi, 0) · α = (x · αiα0, 0) = (x · αi, 0) = (x, i) · α.

Hence T is generated by an idempotent α together with a nilpotent β. Now put
λ = βnα ∈ T . Then dom λ = X × {0} and

(x, 0) · λ = (x, 0) · βnα = (x, n) · α = (x · αn, 0) = (x, 0),

so that λ = ι|X×{0}. Put γi = λβ iα (0 ≤ i ≤ n − 1); then dom γi = X × {0} and

(x, 0) · γi = (x, 0) · λβ iα = (x, 0) · β iα = (x, i) · α = (x · αi, 0).

It follows that the mapping where αi �→ γi is a monomorphism of S into T , as
required. �

It is not possible, however, to embed an arbitrary finite semigroup into a finite
semigroup generated by two idempotents as it is easy to prove that any semigroup
(finite or not) generated by two idempotents has at most six idempotents and also does
not contain a three-element chain. A complete description of semigroups generated by
two idempotents has been provided by Benzaken and Mayr [1].

In [7] Margolis showed that a finite semigroup S may be embedded in a 2-generated
semigroup T that is a Rees matrix semigroup M(S) over S with a cyclic group adjoined
as group of units. This allowed the conclusion that if all the subgroups of S were abelian
(nilpotent, solvable, etc.), then you can embed S into a 2-generator semigroup T with
T satisfying the same restriction on subgroups as S. The construction idea was used
in [6] to show that a compact metric semigroup may be embedded in a 2-generator
compact monoid. Moreover, it is implicit in [7] that any (finite) n-generated semigroup
S may be embedded in a (finite) semigroup T generated by n + 1 idempotents, from
which it follows that any finite semigroup S may be embedded in a finite semigroup
generated by three idempotents.

Although not the principle result in their paper, in [8] McAlister, Stephen and
Vernitski obtained a direct embedding of Tn into a 2-generator subsemigroup of Tn+1.
Although they then move on to the question of inverse semigroups (discussed below),
their construction implies the following result.

THEOREM 1.2. Any finite semigroup may be embedded in a 2-generated semigroup
that is finite and regular.

It is enough to prove the result for Tn(n ≥ 3) and in [8] McAlister et al. embed
Tn in a semigroup S = 〈α, β〉 ≤ T = Tn+1. We write the idempotent of defect 1 in
which i �→ j (i 
= j) as

(i
j

)
. Using this notation, the generator β is the (n + 1)-cycle β =

(1 2 · · · n n + 1) while α = (1 2)
( n

n+1

)
, a product of a transposition and an idempotent

of defect 1. That S contains a copy of Tn then follows from a series of easily verified
facts:
� the map ε = α2 = ( n

n+1

)
is an idempotent of defect 1;
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� for any γ ∈ εTε, consider the restriction γ |{1,2,...,n−1,n+1}: this defines an
isomorphism of εTε onto Tn with base set {1, 2, . . . , n − 1, n + 1};

� Tn is generated by the set consisting of the n-cycle (1 2 · · · n − 1 n + 1), the
transposition (1 2) and the idempotent of defect 1,

(n−1
n+1

)
;

� taking inverse images of these three mappings under the isomorphism results in a
set of three generators of εTε, which are respectively κ = (1 2 · · · n − 1 n + 1)

(n
1

)
, α,

and the idempotent of defect 2, φ = ( n
n+1

)(n−1
n+1

)
.

� finally, we note that ε = α2, κ = εβε, and φ = βεβ−1ε, and so Tn ∼= εTε ≤ S.
This concludes the proof in [8] that any finite semigroup may be embedded in

a finite semigroup that is generated by a pair of group elements. (Note there are
two minor corrections: the paper says that (n − 1) · κ = n when it should say that
(n − 1) · κ = n + 1 and β is listed as one of the three generators of εTε when it should
say α.)

Proof of Theorem 1.3. To complete the proof we need only observe that the
semigroup S is indeed regular. First note that

εTε ≤ S ⇒ ε2Tε2 ⊆ εSε ⇒ εTε ⊆ εSε ⊆ εTε,

so that

εTε = εSε = α(αSα)α ⊆ αSα = α3Sα3 ⊆ εSε,

giving equality throughout and in particular that αSα ∼= Tn is a regular subsemigroup
of S.

Now take any γ ∈ S. Either γ ∈ 〈β〉, and so γ is a (regular) group element or,
since α = α3, we may write γ = βtσβs for some σ ∈ αSα and 0 ≤ t, s ≤ n. Taking any
inverse σ ′ ∈ V (σ ) we may now check that β−sσ ′β−t ∈ V (γ ). Therefore, the semigroup
S is indeed regular. �

Equally, the construction in [7] also preserves regularity and so Theorem 1.3 is
also implicit in the Margolis paper. In [3, Theorem 4.1], Hall gives a result of C.J. Ash,
which shows that any countable inverse semigroup may be embedded in an inverse
semigroup with two generators and any finite inverse semigroup may be embedded in
a finite inverse semigroup that is generated as an inverse semigroup by two generators.
(In [8] it is shown that any finite inverse semigroup may be embedded in a finite inverse
semigroup that is generated as a semigroup by two generators.) The construction we
introduce here is inspired by the model of Ash. We have one principal generator that
contains copies of all the mappings in S, the semigroup to be embedded, while the
second generator is a cycle. The domain and range of the principal generator then
consists of many copies of the base interval, which are distributed among the cycle of
intervals in such a way that unwanted products, which might spoil the embedding, are
avoided in the mappings that are to be simulated.

2. Mian-chowla property. The base set of the 2-generator transformation
semigroup T will consist of a cycle of a large number of copies of the underlying
interval on which act the members of the semigroup S, which is to be embedded in
T . However, the action of our principal mapping α that simulates all the members of
S will be confined to a relatively small number of sparsely spaced intervals. This will
ensure that unwanted products do not arise in the construction.
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To this end, let S = {α1, . . . , αn} be a finite semigroup with S defined by partial
transformations on a finite base set X . Since we are interested in embedding S into a
2-generator semigroup T sharing some of the same properties as S, we may assume
that n ≥ 3. Moreover, without loss we may assume that S does not contain the empty
mapping.

In order to make our construction free of unwanted non-zero products, we make
use of the following sequence of numbers, first introduced in [9].

DEFINITION 2.1. The Mian–Chowla (MC) sequence is the sequence of non-negative
integers m0, m1, . . . recursively defined as follows. Set m0 = 0; for i ≥ 1 define mi to be
the least integer exceeding mi−1 such that each difference between distinct integers in
the sequence m0, m1, . . . , mi is unique.

REMARK 2.2. The recursive step of the MC sequence is well-defined as by choosing
a sufficiently large integer we may find some m such that each difference m − mj has not
appeared previously among the differences of pairs taken from the sequence: indeed it
is clear that mi ≤ 2mi−1 + 1 so that mi ≤ 2i − 1. The MC sequence begins:

0, 1, 3, 7, 12, 20, 30, 44, 65, 80, 96, 122, 147, 181, 203, 251, 289, . . .

The recursive rule of definition of the MC sequence is often formulated in the equivalent
form that mi is the least integer such that the list of all pairwise sums, mj + mk for j, k ≤ i,
has no repeats. Note that under this alternative formulation, j = k is not forbidden.

In Section 3, we shall work with this particular sequence in our construction: mi

will denote the member of the MC sequence indexed by i. However, the results will apply
to any strictly increasing sequence of integers with the MC property, meaning that no
number appears as a difference between distinct members more than once. There are
of course any number of such sequences: for example the sequence kn, n = 0, 1, 2, . . .,
for any base k ≥ 2 possesses the MC property. Moreover, the MC property is inherited
by subsequences. In Section 4, we shall also call upon the following specific fact.

LEMMA 2.3. For i, j, k, l ≤ n, if i ≥ j and k ≥ l then (2i + 2j) − (2k + 2l) = 2n + 20

implies that i = n, l = 0 and j = k.

Proof. If i ≤ n − 1 then 2i + 2j ≤ 2 · 2n−1 = 2n and the equation cannot hold.
Hence i = n, giving 2j − (2k + 2l) = 1. Hence j ≥ 2 and since both sides of the equation
are odd, it follows that l = 0, and so j = k. �

REMARK 2.4. Unfortunately, the MC sequence lacks the corresponding property
as for example:

44 + 65 = 109 = 96 + 12 + 1 + 0 ⇔ m7 + m8 = m10 + m4 + m1 + m0

⇔ (m7 + m8) − (m4 + m1) = m10 + m0.

Suppose that M = m0, m1, . . . , mn is a (strictly increasing) MC sequence of non-
negative integers and put m = 1 + mn. For any set A ⊆ M and r ∈ �, let us write
A + r = {(a + r) (mod m), a ∈ A}. Suppose that |A| ≥ 3 and A + r ⊆ M with r 
≡ 0
(mod m). Without loss we may assume that 1 ≤ r ≤ m − 1. By hypothesis, for each
mi ∈ A, (mi + r) (mod m) = mj for some 0 ≤ j ≤ n. It follows that either mj − mi = r
or if (mi + r) (mod m) = mi + r − m, then mj − mi = r − m. Let ma, mb, mc be three
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pairwise distinct members of A. Consider, modulo m, each of ma + r, mb + r and
mc + r. It now follows that for at least two of ma, mb, mc, let us say ma and mb, there
exist mj, mk ∈ M such that mj − ma = mk − mb, contrary to the MC condition. Hence
we conclude:

LEMMA 2.5. Let M = m0, m1, . . . , mn be a finite strictly increasing sequence of non-
negative integers with the MC property and put m = 1 + mn. Suppose that A ⊆ M is
such that (A + r) (mod m) ⊆ M for some r 
≡ 0 (mod m). Then |A| ≤ 2.

3. Embedding in a semigroup generated by a nilpotent and a cycle. In this section,
we construct a general embedding of a finite semigroup S into a 2-generated finite
semigroup T , which preserves the property that the idempotents form a subsemigroup.

We will make use here of the easily proved result that in the presence of the band
identity x = x2, any heterotypical identity φ (one in which a variable appears on one side
only) implies the identity x = xyx. It follows that any band satisfying φ is a rectangular
band.

Let S be a finite semigroup S = {α1, α2, . . . , αn}. We shall take S to be a
subsemigroup of PTX , where X is a finite base set. We may also assume that the
domain of each αi is not empty. In the following construction we could replace the set
of mappings {αi} by any generating set of S but for simplicity of notation we work with
S as the generating set for S.

Let {mi}i≥0 denote the MC sequence and let Z = X × {0, 1, 2, . . . , m2n−1}. Taking
addition modulo m = 1 + m2n−1, we take one generator of our containing 2-generator
semigroup T to be β where:

(x, i) · β = (x, i + 1) (0 ≤ i ≤ m2n−1). (1)

Since β is a cycle, the notation βr is meaningful for all integers r. We next specify the
domain and range of our second generator α: dom α is contained in the union of the n
copies of X , Yi = X × {mi} (n ≤ i ≤ 2n − 1) while the range Zα is a subset of a second
union of another n copies of X : X × {mi} (0 ≤ i ≤ n − 1). We define the action of α on
the interval Yn+j = X × {mn+j} as we shall call it as:

(x, mn+j) · α = (x · αj, mj) (0 ≤ j ≤ n − 1). (2)

DEFINITION 3.1. Let T = 〈α, β〉, with α, β defined as in (1) and (2).

LEMMA 3.2. The generators α and β of T satisfy α2 = 0 and βm = ι, where m =
1 + m2n−1. For each γ ∈ T and 0 ≤ i ≤ n − 1 there exists some 0 ≤ j ≤ n − 1 such that
(X × {i})γ ⊆ X × {j}; moreover if (x, i) · γ, (x′, i′) · γ ∈ X × {j} then i = i′.

Proof. The first two facts follow respectively from (2) for α and from (1) for β.
The claims in the second sentence follow for γ = α, β as each mapping is one-to-one
on second components whence, by induction on the length of the product, the same
follows for an arbitrary product γ of these two generators. �

LEMMA 3.3. Let γ ≤J αβrα. Then, dom γ ⊆ X × {i} for some i such that 0 ≤ i ≤
m − 1.

Proof. First suppose that γ = ρλσ with dom λ ⊆ X × {j} say and that (x, i) ∈
dom ρλ so that (x, i) · ρ ∈ X × {j}. It follows from Lemma 3.2 applied to ρ that
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dom ρλ ⊆ X × {i} and then since dom ρλσ ⊆ dom ρλ, we obtain dom γ ⊆ X × {i}.
Therefore, it is enough to prove the claim for a mapping γ of the form γ = αβrα. Since
dom γ ⊆ dom α, it follows that each member of dom γ has the form (x, mn+j) for some
0 ≤ j ≤ n − 1. We then obtain:

(x, mn+j) · αβrα = (x · αj, mj) · βrα = (x · αj, (mj + r) (mod m)) · α. (3)

Again by definition of α we infer that mj + r ≡ mn+l (mod m) for some 0 ≤ l ≤
n − 1. Now suppose that (x′, mn+j′ ) ∈ dom γ ; by (3) we deduce that mj′ + r ≡ mn+l′ (mod
m) say, so that mn+l′ − mj′ ≡ mn+l − mj ≡ r (mod m). Since 0 ≤ mj, mj′ < mn+l, mn+l′ ≤
m − 1, it follows that these congruences imply the corresponding equalities and that
r 
≡ 0 (mod m). By the MC property however we conclude that j = j′ and l = l′. In
particular, dom γ ⊆ X × {mn+j}, giving the required conclusion. �

LEMMA 3.4. Define the mapping λ0 = (βmnα)2. Then, λ0 = ι|X×{0}.

Proof. From the definition of λ0 we obtain

(x, 0) · λ0 = (x, 0) · (βmnα)2 = (x, mn) · αβmnα = (x · α0, m0) · βmnα

= (x, 0) · βmnα = · · · = (x, 0).

The result now follows from this together with Lemma 3.3. �
LEMMA 3.5. The semigroup T = 〈α, β〉 contains each of the mappings λi,j,k =

λ(αi, j, k) where dom λi,j,k ⊆ X × {j}, ran λi,j,k ⊆ X × {k} and (x, j) · λi,j,k = (x · αi, k)
(0 ≤ i ≤ n − 1, 0 ≤ j, k ≤ m − 1).

Proof. We verify that λ(αi, j, k) = β−jλ0β
mn+iαβk−mi . Consider (x, t) with t 
≡ j (mod

m). Then, (x, t) · β−j = (x, t − j) 
∈ X × {0} so that by Lemma 3.4, (x, t − j) 
∈ dom λ0.
It follows that dom β−jλ0β

mn+iαβk−mi ⊆ X × {j}. Next take (x, j) ∈ X × {j}:
(x, j) · β−jλ0β

mn+iαβk−mi = (x, 0) · λ0β
mn+iαβk−mi = (x, 0) · βmn+iαβk−mi

= (x, mn+i) · αβk−mi = (x · αi, mi) · βk−mi = (x · αi, k).

Therefore, λ(αi, j, k) ∈ T . �
THEOREM 3.6 (Structure of T).

(i) The monoid T has two H-classes and these are also D-classes: Hβ = {βr : 0 ≤
r ≤ m − 1} of cardinal m, which is the group of units of T and Hα = {βrαβs :
0 ≤ r, s ≤ m − 1} of cardinal m2 and Hα <J Hβ . All members γ = βrαβs

of Hα are not regular; dom γ ⊆ {X × (mn+i − r) (mod m) (0 ≤ i ≤ n − 1)}
with dom γ meeting each specified interval and ran γ ⊆ {X × (mi +
s) (mod m) (0 ≤ i ≤ n − 1)} with ran γ similarly meeting each specified
interval.

(ii) T1 = {λ(αi, j, k) : 0 ≤ i ≤ n − 1, 0 ≤ j, k ≤ m − 1} ∪ {0} is isomorphic to the
Rees matrix semigroup M = M0[S, m, m, Im], where Im is the m × m identity
matrix. Moreover, T1 is isomorphic to (S × B)/I, where B is the m × m
combinatorial Brandt semigroup and I is the ideal S × {0} of S × B. For
each j ∈ �m, the set T1,j = {λ(αi, j, j) : 0 ≤ i ≤ n − 1} is a subsemigroup of T
isomorphic to S.

(iii) For any γ ∈ T, with dom γ ∩ (X × {j}) 
= ∅, γ |X×{j} = λi,j,k for some 0 ≤ i ≤
n − 1, 0 ≤ k ≤ m − 1.
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(iv) T = T1 ∪ Hα ∪ Hβ , and the union is a disjoint union. Moreover T1 is an ideal
of T and if S is regular then so is T1.

(v) The set of idempotents E(T) = ⋃m
i=1 Ei ∪ {0, ι}, where Ei = {λ(e, i, i) : e ∈

E(S), 0 ≤ i ≤ m − 1}. Moreover, all products of non-identity idempotents
equal 0 except those within some Ei. In particular if E(S) is a band then
so is E(T).

Proof.

(i) The powers of β are exactly the members of T with range (and domain) Z,
and by Lemma 3.2 〈β〉 is a cyclic group, the group of units of T , whence it
follows that Dβ = Hβ = 〈β〉 and by definition |Hβ | = m.
The set A = {βrαβs : r, s ≥ 0} ⊆ Hα. By Lemma 3.3, any δ ≤J γ , where
γ ∈ T \ (A ∪ Hβ) has domain within some single interval of Z. If γ ∈ Dα

we would have α ≤J γ , whence dom α is contained in a single interval of Z,
which contradicts the definition of α. It follows that Dα ⊆ A ⊆ Hα ⊆ Dα,
giving equality throughout and Hα <J Hβ .
Next take γ = βrαβs so that

dom γ = dom βrαβs = {(x, (j − r) (mod m) : (x, j) ∈ dom α}.

Since dom α ⊆ {(X, mn+i) : (0 ≤ i ≤ n − 1)} and dom α meets each of these
intervals, it follows that dom γ ⊆ {(X, (mn+i − r) (mod m) (0 ≤ i ≤ n − 1)}
as stated and that dom γ meets each of these intervals. Since α maps the
members of its domain in the interval (X, mn+i) into the interval (X, mi), the
claim for ran γ now follows in the same way.
Suppose that γ = βr1αβs1 , δ = βr2αβs2 and that γ = δ. We wish to show
that βr1 = βr2 and βs1 = βs2 . By cancelling powers of β in the equation
of any counter example to this claim we would obtain a counter example
where γ = βrαβs and where δ = α, (0 ≤ r, s ≤ m − 1) so let us assume this
case. However, since |S| ≥ 3 we have by Lemma 2.5 and our statement on
domains that dom γ = dom α implies that r = 0 and similarly we have ran
γ = ran α implies s = 0, as required. We conclude that all products βrαβs

(0 ≤ r, s ≤ m − 1) are pairwise distinct and |Hα| = m2 as claimed.
If any member of Dα were regular, the same would be true of α. However,
by Lemmas 3.2 and 3.3, for any γ ∈ T we have αγα 
∈ Dα, so in particular
α = αγα is impossible in T and hence Dα is not a regular D-class.

(ii) From Lemma 3.5 and the definitions of α and β we have the following
formulae:

λ(αi1 , j1, k)λ(αi2 , k, k2) = λ(αi1αi2 , j1, k2), (4)

λ(αi1 , j1, k1)λ(αi2, j2, k2) = 0 if k1 
= j2, (5)

βλ(αi, j, k) = λ(αi, j − 1, k), λ(αi, j, k)β = λ(αi, j, k + 1), (6)

αλ(αi, mj, k) = λ(αjαi, mn+j, k) (0 ≤ j ≤ n − 1), (7)

αλ(αi, j, k) = 0 if j 
∈ {mt : 0 ≤ t ≤ n − 1}, (8)
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λ(αi, j, mn+k)α = λ(αiαk, j, mk), (9)

λ(αi, j, k)α = 0 if k 
∈ {mn+t : 0 ≤ t ≤ n − 1}. (10)

From (4) and (5) we see that products in T1 are indeed those of the Rees
matrix semigroup M, which is then isomorphic to (S × B)/I . The diagonal
H-classes of M are each copies of our monoid S.

(iii) The claim is clearly true for γ = α, β as

α|X×{mn+i} = λ(αi, mn+i, mi) and β|X×{i} = λ(α0, i, i + 1).

The result now follows by induction on the length of γ (taken as a
product in the generators α and β): let γ = ρμ say, where μ ∈ {α, β}.
Then, (ρμ)|(X×{j}) = ρ|X×{j}μ but by induction we may write this product
as λ(αi, j, k1)μ say. By formulae (6), (9), and (10) this in turn may be written
as λ(αl, j, k)|X×{j} = λ(αl, j, k) for some 0 ≤ l ≤ n − 1 and 0 ≤ k ≤ m − 1, as
required.

(iv) Since the domains of members of T1 are each contained within a single
interval and those of Hα ∪ Hβ are not, we have by this and part (i) that the
three sets are pairwise disjoint. It remains to verify that if γ ∈ T \ (Hα ∪ Hβ)
then γ ∈ T1. However, by Lemma 3.3 we have dom γ ⊆ X × {j} say and so
by part (iii) we have either γ = 0 or γ = γ |X×{j} = λi,j,k for some i, k. In
other words, γ ∈ T1. From equations (6)–(10) it follows that T1 is an ideal
of T . Finally for any non-zero λ = λ(αi, j, k) ∈ T1 we have λ(α′

i, k, j) ∈ T1 is
an inverse of λ in T1 for any choice of α′

i ∈ V (αi).
(v) By (i), ι is the unique idempotent in Hα ∪ Hβ . Hence any other non-zero

idempotent ε belongs to T1 and in particular dom ε ⊆ X × {i} say. Since ε

is a non-zero idempotent, it follows that ∅ 
= Zε ⊆ X × {i}. Hence by (iv)
we obtain ε = λ(e, i, i) for some e ∈ S, and clearly e = e2 so that ε ∈ Ei, as
claimed. The claims regarding products of idempotents now follows. This
completes the proof of the theorem. �

COROLLARY 3.7. Let S be a finite monoid such that E(S) is a subsemigroup of S.
Then, S may be embedded in a finite monoid T such that E(T) is a submonoid of T
and T is generated as a semigroup by a set of two generators {α, β} where β is a group
element and α is nilpotent of index 2. Moreover if |E(S)| ≥ 2, then E(T) satisfies the
same semigroup identities as E(S).

REMARK 3.8. If |E(S)| ≤ 1 then, since S is a monoid and every member of S has
an idempotent power, it follows that S is a finite group. We may then embed S in the
finite symmetric group T = GS, which is two-generated and then E(S) and E(T) are
both trivial and so satisfy every semigroup identity.

Proof. Take T = 〈α, β〉 as in Theorem 3.6. It remains only to verify that if φ : p = q
is a semigroup identity satisfied by E(S) then φ is satisfied by E(T), the converse
implication being clear as E(S) is embedded in E(T). If one side of φ, the word p say,
had a variable y that did not appear in q, then substituting all other variables in φ by ι

gives the identity y = 1, whence it follows that the monoid E(S) is trivial, contrary to
hypothesis. Hence, each variable x of φ appears in both p and q.
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By Theorem 3.6(v), all products of non-identity idempotents within E(T) equal 0
unless they take place within some Ei = {λ(e, i, i) : e ∈ E(S), 0 ≤ i ≤ m − 1}. Hence if,
under some substitution from E(T), one side of φ, p say, is not 0, then all variables of
φ have been substituted by either ι or by members of some subsemigroup Ei of E(T).
By replacing ι with the identity of Ei as required, we express the products p and q as
products of members of Ei while retaining the same values. However, since Ei ∼= E(S),
it follows that p = q is satisfied in Ei as well and so the products p and q in Ei are equal.
It follows that E(T) also satisfies the identity φ. �

REMARK 3.9. In the case of a finite semigroup S that is not a monoid we may work
with S1. If E(S) forms a band then so does E(S1) and the previous construction then
yields a finite 2-generated monoid T containing S1 (and so containing S) such that
E(T) is also a band.

4. Orthodox semigroups. We next use the construction of Section 3 to provide
another proof of Theorem 1.3 and to show that if the original semigroup S is orthodox,
the same is true for the 2-generated containing semigroup T . We will however, now
put mi = 2i, i = 0, 1, 2 . . . , 2n − 1 so our modulus used for our cycle β becomes m =
1 + 22n−1. Let S = {α0, α1, . . . , αn−1} now denote a finite regular monoid with α0 = ι

and S ≤ PTX for some finite base set X as before. We may also assume that the domain
of each mapping αi is not empty.

For each αi ∈ S choose and fix an inverse α′
i ∈ V (αi) (there is no assumption that

the mapping (′) on S is one-to-one). The cycle β is just as before and its action is given
by (1). Similarly, the action (2) remains applicable to our second generator α. However,
we augment the domain of α to include all the intervals X × {mi} (0 ≤ i ≤ n − 1), the
union of which contained the range set of α but previously lay outside of the domain
of α. Define:

(x, mi) · α = (x · α′
i, mn+i) (0 ≤ i ≤ n − 1). (11)

REMARK 4.1. It will be convenient to also denote α′
i by αi+n, in which case the

definition of the action of α is encapsulated by:

(x, mt) · α = (x · αt±n, mt±n) (0 ≤ t ≤ 2n − 1), (12)

where the signs associated with the ± signs in (12) are not independent but are equal
to each other: the sign on the subscripts is + or − according as 0 ≤ t ≤ n − 1 or
n ≤ t ≤ 2n − 1. Although α is no longer a nilpotent (see Lemma 4.3) it is still the case
that any γ ∈ T acts in a one-to-one fashion on the second entries of the pairs (x, i) ∈
dom γ (as shown in the proof of Lemma 3.2) and γ maps intervals into intervals
as this holds for each of the generators α and β. We next prove the counterpart of
Lemma 3.3.

LEMMA 4.2.

(i) The mappings α and β of T satisfy β = βm and α = α3.
(ii) Let γ = βrαεβs for ε ≥ 1. Then,

dom γ ⊆ {X × {(mt − r) (mod m), (0 ≤ t ≤ 2n − 1)} and dom γ has
non-empty intersection with each of these intervals. Similarly, ran γ ⊆
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{X × (mt + s) (mod m) (0 ≤ t ≤ 2n − 1)} with ran γ meeting each of these
intervals.

(iii) Let γ ≤J αβrα where r 
≡ 0 (mod m). Then, dom γ ⊆ X × {i} for some 0 ≤
i ≤ m − 1.

Proof.

(i) That β = βm is true as before. For any (x, mn+i) ∈ dom α we have by (12)
that

(x, mn+i) · α3 = (x · αi, mi) · α2 = (x · αiα
′
i, mn+i) · α

= (x · αiα
′
iαi, mi) = (x · αi, mi) = (x, mn+i) · α,

and in the same way we obtain (x, mi) · α3 = (x, mi) · α, thus showing that
α = α3. Note also that by finiteness it follows that α|ran α is a permutation
and so dom α = dom α2 and ran α = ran α2.

(ii) Let us write (for the purposes of this part only)

Dγ = {i : (X × {i}) ∩ dom γ 
= ∅} and Rγ = {i : (X × {i}) ∩ ran γ 
= ∅}.

Observe that for any ε ≥ 1, Dαε = Rαε = {mt : 0 ≤ t ≤ 2n − 1}. Also note
that for any γ ∈ T we have Dβrγβs = (Dγ − r) (mod m) and Rβrγβs = (Rγ + s)
(mod m). Applying these facts to γ = αε then proves the claims of (ii).

(iii) As in the proof of Lemma 3.3, it is enough to consider the case represented
by γ = αβrα. Since dom γ ⊆ dom α, it follows that each member of dom γ

has the form (x, mt) for some 0 ≤ t ≤ 2n − 1 and so

(x, mt) · αβrα = (x · αt±n, mt±n) · βrα = (x · αt±n, mt±n + r (mod m)) · α

(13)
This implies that mt±n + r ≡ mk (mod m) for some 0 ≤ k ≤ 2n − 1. Now suppose

that (x′, mt′ ) ∈ dom γ ; by (13) we deduce that mt′±n + r ≡ mk′ (mod m) for some
0 ≤ k′ ≤ 2n − 1, which yields:

mt±n − mk ≡ mt′±n − mk′ ≡ −r (mod m), (14)

where the signs taken in the ± symbols occurring in (14) are not necessarily equal to
each other. If the first congruence in (14) is equality then since r 
≡ 0 (mod m), we
have that mt±n 
= mk and mt′±n 
= mk′ and so by the MC property mt±n = mt′±n (and
mk = mk′ ). It follows either that t = t′ or

((t − n = t′ + n) or (t + n = t′ − n)) ⇒ |t − t′| = 2n.

However, since 0 ≤ t, t′ ≤ 2n − 1, the latter is not possible and so t = t′. Otherwise
the congruence in (14) is not equality whence:

(mt±n + mk′ ) − (mt′±n + mk) = ±(1 + m2n−1). (15)

By multiplying throughout by −1 and interchanging t and t′ if necessary, we may
take the + sign in (15). Since r 
≡ 0 (mod m) we have that mt±n 
= mk and mt′±n 
= mk′ .
However, by Lemma 2.3, one term in the first bracket equals m2n−1, one term in the
second bracket equals 1 and the other two terms cancel each other.
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Hence either mt±n = 22n−1, mt′±n = 1 and mk = m′
k, or m′

k = 22n−1, mk = 1 and
mt±n = mt′±n. However, mk = mk′ implies (by (14)) that mt±n = mt′±n and so t = t′ is
the conclusion. Similarly the latter possibility once again gives t = t′. Therefore, dom
γ ⊆ X × {mt}. �

Lemmas 3.4 and 3.5 are valid for our extended construction, the proofs being
unchanged from the originals. Moreover, the description of the mapping λi,j,k of
Theorem 3.6(ii) continues to hold in our monoid T currently under consideration,
as do the formulae (4)–(6). The full set of corresponding formulae for T (additions and
subtractions taken mod m) are as follows:

βλ(αi, j, k) = λ(αi, j − 1, k), λ(αi, j, k)β = λ(αi, j, k + 1), (16)

αλ(αi, mj, k) = λ(αjαi, mj±n, k) (+ if 0 ≤ j ≤ n − 1, − if n ≤ j ≤ 2n − 1), (17)

αλ(αi, j, k) = 0 if j 
∈ {mt : 0 ≤ t ≤ 2n − 1}, (18)

λ(αi, k, mj)α = λ(αiαj±n, k, mj±n) (+ if 0 ≤ j ≤ n − 1, − if n ≤ j ≤ 2n − 1), (19)

λ(αi, j, k)α = 0 if k 
∈ {mt : 0 ≤ t ≤ 2n − 1}, (20)

PROPOSITION 4.3. Let T = 〈α, β〉.
(i) For any γ ∈ T, with dom γ ∩ (X × {j}) 
= ∅, γ |X×{j} = λi,j,k for some 0 ≤ i ≤

n − 1, 0 ≤ k ≤ m − 1;
(ii) T is regular.

Proof.

(i) The claim is clearly true for γ = α, β as

α|X×{mi} = λ(αi±n, mi, mi±n) and β|X×{i} = λ(α0, i, i + 1).

The result now follows as in Theorem 3.6 (iii) by induction on the length of
γ (taken as a product in the generators α and β), together with formulae
(16)–(20).

(ii) Take an arbitrary product p = βr1αβr2α · · ·βrt−1αβrt ∈ T with (1 ≤ t, 0 ≤
ri ≤ m − 1). If p = betar1 then p is a group element and so p is regular.
Since α = α3 it follows that all mappings of the form βrαεβs (ε = 1, 2) are
contained in the regularD-class Dα of T . This deals with the case where t ≤ 2
and the case (t = 3 and r2 = 0). The remaining cases are where t ≥ 3 and p
has one of the two forms p = βr1αβr2αβr3 · · · or p = βr1α2βr2αβr3 · · · with
r2 

= 0 in both instances. It follows from Lemma 4.3(iii) that dom p ⊆ X × {j}
say. Of course if p = 0 then p is regular. Otherwise by (i) p = p|X×{j} = λi,j,k

for some 0 ≤ i ≤ n − 1, 0 ≤ k ≤ m − 1. By Theorem 3.6(ii), p is a member
of a subsemigroup of T isomorphic to (S × B)/I , and in particular p is a
regular member of T . �
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Proposition 4.4 shows that any finite semigroup may be embedded in a finite
regular semigroup T generated by two group elements, thereby providing a new proof
of Theorem 1.3. However, the semigroup T preserves the idempotent structure of S in
that E(T) consists of copies of E(S) together with the conjugates under β of α2.

THEOREM 4.4 (Structure of T).

(i) Hβ is the group of units of T, which is cyclic of order m. Moreover Dα <J Hβ

and Dα = {βrαεβs : ε = 1, 2}.
(ii) The monoid T has an ideal T1 with γ <J α for all γ ∈ T1 where T1 = {λi,j,k} ∪

{0} (0 ≤ i ≤ n − 1, 0 ≤ j, k ≤ m − 1).
(iii) T = Hβ ∪ Dα ∪ T1 with the union a disjoint union.
(iv) The set of idempotents of T is given by E(T) = E ∪ F ∪ {ι, 0}, where

E = {λ(e, i, i) : e ∈ E(S), 0 ≤ i ≤ m − 1} and F = {β jα2β−j : 0 ≤ j ≤ m −
1}. Moreover, each ρ ∈ E(T) maps identically on its second entry, meaning
that (X × {i})ρ ⊆ X × {i}.

(v) The principal factor Dα ∪ {0} of T is of cardinal 1 + 2m2 and is a Brandt
semigroup M0[�2, m, m, Im].

Proof.

(i) As in Section 3, Hβ is the group of units of T of cardinal m. Also γ <J β

for any γ ∈ SαS and so Dα <J Hβ . By Lemma 4.3(i), α = α3 and so A =
{βrαεβs : ε = 1, 2} ⊆ Dα. Conversely, if α ≤J γ with γ ∈ T \ (A ∪ Hβ) then
α ≤J γ ≤J αβrα for some r 
≡ 0 (mod m) and by Lemma 4.3(iii), it would
follow that dom α was contained in a single interval of T , contrary to the
definition of α. Hence A = Dα, thus establishing (i).

(ii) As in the proof of Lemma 3.5, we have that T1 ⊆ T and that T1 is an
ideal of T follows from the formulae (16)–(20). From Lemma 3.5 we have
that γ 
∈ Hβ whence γ ≤J α and that the inequality is strict follows from
Proposition 4.4(i) and the fact that, unlike domγ , dom α is not contained
in a single interval.

(iii) It follows from parts (i) and (ii) that Hβ ∪ Dα ∪ T1 ⊆ T and the union is a
disjoint union. Conversely take any γ ∈ T \ {Hβ ∪ Dα}. By part (i), Lemma
4.3(iii) applies to γ whence by Proposition 4.4(i) it follows that γ ∈ T1, as
required.

(iv) Clearly all the members listed in E(T) are indeed idempotents. For any
λ = λi,j,k ∈ T1 we have λ2 = 0 unless k = j, in which case λ2 = λ if and only
if αi = e ∈ E(S) and so λ = λ(e, j, j) ∈ E. From part (iii) it follows that all
other members p ∈ E(T), other than 0 and ι, lie in Dα and so have the
form p = β jαεβk where (ε ∈ {1, 2}). We next check that if j + k ≡ 0 (mod
m) then p = p2 if and only if ε = 2. The reverse implication just says that
all members of F are idempotents, which has already been noted, so let us
suppose that, contrary to our claim, ε = 1 and we have p = β jαβ−j with
that p = p2. Then β jαβ−j = β jα2β−j, which in turn implies that α = α2,
which is false as X × {mn} is an interval that meets dom α = dom α2 but
(X × {mn})α ⊆ X × {m0}, (X × {mn})α2 ⊆ X × {mn}.
Let us therefore examine the case where j + k 
≡ 0 (mod m) for some 0 ≤
j, k ≤ m − 1. Since p = p2 and the product p2 contains a factor of the form
αβtα with t 
≡ 0 (mod m), it now follows by Lemma 4.3(iii) and the fact that
p = p2 that both dom p and ran p are contained in X × {i} say. However,
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since dom α = dom α2 = X × {mt}0≤t≤2n−1, it follows from Lemma 4.3(ii)
that dom p = dom β jαεβk = X × {mt − j}0≤t≤2n−1 (ε ∈ {1, 2}). In particular,
dom p is not contained within a single set of the form X × {i} and this
contradicts the assumption that p ∈ E(T). Therefore, the set E(T) is as
described. The final assertion is clearly true for idempotents 0 and ι and
those in T1. By above, any idempotent ρ ∈ F satisfies dom ρ ⊆ X × {i}
say and since any idempotent maps identically on its range it follows that
(X × {i})ρ ⊆ X × {i} from which the claim follows.

(v) There are 2m2 expressions of the form βrαεβs : (ε ∈ {1, 2}, 0 ≤ r, s ≤ m −
1) and so the cardinality claim will follow by showing they are pairwise
distinct. If not, we would have an equality of the form αε1 = βrαε2βs =
γ say, for some ε1, ε2 ∈ {1, 2}. By Lemma 4.3(ii), dom γ ⊆ {X × {(mt −
r) (mod m), 0 ≤ t ≤ 2n − 1} and dom γ has non-empty intersection with
each of these intervals. Since |S| ≥ 3 it follows by Lemma 2.5 that r = 0 and
in the same way we infer likewise that s = 0 as well.
Since Dα is a regular D-class, the principal factor P = Dα ∪ {0} is a
completely 0-simple semigroup. By part (i) and Lemma 4.3 parts (ii) and
(iii) we see that for γ = βrαεβs ∈ Dα we have Rγ = {βrαεβt; ε ∈ {1, 2}, 0 ≤
t ≤ m − 1}, Lγ = {βtαεβs, ε ∈ {1, 2}, 0 ≤ t ≤ m − 1} and so Hγ = {βrαεβs :
ε ∈ {1, 2}}. In particular Hα = {α, α2} ∼= �2. By the previous paragraph it
follows that there are m R-classes and m L-classes of Dα, so that P ∼=
M0[�2, m, m, M] is the Rees matrix form of this principal factor for some
m × m matrix M. To complete the proof we only need to know that the
idempotents of P form a semilattice, for then P is a regular 0-simple
semigroup with commuting idempotents, which is necessarily a Brandt
semigroup, whence M can be taken to be the identity matrix. However,
the product of any two distinct idempotents e = β jα2β−j and f = βkα2β−k

is β jα2βk−jα2βk and since k 
≡ j (mod m) it follows from (i) above together
with Lemma 4.3(iii) that ef 
∈ Dα so that in the principal factor Dα ∪ {0}, the
product of any two distinct idempotents is 0 and in particular E(Dα ∪ {0})
is a semilattice, as required. �

THEOREM 4.5.

(a) Any finite orthodox semigroup S may be embedded in a finite orthodox
semigroup T generated by two group elements.

(b) Any finite orthodox monoid S1 may be embedded as a semigroup into a finite
2-generated orthodox monoid T whose subband of idempotents satisfy the
same semigroup identities.

Proof.

(a) From Proposition 4.4, we need only check that, given that S is orthodox,
the idempotents of our containing semigroup T form a band. Consider
E(T) = E ∪ F ∪ {0} as described in Theorem 4.5. Products involving 0 are
0 and the product of any two members of E is also 0 unless they have
identical second and third co-ordinates j say. In this case we have a product
of idempotents in the semigroup T1,j ∼= S by Theorem 3.6(ii): in particular
the product is itself an idempotent as S is orthodox.
Next, let ρ = β jα2β−j and μ = βkα2β−k be two distinct members of F . Since
the product ρμ has the factor αβ−j+kα with k − j 
≡ 0 (mod m), it follows
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from Theorem 4.5 (iii) and (v) that either ρμ = 0 or dom ρμ ⊆ X × {i} say.
Routine calculation then gives that, if defined, (x, i) · ρμ = (x · ef, i) for some
idempotents e, f ∈ E(S). Since ef ∈ E(S) it follows that ρμ = λ(ef, i, i) ∈
E(T). In detail we have, working modulo m with i + j ≡ mt (mod m) say:

(x, i) · ρ = (x, i) · β jα2β−j = (x, mt) · α2β−j = (x · αt±n, mt±n) · αβ−j

= (x · αt±nαt, mt)β−j = (x · αt±nαt, i);

now αt is inverse to αt±n, so this final product can be written as (x · e, i),
where e = αt±nαt ∈ E(S). By the same token, applying this calculation now
to (x · e, i) · μ yields the required expression (x · ef, i) where ef ∈ E(S) as
claimed previously. Hence ρμ = λ(ef, i, i) ∈ E.
Finally let λ = λ(e, i, i) ∈ E and ρ = β jα2β−j ∈ F as above. If λρ 
= 0 then
λρ has the form λρ = (ef, i, i) ∈ E(T) as E(S) is a band. On the other hand
ρλ 
= 0 implies that (x, i) · ρλ = (x · f e, i, i) for some f ∈ E(S) whence ρλ ∈
E(T). In detail the relevant calculations are as follows. If λρ 
= 0 then dom
λρ ⊆ X × {i}, i + j ≡ mt (mod m) say and

(x, i) · λρ = (x · e, i) · β jα2β−j = (x · e, mt) · α2β−j = (x · eαt±n, mt±n) · αβ−j

= (x · eαt±nαt, mt) · β−j = (x · eαt±nαt, i),

and, as before, αt±nαt = f ∈ E(S) and so ef ∈ E(S) as S is orthodox. Hence
(x, i) · λρ = (x · ef, i) and it follows that λρ = λ(ef, i, i) ∈ E.
Now consider ρλ and suppose that ρλ 
= 0. We have by Lemma 3.2 applied to
ρ that dom ρλ ⊆ X × {k} say. However (X × {k})ρ meets dom λ ⊆ X × {i}
and since ρ is idempotent we have that ρ maps the interval X × {i} into
itself and we deduce that k = i. Now we have i + j ≡ mt(mod m) say and we
obtain:

(x, i) · ρλ = (x, i) · β jα2β−jλ = (x, mt) · α2β−jλ = (x · αt±n, mt±n) · αβ−jλ

= (x · αt±nαt, mt)β−jλ = (x · αt±nαt, i) · λ = (x · f e, i),

where f = αt±nαt ∈ E(S) as before and again f e ∈ E(S) as S is orthodox.
Therefore ρλ = λ(f e, i, i) ∈ E, as required to complete the proof.

(b) Following Remark 3.8, only the case where |E(S1)| ≥ 2 is of interest. As
in the proof of Corollary 3.7, we may take a typical semigroup identity
φ : p = q satisfied by S1 to be homotypical, meaning that each variable in
φ appears in both p and q. Since we are considering identities on bands, we
may assume that φ has more than one variable. We need to check is that
E(T) also satisfies φ.
By Lemma 4.3(iii) it follows that any product uv of two distinct members
u, v ∈ F = E(T) ∩ Dα falls out of Dα and lies in T1. It follows, again from
Lemma 4.3(iii), that either uv = 0 (the empty map) or dom(uv), ran(uv) are
contained in some interval Yi say. In the latter case uv = (u|Yi)(v|Yi). Since
the restrictions ui = u|Yi and vi = v|Yi each belong to Ei = {λ(e, i, i) : e ∈
S}, the product uv = uivi is equal to a product of two idempotents in Ei.
Now let us consider the words p(x1, . . . , xt) and q(x1, . . . , xr)(r ≥ 2) of the
identity φ and let us substitute elements of E(T) to obtain products P =
p(t1, . . . , tr) and Q = q(t1, . . . , tr). We need to verify that P = Q. Since each
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product involves at least 2 members of E(T), it follows from the argument of
above that each tj may be replaced by a member of E(T1) without changing
the value of either of the products P and Q, so without loss we may assume
that t1, . . . , tr ∈ E(T1). Hence each tj ∈ Ei for some i that depends on j.
Consider the set of subscripts I = {i : tj ∈ Ei}. If |I| = 1 then both P and
Q are products of idempotents in some Ei ∼= E(S) and so P = Q as E(S)
satisfies φ. On the other hand, if |I| ≥ 2 then P = Q = 0 as each of P and
Q contains a product of the form uv with u ∈ Ei, v ∈ Ej with i 
= j. In either
event, it follows that φ is satisfied by E(T) also, thus completing the proof
of Theorem 4.6(b). �

Specialising to the case where E(S) is a semilattice and noting that E(S) is a
semilattice if and only if the same is true of E(S1) gives the main corollary (Corollary
2.2) of the construction of [8] that the finite symmetric inverse semigroup In embeds in
a 2-generator inverse susbsemigroup of In+2.

COROLLARY 4.6. (McAlister, Stephen and Vernitski) Every finite inverse semigroup
may be embedded in a finite 2-generated semigroup that is an inverse semigroup.
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