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Upscaling the effect of heterogeneities in porous media is crucial for macroscopic flow
predictions, with numerous applications in energy and environmental settings. In this
study, we derive simple semi-analytical expressions for the upscaling of multiphase flow
in a porous medium with a range of vertical heterogeneities. We use this upscaling to give
insight into how the flow transitions between a viscous flow regime, in which macroscopic
pressure gradients dominate over heterogeneity-driven capillary forces, and a capillary
flow regime, in which these capillary forces dominate and set the saturation distribution of
the flow. In particular, by studying the dynamics of flow in an aquifer, we demonstrate that
different regions lie within the viscous and capillary flow regimes whilst other regions lie
in between these regimes. By modifying the classic Buckley–Leverett problem for fluid
displacement we demonstrate where and when the flow transitions between these regimes
and how this affects flooding speeds. Then, we discuss the implications of these results in
the case of carbon dioxide sequestration, making comparisons with field data.
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1. Introduction

The flow of immiscible fluids in heterogeneous porous media has widespread applications
in energy and the environment. Nearly all subsurface rocks have a significantly
heterogeneous structure, often in the form of sedimentary layers, and it is well known
that such heterogeneities play an important role in the resultant flow properties (Corey
& Rathjens 1956; Reynolds & Krevor 2015; Jackson et al. 2018; Nijjer, Hewitt &
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Neufeld 2019). One very topical application is the geological storage, or sequestration,
of carbon dioxide (Bickle 2009; Huppert & Neufeld 2014). This technological method for
removing anthropogenic emissions of CO2, or the burial of bioenergy produced carbon
for so-called negative emission schemes, involves trapping CO2 emissions, either at power
plants or industries, and pumping them several kilometres beneath the earth to be stored
safely and securely in saline aquifers or depleted oil reservoirs (Szulczewski et al. 2012).
The CO2, which is less dense than the ambient brine, rises gradually through the porous
rock, and is trapped as it migrates by a combination of impermeable cap rocks, by
dissolution in the brine or by residual trapping in the surrounding rock pores (Golding et al.
2011; MacMinn, Szulczewski & Juanes 2010, 2011; Krevor et al. 2015). It is important to
understand how the heterogeneities of the rock affect the large-scale flow rates, since these
in turn affect many aspects of CO2 storage, such as residual trapping rates (Hesse, Tchelepi
& Orr 2006), leakage risk and pressure buildup.

Previous work in this direction has focussed primarily on addressing the limiting cases
where the horizontal pressure gradients from fluid injection dominate over small-scale
capillary forces related to heterogeneities (known as the viscous limit) or where these
capillary forces dominate the flow by modifying the saturation distribution (capillary
limit). The former is often modelled with multiphase Darcy flow simulators, and the
latter has been studied analytically by Rabinovich, Li & Durlofsky (2016), or using
invasion percolation models, as is described in the review by Oldenburg, Mukhopadhyay
& Cihan (2016). In this way, previous reservoir studies generally assume either the viscous
limit or capillary limit regime (Pickup 1998), although there are some numerical studies
which capture the transition between these limits (e.g. in the specific case of a square
lattice heterogeneity, as in Virnovsky, Friis & Lohne (2004), or a stochastically generated
heterogeneity, as in Lohne, Virnovsky & Durlofsky (2006)). However, it is an outstanding
problem to understand where within a macroscale flow the viscous or capillary limits
are relevant and, more importantly, how any subsurface flow transitions between these
two limits. In this study we use an expansion in the capillary number to derive simple
semi-analytical expressions for the upscaled flow properties that capture this transition,
providing key insights to understanding the regions of the aquifer which lie within each of
the viscous and capillary limits, and the regions which lie in between these limits. Such a
semi-analytical approach has advantages over large-scale numerical simulations not only
because of these key insights, but also because of the greatly reduced computational cost
which can enable fast or spatially much more extensive simulations. This is particularly
important for predicting the stability of carbon sequestration which occurs over long time
scales and large length scales.

Flow in porous rocks is generally a multi-scale phenomenon, with relevant length scales
varying from the pore size (∼O(1 mm)) up to the aquifer size (∼O(10 km)). Due to
the large computational cost involved in simulating flow in heterogeneous reservoirs, it
is largely desirable to avoid modelling all of these scales. In porous medium flow, it is
common to neglect many of the small-scale details, and instead attempt to describe their
bulk effect on the macroscopic scale, which is often referred to as upscaling. Whilst there
are many studies which focus on upscaling from the pore scale (Krevor et al. 2015), here,
we focus on length scales between the size of the rock heterogeneities (layers) and the size
of the aquifer.

Heterogeneities, of which there are many varieties, refer to spatial variations in rock
features such as pore size, pore geometry, faults and fractures, as well as variations in
rock type itself (e.g. sandstone, clay, . . . ). These heterogeneities often play a strong role
on multiphase fluid flow by means of small-scale capillary forces acting on the phases.
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For example, in two-phase flow, the non-wetting phase tends to be preferentially drawn to
regions of larger pore space. The effect of the heterogeneities also depends on how they
are distributed. The most common type of heterogeneity is sedimentary layering parallel
to the aquifer and flow direction, but the complexities of the processes responsible for
the deposition of sediments and their subsequent geological history frequently impose
much more complex permeability structures. Hence, we focus on the simpler horizontally
layered case. Additionally, in pressure driven flows, heterogeneities result in the unstable
displacement of phases (so long as capillary forces are large enough to overcome the
driving pressure), and fingering (Dawe, Wheat & Bidner 1992; Dawe, Caruana & Grattoni
2011). Hence, an analogy can be drawn between the capillary-driven mixing of immiscible
fluids, and the classic diffusion/dispersion-driven mixing of miscible fluids (Tchelepi et al.
1993; Nijjer et al. 2019). However, for this study we focus on the case of immiscible fluid
flow in a layered porous medium.

The role of heterogeneities is often characterised by the non-dimensional capillary
number, which is given as the ratio between typical horizontal pressure gradients �p/L
(over length scale L), and typical vertical gradients in the pore entry pressure�pe/H (over
length scale H), giving

Nc = �p
�pe

H
L
. (1.1)

At small Nc, the background flow is sufficiently weak that the flow of fluid phases is
largely dominated by the heterogeneity-driven capillary forces, whereas at large Nc, the
background flow dominates, such that capillary forces due to heterogeneities can be largely
ignored. Hence, the limit Nc → 0 is known as the capillary limit and Nc → ∞ is known
as the viscous limit. To model the flow in any case which is far away from the viscous
limit, one needs detailed knowledge of the structure of the heterogeneities to describe the
flow, which presents a significant challenge.

Recently, there has been renewed emphasis on attempting to upscale the effect of
heterogeneities in porous media (Reynolds & Krevor 2015; Boon, Bijeljic & Krevor 2017;
Jackson et al. 2018; Jackson & Krevor 2020). One of the key difficulties lies in the sheer
number of measurements, either experimental or numerical, needed to characterise the
effect of rock layers across a broad range of flow conditions. For example, in the case of
immiscible flow of wetting and non-wetting phases, the effect of the heterogeneities not
only depends on the capillary number, as described above, but also on the fractional flow of
each phase (Woods 2015). Furthermore, since each type of rock heterogeneity is different,
it is difficult to transpose results without performing experiments and simulations for each
specific case.

One successful approach involves using X-ray computerised tomography (CT) scans of
flow in layered rocks, in conjunction with detailed numerical simulations. The recent study
by Jackson et al. (2018) presents a systematic approach to estimate the global effect of rock
layers on the flow. A set of CT scan experiments is first performed in the viscous limit at
high capillary number to determine the intrinsic properties of the flow, such as the relative
permeabilities and capillary pressure (which are both typically functions of the saturation).
Then, a similar set of experiments is performed at low capillary number to characterise
the heterogeneity of the rock by means of fitting a set of capillary pressure scaling factors
(one for every scanned voxel) to match numerical simulations to the CT scans. Having
performed this two-stage analysis, Jackson et al. then use the fitted numerical model
to describe the flow at intermediate capillary numbers, thereby enabling a systematic
upscaling of the heterogeneities. In this way, relationships for the equivalent properties
of the flow are derived, such as equivalent relative permeability, which are particularly
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useful when employed in conjunction with flow simulators to make predictions in the field.
However, without being able to perform CT scans of flow in the rock samples, such
analysis is impossible. Furthermore, there exists no general upscaled theory for the flow
regime in between the viscous and capillary limits.

The objectives of the current study are to develop a simple theoretical tool that can
be used to upscale the effect of heterogeneities in arbitrary flow conditions, where the
heterogeneity can be given as a model input. The ultimate goal is to be able to study a vast
range of scenarios to provide ensemble forecasts for the migration of immiscible fluids
in porous media. Hence, this tool needs to be computationally inexpensive, and needs to
be able to predict where and when heterogeneities affect the flow in the aquifer via the
transition between viscous and capillary limiting regimes. Such a tool can be used not
only to pinpoint optimal sites and predict trapping efficiencies for CO2 sequestration, for
example, but also for inverse modelling of flow properties given field measurements.

In the present study, we restrict our attention to a layered porous medium, with
heterogeneity varying in the vertical direction and flow driven in the horizontal direction
only. Furthermore, we focus on drainage flows, where a non-wetting phase drives out a
wetting phase, although the analysis can easily be extended to imbibition flows. Using
a combination of asymptotic analysis and numerical simulations of steady-state flow
conditions, similar to Ekrann & Aasen (2000), we derive semi-analytical relationships
for the equivalent relative permeabilities that are valid across all capillary numbers and
saturations. We then use the upscaled properties to describe the dynamic flooding of an
aquifer with small-scale heterogeneities. The latter is an extension of the classic model
of Buckley & Leverett (1942), where a one-dimensional system is used to model the
displacement of immiscible fluids in a long, thin porous medium.

Whilst there are numerous papers on the Buckley–Leverett problem and its variants
(McWhorter & Sunada 1990; Schmid & Geiger 2012; Deng & King 2015; Zheng &
Neufeld 2019), there are none which address the transition between the viscous and
capillary limits in the case of a heterogeneous medium. In the present study, we use our
simplified semi-analytical expressions to address the dynamics of this transition, showing
that regions of the aquifer near the injection point (or at early times) lie within the viscous
limit, whereas regions far away from the injection point (or at late times) lie within the
capillary limit. Finally, we use this approach to quantify the effect of heterogeneities on
the injection of CO2, making comparisons with field data from the Salt Creek case study
(Bickle et al. 2017).

Section 2 describes the heterogeneous system we consider, and derives relationships for
the upscaled flow properties in the viscous and capillary limits. In the case of intermediate
capillary numbers, numerical simulations are used to characterise the viscous–capillary
transition and semi-analytical composite expressions for the upscaled properties are
proposed. Then, § 3 uses the upscaled flow properties to study flooding dynamics via
the Buckley–Leverett problem, extended to heterogeneous media. In § 4 we compare our
upscaling predictions with the experimental measurements of other authors, and finally we
close by summarising the results.

2. Upscaling heterogeneities

The general approach taken here is as follows: we start by summarising the governing
equations and boundary conditions for two-phase flow in a layered porous medium; next,
we define upscaled quantities, such as the equivalent relative permeabilities; then we
derive expressions for these upscaled quantities in each of the two limiting viscous and
capillary cases, using some simple examples for illustration; finally, we use numerical
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Uw , Un
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k(z)
pe(z)

�p

Figure 1. Schematic diagram of a long, thin two-dimensional aquifer with steady, pressure-driven flow of
wetting and non-wetting phases. Vertical heterogeneity is given by variation in the pore entry pressure pe(z)
and permeability k(z), which here is illustrated in the case of a two-layered system.

simulations to calculate the upscaled quantities for intermediate capillary numbers,
showing how to incorporate all regimes using simple semi-analytical parameterisations.

2.1. Immiscible two-phase flow in porous media
We consider the flow of a non-wetting phase driving out a wetting phase (e.g. carbon
dioxide driving out water) in a two-dimensional aquifer of length L, height H, and whose
intrinsic properties (e.g. porosity φ, permeability k, pore entry pressure pe) vary in the
vertical direction z (see figure 1). We model the flow behaviour at the continuum scale
(but below the scale of the heterogeneities) using conservation of mass and the multiphase
extension to Darcy’s law under gravity (Bear 2013). Hence, the governing equations for
the flow are

φ(z)
∂Si

∂t
+ ∇ · ui = 0, i = n,w, (2.1)

ui = −k(z)kri(Si)

μi
∇ (pi − ρigz) , i = n,w, (2.2)

where subscripts n and w indicate non-wetting and wetting phases, and we require the
fluids to fill the pore spaces, such that Sn + Sw = 1. The parameters μi and ρi are the
viscosities and densities of either phase, g is the gravitational acceleration constant, kri(Si)
are the relative permeabilities and pi are the pressures of each phase, which differ by an
amount

pn − pw = pc(Si), (2.3)

where pc is the capillary pressure associated with the micro-scale capillary forces between
phases. Although kri and pc depend on many factors in general, they are often assumed
to be functions of the saturation alone (Golding et al. 2011). A simple, commonly used
empirical relationship for the capillary pressure is that proposed by Brooks & Corey
(1964),

pc = pe(z)(1 − s)−1/λ, (2.4)

where pe(z) is the pore entry pressure, λ � 1 represents the pore size distribution and

s = Sn

1 − Swi
, (2.5)

is the rescaled saturation, such that s ∈ [0, 1]. The irreducible wetting phase saturation Swi
represents the amount of wetting phase that cannot be removed, and is therefore always
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trapped in the pores by capillary forces. The pore entry pressure pe describes the minimum
pressure required to allow any non-wetting phase into the pore spaces. For pn − pw =
pe, only the largest pore spaces are filled with non-wetting phase, and for pn − pw > pe,
smaller and smaller pore sizes are invaded. Clearly, the pore entry pressure depends on
the porosity and geometry of the pores, as does the permeability, and we assume these
vary in the vertical direction. Therefore, in this study, heterogeneities are defined solely by
φ(z), pe(z) and k(z). It is often assumed that pe(z) and k(z) depend on the porosity under
some power law that reflects the geometry of the pore spaces (Leverett 1941). Hence, we
have pe ∝ φ−a, k ∝ φb, for parameters a, b. We therefore take the pore entry pressure and
permeability to be related according to

pe = pe0

(
k
k0

)−B

, (2.6)

where pe0 and k0 are typical dimensional scalings, and B = a/b > 0 is a positive constant,
since larger pore spaces should correspond to lower pore entry pressure. It has long been
argued that such power law relationships do not apply generally (Cloud 1941), but specific
power laws are often used for particular rock types (e.g. see Nelson 1994). For example,
using b = 2 and the scaling proposed by Leverett (1941), where pe ∼ (φ/k)1/2, gives a
value of B = 1/4.

There are a vast number of different empirical relationships for the relative
permeabilities kri which have been proposed by various authors (Krevor et al. 2012),
and the appropriate choice depends on the specific rock type and fluid phases. The
relative permeabilities are monotonic functions of their respective phase saturations, and
lie between 0 and 1. In the limiting case where the flow becomes single phase, the relative
permeability of that phase should be 1 (and 0 for the other phase). But as we have
already discussed, there may be an irreducible wetting phase saturation, and hence we have
krn(s = 1) = krn0, for some 0 � krn0 � 1. In this paper, we propose a general framework
which is not limited by a specific choice of empirical relationship. However, we make
comparisons with several commonly used laws, including those proposed by Corey (1954)
and Chierici (1984), which we give explicitly in appendix A.

Finally, to complete the model, we require a set of boundary conditions. There are many
possible choices of boundary conditions for such flows, as discussed by Krause (2012). We
note that after some simple rearranging, it is possible to convert (2.1)–(2.3) to equations for
the pressure and saturation of one of the phases only. Therefore, without loss of generality,
we formulate our model focussing on the non-wetting phase, and we consider a pressure
driven flow, with boundary condition

pn|x=0 − pn|x=L = �p, (2.7)

for non-wetting pressure drop �p � 0. We assume the flow at the inlet is well mixed, and
hence we fix the saturation to a constant value

s|x=0 = si. (2.8)

In addition, we assume that the aquifer is sufficiently long that saturation gradients are
negligible at the outlet,

∂s
∂x

∣∣∣∣
x=L

= 0. (2.9)
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Finally, we impose impermeability conditions at the top and bottom boundaries, such that

∂pn

∂z

∣∣∣∣
z=0,H

= 0, (2.10)

(
dpe

dz
+ pe

λ(1 − s)
∂s
∂z

)∣∣∣∣
z=0,H

= 0. (2.11)

Note that (2.7) determines the flow rate of non-wetting phase at the inlet. Similarly, (2.8)
and (2.9) determine the flow rate of the wetting phase (or equivalently the pressure drop
of the wetting phase). Hence, it is often useful to replace (2.7)–(2.9) by flow conditions

ui|x=0 = Ui, i = n,w, (2.12)

where the inflow parameters Un,Uw are related to si and �p by the multiphase flow
model. To summarise, the model consists of the governing equations (2.1)–(2.3), as
well as boundary conditions (2.7)–(2.11), and some initial conditions for pn and s. The
heterogeneity is characterised by φ(z), k(z), and pe(z), which are related by (2.6).

2.2. Upscaling
As discussed by numerous authors (Krause & Benson 2015; Reynolds & Krevor 2015;
Rabinovich et al. 2016), heterogeneities have the capability of changing the overall flow
properties of porous media. In particular, in the presence of heterogeneities the empirical
relative permeability relationships discussed earlier tend to become wholly inaccurate as
we deviate away from the classic homogeneous or viscous limiting case. Typically, parallel
layering (as studied here) tends to segregate phases in such a way as to increase the overall
flow of non-wetting phase, and decrease the flow of wetting phase (Krause & Benson
2015). For this reason, and as a method of reducing the requirement to resolve individual
heterogeneities, it is useful to define so-called equivalent properties instead which give a
description of the flow that upscales the effects of these heterogeneities.

For the purpose of upscaling, we restrict our attention to the steady-state case. Therefore,
similarly to Jackson et al. (2018), we define the equivalent relative permeabilities as

krieq = 〈ui〉μiL
k0 〈�pi〉 , i = n,w, (2.13)

where the pressure changes �pi refer to the difference between inlet and outlet for each
respective phase, and the operator 〈·〉 refers to a type of spatial averaging, which we leave
in general terms for now but discuss later in §§ 2.4, 2.5 and 2.7. Similarly, we define the
equivalent capillary pressure as

pceq =
〈

pc

pe

〉
, (2.14)

which is a dimensionless quantity. As discussed earlier, the effect of heterogeneities is
often characterised by the so-called capillary number Nc (1.1), which is given as the
ratio between typical horizontal pressure gradients, and typical vertical gradients in the
pore entry pressure. For the horizontal pressure change in (1.1), we choose the constant
non-wetting pressure difference (2.7), although we could equally choose the wetting
pressure, or some kind of combination. As we will discuss later, this choice is satisfactory
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for our purposes. For the characteristic vertical pore entry pressure change�pe, we choose
the maximum difference

�pe = max
z∈[0,H]

pe(z)− min
z∈[0,H]

pe(z). (2.15)

The equivalent properties (2.13)–(2.14), which are the main focus of this paper, depend on
the following different quantities:

(i) The underlying heterogeneity of the rock, characterised by pe(z) and k(z) via (2.6).
(ii) The flow-driving pressure drop across the aquifer �p.

(iii) The aspect ratio of the domain δ.
(iv) The inlet conditions of the saturation si.

Note, the capillary number Nc contains all of (i)–(iii), but has no notion of (iv).
Furthermore, it does not describe the spatial variation of the heterogeneity, only the typical
variation scale �pe. In addition, the definition of Nc depends on the choice of length
scales H and L, which are not necessarily well defined in real applications. Therefore, even
though Nc is not sufficient on its own to characterise the complete flow picture, we use it
primarily as a metric for describing the type of flow regime (horizontal pressure-driven
flow versus vertical capillary-driven flow), a task for which it is well suited.

2.3. Non-dimensionalisation and asymptotic analysis
Before we address each of the viscous and capillary limits it is useful to convert to
dimensionless variables. Let us attribute the following scalings to each variable

x = Lx̂, z = Hẑ, (ui,wi) = k0�p
μnL

(ûi, δŵi),

pe = pe0 +�pep̂e, pi = �p p̂i,

⎫⎬
⎭ (2.16)

where δ = H/L is the aspect ratio, which we assume to be small, and wi is the vertical
velocity component of each phase. Written in terms of these new non-dimensional
variables, the governing equations (2.1)–(2.3) (in the steady state) become

∇̂ · ûn = 0, (2.17)

∇̂ · ûw = 0, (2.18)

ûn = −k̂(ẑ)krn(s)
∂ p̂n

∂ x̂
, (2.19)

δ2ŵn = −k̂(ẑ)krn(s)
(
∂ p̂n

∂ ẑ
− ψn

)
, (2.20)

Mûw = −k̂(ẑ)krw(s)
∂ p̂w

∂ x̂
, (2.21)

Mδ2ŵw = −k̂(ẑ)krw(s)
(
∂ p̂w

∂ ẑ
− ψw

)
, (2.22)

p̂n − p̂w = 1

σPÑc
(1 + σPp̂e(ẑ))(1 − s)−1/λ, (2.23)

where we have introduced the non-dimensional variables M = μw/μn (mobility
ratio), σP = �pe/pe0 , ψi = ρigH/�p, and Ñc = �p/�pe = Nc/δ is the reduced
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capillary number. For this study, we restrict our attention to thin aquifers ψi 	 1, in
which gravity can be neglected, similarly to the core flooding experiments of Jackson
et al. (2018). The boundary conditions (2.7)–(2.11) become

p̂n|x̂=0 − p̂n|x̂=1 = 1, (2.24)

s|x̂=0 = si, (2.25)

∂s
∂ x̂

∣∣∣∣
x̂=1

= 0, (2.26)

∂ p̂n

∂ ẑ

∣∣∣∣
ẑ=0,1

= 0, (2.27)

(
σP

dp̂e

dẑ
+ (1 + σPp̂e)

λ(1 − s)
∂s
∂ ẑ

)∣∣∣∣
ẑ=0,1

= 0. (2.28)

Likewise, the inflow of each phase is given by

ûn|x̂=0 = U, (2.29)

ûw|x̂=0 = f0U, (2.30)

where we have introduced the two non-dimensional flow parameters

U = UnμnL
k0�p

, (2.31)

f0 = Uw

Un
, (2.32)

which represent the flow of non-wetting phase and the flow fraction, respectively. Finally,
the power law describing the scaling between permeability and pore entry pressure, (2.6),
becomes

1 + σPp̂e = k̂−B. (2.33)

We choose the dimensional scaling k0 as the vertical average of the permeability, such that
k̂ averages to unity but note that 1 + σPp̂e may not.

2.4. Capillary limit
To find solutions in the capillary limit, we consider an asymptotic expansion in the scaled
capillary number Ñc 	 1. We assume that the statistical properties of the heterogeneity are
fixed, such that σP remains O(1) (i.e. we consider a weak overarching pressure gradient
that is independent of the rock properties). In addition, we restrict our attention to the case
where the aspect ratio is much smaller than the flow perturbation, such that δ 	 Ñc 	 1.

From the capillary pressure equation (2.23), it is clear that both wetting and non-wetting
pressure should scale like p̂i ∼ 1/Ñc. Therefore, the variables s, p̂n and p̂w are expanded
in Ñc as

s = s0 + Ñcs1 + . . . , (2.34)

p̂n = Ñ−1
c p̂n−1 + p̂n0 + . . . , (2.35)

p̂w = Ñ−1
c p̂w−1 + p̂w0 + . . . . (2.36)

Hence, (2.19)–(2.22) indicate that the pressures in both phases must be constant to
leading order, such that p̂n−1 − p̂w−1 = γ , for some value of γ . This is consistent with

911 A59-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
34

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1134


G.P. Benham, M.J. Bickle and J.A. Neufeld

the definition of capillary limit given by other authors (Ekrann & Aasen 2000; Rabinovich
et al. 2016). From (2.23) we therefore derive a leading-order expression for the saturation

s0 = 1 −
(

P̂e(ẑ)
γ σP

)λ
, (2.37)

where we write P̂e = 1 + σPp̂e for convenience. Given the form of (2.13) and (2.14), we
would like to express (2.37) in terms of the averaged saturation. Since, to leading order,
the capillary limit solution only depends on ẑ, we select our averaging operator here as the
vertical average 〈·〉 = ∫ 1

0 · dẑ, which we henceforth represent with an overline. In this way,
(2.37) becomes

s0 = 1 − P̂e(ẑ)λ

P̂λe
(1 − s̄). (2.38)

Note that the solution (2.38) also satisfies the outlet condition (2.26) and the
impermeability condition (2.28). The inlet condition (2.25) is not satisfied, which will
lead to a boundary layer over which the saturation transitions to the outlet state, as we
discuss later.

To calculate the equivalent relative permeabilities (2.13), we first need the averaged
Darcy velocities, which only appear at first order. These are obtained by vertically
integrating (2.19), (2.21) and using (2.29), (2.30), to give

U = −dp̂n0

dx̂
k̂(ẑ)krn(s0(ẑ)), (2.39)

f0MU = −dp̂w0

dx̂
k̂(ẑ)krw(s0(ẑ)). (2.40)

By integrating (2.39) and (2.40) along the channel length, we arrive at expressions for
the total changes in pressure along the channel, which we then insert into (2.13) to finally
arrive at the capillary limit for the equivalent relative permeabilities

krncap = U

U/k̂krn(s0)
= k̂krn(s̄), (2.41)

krwcap = f0MU

f0MU/k̂krw(s0)
= k̂krw(s̄). (2.42)

The expressions (2.41) and (2.42) are a generalisation of the arithmetic mean expressions
derived by Rabinovich et al. (2016) in the case where the heterogeneity consists of a set of
horizontal layers. The equivalent capillary pressure is found by inserting (2.38) into (2.14),
giving

pccap = P̂−1
e P̂λe

1/λ
(1 − s̄)−1/λ. (2.43)

It should be noted that the capillary limit solution (2.38) may lead to negative saturation
values for

s̄ < 1 − P̂λe

/
max

ẑ∈[0,1]
P̂e(ẑ)λ , (2.44)

which is clearly unphysical. In such situations, the saturation profile is instead given by

s0 = max{1 − (P̂e(ẑ)/γ σP)
λ, 0}, (2.45)
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Upscaling multiphase viscous-to-capillary transitions

and consequently there are regions of space devoid of non-wetting phase, a phenomenon
associated with very strong heterogeneities. In this case, it is less straightforward to relate
the capillary pressure constant γ to the mean saturation analytically. However, a nonlinear
relationship can be established numerically instead. Note that we could go to higher order
in the asymptotic expansions to capture near capillary limit behaviour. However, for the
purposes of understanding the leading-order impact of capillary heterogeneity on the flow,
we find leading-order solutions sufficient.

2.5. Viscous limit
In contrast to the capillary limit, the viscous limit relates to the regime where the
flow-driving pressure gradient is much larger than the capillary forces, such that the
heterogeneities in capillary pressure do not affect the flow. Therefore, to address this limit
we consider a small capillary correction �pe/�p = Ñ−1

c 	 1. Note that the pore entry
pressure is related to the scaled capillary number via the parameter σP = CÑ−1

c , where
C = �p/pe0 . For this analysis, we assume that the overarching pressure gradient is fixed,
such that C remains O(1) (i.e. we consider a weak heterogeneity �pe independently of
the pressure gradient). Furthermore, we assume that the aspect ratio is much smaller than
the heterogeneity perturbation, such that δ 	 Ñ−1

c 	 1. Given the power law relationship
(2.33), we also have

k̂ = 1 − BCp̂e(ẑ)Ñ−1
c + . . . . (2.46)

Similarly to the capillary limit, here we seek an asymptotic solution, except now this is
given in terms of powers of Ñ−1

c , such that

s = s0 + Ñ−1
c s1 + . . . , (2.47)

p̂n = p̂n0 + Ñ−1
c p̂n1 + . . . , (2.48)

p̂w = p̂w0 + Ñ−1
c p̂w1 + . . . . (2.49)

In this way, (2.19) and (2.21) indicate that there are no leading-order vertical pressure
gradients ∂ p̂n0/∂ ẑ = ∂ p̂w0/∂ ẑ = 0. Furthermore, (2.23) indicates that, to leading order,

p̂n0 − p̂w0 = C−1(1 − s0)
−1/λ, (2.50)

which implies that s0 must also be independent of ẑ. This also ensures that the
impermeability condition (2.28) is satisfied at leading order.

The Darcy velocities are obtained by vertically integrating the system (2.17)–(2.23) and
using (2.29), (2.30), to give

U = −dp̂n0

dx̂
krn(s0(x̂)), (2.51)

f0MU = −
[

dp̂n0

dx̂
− (Cλ)−1(1 − s0)

−1/λ−1 ds0

dx̂

]
krw(s0(x̂)). (2.52)

Due to (2.52), the zero gradient boundary condition (2.26) can only be satisfied if s0 is
constant. This is equivalent to the condition

f0Mkrn(s0) = krw(s0), (2.53)

which enforces a relationship between the flow fraction f0 and the saturation s0. Therefore,
since the viscous limit solution is constant to leading order, the averaging operator in
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(2.13) and (2.14) is trivial. With this taken into account, the viscous limit expressions for
the equivalent relative permeabilities are

krnvisc = U
U/krn(s0)

= krn(s̄), (2.54)

krwvisc = f0MU
f0MU/krw(s0)

= krw(s̄). (2.55)

Furthermore, the equivalent capillary pressure is given by

pcvisc = (1 − s̄)−1/λ. (2.56)

The viscous limit expressions (2.54)–(2.56) are identical to the original expressions for
relative permeability and capillary pressure, which is expected in the limit of vanishing
heterogeneity. Note that this analysis can be extended to higher-order terms to approximate
the case of a large but finite capillary number. However, we find a leading-order analysis
satisfactory for our purposes.

2.6. Types of heterogeneity
Whilst the above analysis applies for any given vertical heterogeneity and empirical
relative permeability relationships krn, krw, we shall now discuss how our predictions
manifest in an example scenario. We choose a simple background heterogeneity which
consists of a sinusoidal perturbation on a uniform permeability profile

k̂ = 1 + A sin 2nπẑ, (2.57)

for some amplitude A and wavenumber n ∈ N. Meanwhile, the pore entry pressure is given
by (2.33), in terms of some power B. For the intrinsic relative permeabilities kri, we use
the classic empirical power law of Corey (1954), which is given by (A1) and (A2), with
a quadratic power law. A full list of parameter values is found in appendix A. Although
in reality more complex permeability profiles may be present than a sinusoidal variation,
we use (2.57) because, as a canonical function, it illustrates the fundamental effects of
amplitude and wavelength on the flow properties. Furthermore, any sufficiently smooth
and continuous permeability profile can always be decomposed into a Fourier series of
such modes. Nevertheless, we have also investigated other permeability profiles, such as a
layered profile which we illustrate in figure 12 in appendix B.

In figure 2 we plot the viscous limit (which is independent of heterogeneity) and the
capillary limit for different values of A and B (for a fixed value of n = 1). The plots
confirm that heterogeneity has the overall effect of lowering the flow of the wetting
phase, and raising the flow of non-wetting phase. This can be explained by (2.38), which
indicates that s is larger in places where the pore entry pressure is smaller, and hence in
regions of larger pore space. Hence, capillary pressure forces the non-wetting saturation
to preferentially segregate to regions of larger space, where it is easier to flow. Increasing
the amplitude A accentuates this effect, since this corresponds to stronger heterogeneity. It
is also accentuated by increasing the power law B, since this increases the strength of the
pore entry pressure heterogeneity.

Note in some cases it is possible to derive analytical formulae for the equivalent
relative permeabilities in the capillary limit. For example, in the simple case where B = 1,
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Figure 2. Viscous and capillary limits of equivalent relative permeability (2.13) (note the non-wetting relative
permeability is normalised by krn0 = 0.116) for a sinusoidal heterogeneity (2.57) and a power law relationship
for the pore entry pressure (2.33). The capillary limit is shown for different values of the heterogeneity
amplitude A (fixing B = 1/2) (a) and power law B (fixing A = 0.8) (b). Experimental data taken from Bennion
& Bachu (2005) in the viscous limit. (c,d) Grey scale maps of the percentage difference between viscous and
capillary limit predictions for a heterogeneity with two wavenumbers n1, n2 (2.60).

the resulting expressions are

krncap = 1 +
√

1 − A2
(

s̄2 − 1
)
, (2.58)

krwcap =
√

1 − A2 (1 − s̄)2 . (2.59)

The expressions (2.58) and (2.59) are valid for amplitudes A < 1, although only for values
of s̄ large enough so that (2.38) does not have s = 0 anywhere (or according to (2.44), for
s̄ > 1 − √

(1 − A)/(1 + A)). In situations where there are regions of zero saturation, an
analytical formula is still possible, though the expressions are more complicated so we do
not display them here.

In contrast to A and B, varying the wavenumber of the perturbation n ∈ N does not have
a significant effect on krncap, krwcap . However, more interesting effects are observed when
two different wavelengths are introduced, such that the permeability

k̂ = 1 + AF
2
(sin 2n1πẑ + sin 2n2πẑ), (2.60)

where the factor F is chosen such that the difference between the maximum and minimum
perturbation (and hence the capillary number) is kept the same. In figure 2(c,d) we display
grey scale plots of the percentage difference in equivalent relative permeability between
the viscous and capillary limits, for different values of n1 and n2. Since the plots are
symmetric about n1 ↔ n2, we only display half of the phase space. Clearly, the maximum
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difference occurs when n2 = n1 (at constant values of 55 % and 31 %), but there are
also streaks near n2 = n1/3, n2 = n1/2, n2 = n1/4, and so on (in descending order of
magnitude).

Whilst these heterogeneities are idealised, this simple investigation serves as an
illustration for the different types of permeability and pore entry pressure one might
encounter in the field. In particular, we have indicated how upscaled quantities depend
on model parameters in the two limiting viscous and capillary limits, which will be useful
throughout the paper. Next, we move on to model situations which are not in either of these
two limits, but instead lie somewhere in between.

2.7. Intermediate capillary number
In the case of intermediate capillary number, there are two possible approaches: either
we can perform numerical simulations of steady Darcy flow (2.17)–(2.23) with boundary
conditions (2.24)–(2.28) and then calculate the equivalent properties (2.13); or we can
go to higher-order terms in the asymptotic expansion of each of the viscous limit or the
capillary limit. We prefer to use the numerical approach here, similarly to Virnovsky et al.
(2004), since it gives a complete description that is valid across all capillary numbers, and
this is more convenient than patching together asymptotic solutions from different regimes.
However, in contrast to Virnovsky et al., we use our numerical simulations together with
our previous analytical results to form composite expressions for the equivalent properties
which can be readily applied elsewhere.

Although the previous analysis related to the scaled capillary number Ñc, here, we keep
everything in terms of the original capillary number, Nc, since this is more common in the
literature, and therefore makes our results more accessible.

We have calculated numerical solutions for capillary numbers Nc between 1 and 104 and
a heterogeneity (2.57) with amplitude A = 0.6 and power law B = 1/2. In addition, we set
the aspect ratio as δ = 0.1. The numerical solutions are calculated using a fourth-order
central difference scheme in space (with 80 × 20 grid points in the (x, z) directions)
and a pseudo-time-stepping method that converges iteratively. We use the method of
continuation to advance quickly through several orders of magnitude of the capillary
number.

In figure 3(a) we display colour plots of both the wetting and non-wetting saturations,
overlaid with streamlines given by the Darcy velocities ûi for three different values of
the capillary number. For small capillary numbers, the flow segregates into two separate
streams, where all the non-wetting phase moves to the more permeable regions, and vice
versa. There is a small region of strong transverse flow of wetting phase near the inlet
due to sharp saturation gradients. For larger capillary numbers, the saturation profile is
more uniform throughout. The segregation of phases is less pronounced, and there is little
transverse flow near the inlet.

There is a kind of horizontal boundary layer in saturation distribution that exists near the
inlet, over which the saturation transitions from the constant inflow value si to the capillary
limit solution downstream. The boundary layer thickness, which we denote δvisc, grows
with capillary number. By defining δvisc as the distance needed to reach the capillary limit
solution (2.38) to 90 % accuracy, we can plot the variation with capillary number, as can be
seen in figure 3(b). Hence, we find that the boundary layer thickness δvisc is approximately
proportional to N3/5

c .
Note that, if we were to extend the aquifer sufficiently, all cases would eventually reach

the capillary limit. This is evident by noticing that the only solution to (2.17) and (2.28)
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Figure 3. (a) Steady numerical solutions of the saturation of non-wetting s and wetting 1 − s phases across a
range of capillary numbers (where Nc (1.1) is given in terms of non-wetting pressure change). Streamlines
of the Darcy velocity fields ûn and ûw are overlaid on each plot. Boundary layer thickness δvisc plotted
against capillary number (holding δ = 0.1 fixed) (b) and against aspect ratio (holding Nc = 8 fixed) (c), using
logarithmic scales.

which is independent of x̂ is the capillary limit solution (pc = constant). Therefore, in
the transition between the viscous and capillary limits, the inlet condition si is of critical
importance. Indeed, if we were to choose the inlet profile as (2.38), then any capillary
number would result in the capillary limit solution. To mitigate this, we have chosen si
as a constant value so that both viscous and capillary limits can be recovered in the limit
of large and small capillary numbers, respectively. In addition to the capillary number, the
boundary layer thickness must clearly depend on the aspect ratio δ, and we have plotted this
dependence in figure 3(c), holding the capillary number fixed at Nc = 8. In this case, we
see that δvisc grows linearly with aspect ratio. This is expected due to a uniform stretching
of the domain. Clearly, the choice of the domain dimensions for upscaling has a significant
impact on the resulting upscaled quantities, presenting a challenge for creating a general
theory of upscaling. Later in § 4.3 we discuss how varying the choice of domain size may
affect predictions.

To calculate equivalent properties of the flow, it is necessary to choose an appropriate
averaging operator 〈·〉 in (2.13) and (2.14). We are dissuaded from choosing a core average,
since undesirable boundary layer effects from the inlet make it impossible to recover the
capillary limit solution, (2.41) and (2.42), as we decrease Nc. Instead, we find the most
convenient choice is a vertical average at the aquifer outlet 〈·〉 = ∫ 1

0 · dẑ|x̂=1. Since we have
chosen zero gradient conditions (2.9), this removes boundary effects from the averaging
process as much as possible. In the case of the pressure drop in (2.13), we use an average of
the non-dimensional pressure gradient�p̂i = ∂ p̂i/∂ x̂. Using this averaging method allows
the solution to converge to both capillary and viscous limit solutions consistently.

The equivalent relative permeabilities and capillary pressure are shown in figure 4(a,b).
The points on each coloured line have the same capillary number and different values
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Figure 4. (a) Equivalent relative permeabilities (2.13) (note the non-wetting relative permeability is
normalised by krn0 = 0.116), and equivalent capillary pressure (2.14) (b), calculated with numerical simulations
across a range of capillary numbers. (c,d) Best fit of composite hyperbolic tangent function (2.61), modelling
the transition between capillary and viscous limits, illustrating the fitted parameter Nct and one folding scaleΔ
on either side.

of the inlet saturation si (or equivalently the flow fraction f0 = Uw/Un). In this way, it is
possible to observe how the equivalent relative permeabilities vary over both saturation and
capillary number, as illustrated in figure 4(c,d). As indicated in the plots, the equivalent
relative permeabilities are very well approximated by the transition function

krieq = 1
2

[
kri−(s̄) tanh

(
log Nc − log Nct

logΔ

)
+ kri+(s̄)

]
, i = n,w, (2.61)

with parameter values Nct = 394, Δ = 5.5 and kri± = krivisc ± kricap , where the viscous
and capillary limits are given by (2.41), (2.42), (2.54) and (2.55). The composite expression
(2.61) captures the numerical results with mean relative error of around ∼1 %. Although an
even better fit can be attained by allowing Nct and Δ to vary with saturation and capillary
number, we take them as constants here for the sake of simplicity.

The transition capillary number Nct represents the capillary number that lies
logarithmically as a midpoint between the viscous and capillary regimes. The parameter
Δ represents one logarithmic folding scale. As we can see in figure 4(c,d), the viscous and
capillary limits are little more than one folding scale away from the transition capillary
number on either side. These two parameters Nct and δ fully characterise the flow regime
for intermediate capillary numbers, and they are subtly related to the boundary layer
thickness discussed earlier. Hence, they are not universal for every scenario, since we have
shown that the boundary layer thickness depends on the choice of domain aspect ratio
and inlet conditions si. Therefore, great care must be taken when choosing the domain for
upscaling, as we discuss later in § 4.3.
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Apart from the sinusoidal permeability profile investigated here, we have also tried
numerous other types of permeability profiles (e.g. step function, Gaussian, . . . ) and
different power law values B, and in each case (2.61) gave good comparison with the
numerics, indicating the robustness of our current approach. For example, in figure 12 in
appendix B we display equivalent relative permeabilities for a step-layered profile, together
with the corresponding fit (2.61), showing close agreement.

Note that we could have equally fit the data to the capillary number defined in terms
of the wetting pressure change instead of the non-wetting pressure change (see (1.1)).
However, we observe that the ratio of these pressure changes is

�pn

�pw
= 1

Mf0

krweq

krneq

. (2.62)

Hence, the two definitions are not independent, and would just result in a different form
of (2.61). Therefore, without loss of generality, we keep the capillary number defined in
terms of non-wetting pressure difference.

Variation in the equivalent capillary pressure (2.14) is much less significant, since
pccap/pcvisc = 1.06. This can be seen in figure 4(b), where the capillary and viscous limit
curves lie almost on top of each other. Therefore, there is not a great need to model the
transition behaviour, and it is sufficient to assume the viscous limit everywhere

pceq = (1 − s̄)−1/λ. (2.63)

In the next part of the study, we use the equivalent properties derived here to study dynamic
flooding in an aquifer.

3. The Buckley–Leverett problem for heterogeneous media

3.1. Problem summary
Now that we have analytical expressions for the equivalent relative permeabilities in the
viscous and capillary limits (2.41), (2.42), (2.54), (2.55), and a composite expression (2.61)
for intermediate capillary numbers fitted against numerical data, we have a full description
of the equivalent properties across all flow conditions. Next, following the classic study
by Buckley & Leverett (1942) of the displacement of immiscible flows in a long, thin
aquifer, we extend this to the case of heterogeneous media, using our upscaled equivalent
properties.

In the classic Buckley–Leverett problem, a one-dimensional porous medium, initially
filled with saturation s∞, is flooded with a saturation si at the inlet x = 0 (see figure 5a).
While the problem is time dependent, we make the key assumption that the equivalent
properties derived in § 2 still apply even when the flow is unsteady, which follows the
approach taken in industrial applications. Our analysis here can be interpreted as the
macroscopic flow picture of an aquifer with an underlying heterogeneity, where the length
scale of the heterogeneity is much smaller than the flow length scale (see figure 5c).

A complete discussion of the Buckley–Leverett problem can be found in any standard
porous media textbook, such as Bear (2013) and Woods (2015) for example. Here, we
simply summarise the problem and describe how it can be extended to heterogeneous
media. In the original problem formulation (for homogeneous media), the governing
dimensional equation for the saturation is

∂s
∂t

+ V(s)
∂s
∂x

= ∂

∂x

[
K(s)

∂s
∂x

]
, (3.1)
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Figure 5. (a) Illustration of flooding a long, thin aquifer with saturation si, where the initial saturation was
s∞ (Buckley–Leverett problem). (b) When a multi-valued distribution of saturation develops, a shock forms at
saturation ss. (c) Illustration of the underlying heterogeneity in the aquifer. (d,e) Plots of the non-dimensional
diffusion and advection coefficients K̂(s), V̂(s) for the capillary and viscous limits. ( f ) Péclet number Pe =
V̂/K̂.

where the advective and diffusive terms are given by

V = Vtot
∂

∂s

[
Mkrn

Mkrn + krw

]
, (3.2)

K = k0pe0

μw

[
Mkrnkrw

Mkrn + krw

]
∂

∂s

(
pc

pe

)
, (3.3)

which can be derived by combining (2.1) and (2.2), where Vtot = un + uw is the total Darcy
flow (conserved). Note that we have rescaled time in (3.1) by a factor of φ(1 − Swi) for
convenience. To extend to heterogeneous media, we replace the relative permeabilities and
capillary pressure in (3.2) and (3.3) by their equivalent counterparts derived earlier, and the
saturation s is interpreted as an upscaled saturation. (Note that, in the case where relative
permeability depends on the capillary number (2.61), the advective velocity (3.2) contains
a partial derivative with respect to Nc. However, due to the logarithmic dependence this
contribution is very small (e.g. O(10−9)–O(10−3) for typical parameter values) and so
we ignore it here.) Hence, this extension to the Buckley–Leverett problem, although it is
one-dimensional, contains information about the vertical variation of saturation in the rock
and flow properties. Furthermore, the rock heterogeneities only manifest in these upscaled
quantities and their typical scalings (φ0, pe0, k0).

In figure 5(d–f ) we plot the advective and diffusive components, given in
non-dimensional terms V̂ = VLμw/k0pe0 , K̂ = Kμw/k0pe0 , for both the capillary and
viscous limits. We also plot the nonlinear Péclet number Pe = V̂/K̂. For the purposes
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of this comparison we define a non-dimensional flow rate

U = VtotLμw

k0pe0

, (3.4)

and we use typical parameter values, giving U = 3167 and a viscosity ratio of M = 30.
A full list of dimensional parameters is given in table 1 (taken from the Salt Creek case
study, which we discuss later).

Several observations can be made immediately. Firstly, for these typical parameter
values the diffusive term is much smaller than the advective term (indicated by the Péclet
number), such that the diffusive term can be neglected, except perhaps when saturation
gradients are very large (e.g. for shock solutions Woods 2015), or when s is very close
to 1. Secondly, the faster limit (between viscous and capillary) depends on the saturation
value. Finally, the slight kink in the capillary limit advection velocity curve in figure 5(e)
is due to non-smooth changes in the saturation distribution due to (2.45).

It is well known that the non-monotone behaviour of V can result in multi-valued
saturation distributions, as illustrated in figure 5(b). This is often dealt with by introducing
a shock at some intermediary saturation ss, where the saturation value is found by solving
the equation

V(ss) = J(ss)− J(s∞)
ss − s∞

, (3.5)

in terms of the advective flux J = ∫
V ds and the initial saturation s∞. The shock equation

(3.5) can be derived by a conservation of mass balance across the shock (Woods 2015). A
typical shock solution is illustrated in figure 5(b), where the original multi-valued solution
is overlaid as a dashed line. In reality, the steep saturation gradients present in such a shock
solution would be softened by the diffusive term (3.3) over a growing length scale � ∝
(t/Pe)1/2. For typical situations, this results in a diffusive boundary layer of approximately
1 %–5 % of the total aquifer length.

The solution behaviour of the Buckley–Leverett problem is characterised by several
saturation values: the inlet saturation si, the initial far-field saturation s∞ and, should
a shock develop, the shock saturation ss. Since we restrict our attention to drainage
flows (e.g. CO2 driving out water), we confine our analysis to si > s∞. To understand
the different flow regimes, it is useful to introduce the stationary point saturation value
sm, which corresponds to the saturation at which the maximum advection velocity is
achieved (e.g. see figure 5e). A multivalued saturation profile never develops (i.e. no
shocks) for parameter values sm � s∞ � si, as illustrated by a yellow region in the phase
diagram in figure 6(d). Hence, in the absence of shocks, the flooding front moves at the
far-field saturation speed, which is V = V(s∞). Likewise, a shock will always develop for
s∞ � sm � si, and the flooding front moves at the shock speed V = V(ss).

We note that (3.5) may result in a shock saturation value that lies outside of the range
[s∞, si]. Therefore, in such cases (3.5) is replaced by the condition ss = si, such that the
shock value is simply equal to the inlet value, as illustrated with dark blue colouring in
figure 6(d).

3.2. Viscous and capillary limits
Now that we have summarised the Buckley–Leverett problem, the next step is to discuss
the two limiting viscous and capillary cases. In figure 6(a,b) we display a colour plot of
the front velocity values for each of these limits Vvisc, Vcap (normalised by their maximum
values) over all possible values of si, s∞. In figure 6(c) we plot the ratio between these two
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Figure 6. Advection coefficient colour maps for the extended Buckley–Leverett problem in the viscous (a) and
capillary (b) limits for all possible values of inlet and initial saturation si, s∞ (normalised by their maximum
values). (c) Ratio between advection coefficients in viscous and capillary limits (note the different colour scale).
Two markers indicate the solutions in figure 7. (d) Phase diagram illustrating different parameter regimes,
indicating front speed definition, the stationary point sm and where shocks occur.

limits Vvisc/Vcap. Wherever the far-field saturation is larger than the stationary point s∞ >

sm, viscous advection speeds dominate, whereas in regions with s∞ near zero (leading
to shocks), capillary advection speeds dominate. The maximum and minimum values of
the speed ratio Vvisc/Vcap are 1.44 and 0.13, indicating that neglecting heterogeneities may
lead to substantial error in flooding predictions. For modelling carbon sequestration, where
s∞ is expected to be near zero (CO2 is typically injected into brine-saturated aquifers), the
implications are that in situations where the capillary number is small, heterogeneities
cause an overall acceleration of the advancing front. This will play an important role in
trapping mechanisms and storage efficiency.

To illustrate these findings, in figure 7 we display two solutions to the extended
Buckley–Leverett problem with and without shocks. In the first case, figure 7(a,c,e), we
flood an aquifer which is initially saturated with a substantial fraction of gas s∞ = 0.5. In
the second case 7(b,d, f ), the aquifer is initially saturated with the minimum possible gas
amount s∞ = 0 (see the markers in figure 6c), causing a shock to develop. In each case
we plot the saturation s and velocity V at both the initial time, and at a single later time,
indicating both capillary (red) and viscous (black) predictions. We display all results in
non-dimensional form, where a suitable non-dimensional time scale is

T = L/Vtot. (3.6)

The saturation profiles are obtained by solving the characteristic equation for each x value,
such that

dx
dt

= V(s), (3.7)
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No shocks (s∞ = 0.5) Shocks (s∞ = 0)
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Figure 7. Examples of flooding of an aquifer in capillary and viscous limits with and without shocks present.
We display plots at t̂ = 0 and t̂ = 0.5 of (a,b) the saturation s and (c,d) the advective velocity V̂ . In (e, f ) we
show the evolution of the front position X̂. In both cases we set si = 1.

where the saturation value s is conserved along characteristics. As initial conditions, we
use a localised initial saturation distribution

s(x, 0) =
{

si − (si − s∞)x/x∗ : 0 � x � x∗,
s∞ : x∗ < x � L,

(3.8)

where x∗/L = 10−3. In figure 7 this initial saturation profile is advected according to
either the capillary or viscous limit speed, Vcap(s) or Vvisc(s) (c,d). In (e, f ) we also plot
the position of the leading edge of the flood X(t), which increases linearly with time,
with slope V = V(s∞) or V(ss). The speed ratio is Vvisc/Vcap = 1.44 in the case without
shocks, and Vvisc/Vcap = 0.82 in the case with shocks. For applications such as CO2
sequestration, this indicates that a model which neglects the effects of heterogeneities may
predict flooding speeds with nearly 50 % inaccuracy.

3.3. Transition between viscous and capillary limits
As described earlier, most flows will develop with behaviour intermediate to the viscous
and capillary limits. The flow behaviour should therefore depend on the local capillary
number, which changes with local pressure gradients according to

Nc = H
�pe

∣∣∣∣∂pn

∂x

∣∣∣∣ , (3.9)

where we have used the definition in terms of the non-wetting pressure gradient. The local
pressure gradients are given by

∂pn

∂x
= −Vtotμw

k0

[
1

Mkrn + krw

]
. (3.10)
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We note that the capillary number used here (3.9) is defined differently to (1.1), which was
used to perform steady-state upscaling earlier. However, (3.9) can be interpreted as the
local capillary number for a macroscopic flow description, whereas (1.1) can be interpreted
as the bulk capillary number for a small-scale study. Hence, the two definitions become
equivalent by zooming in or out of the aquifer appropriately.

Since the pressure gradient (3.10), and consequently the capillary number, are both
functions of s, they are conserved along characteristics. Hence, the capillary number at the
flooding front x = X(t) is the same for all time (though different to the capillary number
at the inlet x = 0, for example). Hence, the capillary number at a given saturation value is
calculated for all time by solving the nonlinear implicit equation

Nc = Uδ
σP

[
1

Mkrneq(s,Nc)+ krweq(s,Nc)

]
. (3.11)

We summarise the steps for modelling the transition between the viscous and capillary
limits as follows: first the capillary number must be calculated for some initial saturation
data (e.g. (3.8)) using the implicit equation (3.11); then, if shocks are present, the shock
saturation value ss must be calculated using (3.5), where the advection velocity V (3.2) and
flux J use the composite expressions (2.61) for the equivalent relative permeabilities; if no
shocks are present, the flooding front simply corresponds to saturation value s∞; finally,
the solution is calculated for all time via the characteristic equation (3.7), where V (3.2)
contains the composite expressions (2.61).

For example, using the same parameter values as in figure 7(b,d, f ), and setting Nct =
394, Δ = 5.5 in (2.61), as before, we calculate that a shock develops at saturation value
ss = 0.38 (which lies in between the capillary and viscous limit shock values ss = 0.29
and ss = 0.47) at a capillary number of Nc = 303. Then, the shock (which remains at this
capillary number for all time) is advected at a constant velocity which is approximately
10 % faster than the viscous limit and 10 % slower than the capillary limit.

Interestingly, if one were to consider an axisymmetric flooding instead of
two-dimensional plane flooding, the flow speed and pressure gradients would decay
radially due to conservation of mass. Hence, the capillary number would also decay
radially, such that different regions of the aquifer switch between viscous and capillary
limits over time.

An axisymmetric model is more realistic than the two-dimensional case for cases where
injection occurs at a single point source, as is often the case in industry. In the context
of our current modelling approach heterogeneities are below the continuum scale, and
consequently the equivalent relative permeabilities derived in § 2 can equally be used to
describe a two-dimensional (as above) or axisymmetric setting. Hence, in the next section
we extend the above analysis to axisymmetric flow.

3.4. Axisymmetric flooding
During axisymmetric flooding, the governing equation for the saturation is

∂s
∂t

+ Q(s)
r
∂s
∂r

= r
∂

∂r

[
K(s)

r
∂s
∂r

]
, (3.12)

where the advective and diffusive terms are the same as before ((3.2) and (3.3)), except we
have replaced V(s) by Q(s), which has an extra dimension of length. By the same argument
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as above, we neglect the diffusive term. In this case, the characteristic equation is

dr
dt

= Q(s)
r
, (3.13)

which can be re-written as
d
dt

(
1
2

r2
)

= Q(s). (3.14)

The pressure gradients are given by

∂pn

∂r
= −Qtotμw

k0

1
r

[
1

Mkrneq(s,Nc)+ krweq(s,Nc)

]
. (3.15)

which are no longer constant along characteristics (since (3.15) contains r), and so the
capillary number (now defined in terms of ∂pn/∂r) must be calculated at each radial value.
Hence, given some initial data for s, such as (3.8), the solution is found by time integrating
the coupled system

d
dt

(
1
2

r2
)

= Qtot
∂

∂s

[
Mkrneq(s,Nc)

Mkrneq(s,Nc)+ krweq(s,Nc)

]
, (3.16)

Nc = Qδ
σP

L
r

[
1

Mkrneq(s,Nc)+ krweq(s,Nc)

]
, (3.17)

where Q = Qtotμw/k0pe0 . In figure 8 we display solutions to (3.16) and (3.17) using the
parameters si = 1 and s∞ = 0.35 (i.e. no shocks). In figure 8(a) we display the capillary
number Nc(r, t) at four times, which decays like ∼1/r as r → ∞. In figure 8(b) we display
the position of the flooding front R(t) for each case, also indicating the capillary and
viscous limit predictions for comparison.

Unlike the two-dimensional case, here, the front moves like the square root of time
(instead of linearly). Also, unlike the two-dimensional case, the capillary number at the the
flooding front changes over time. At early times, the entire flow is close to the viscous limit,
whereas at late times, nearly all the flow is close to the capillary limit, except for a small
region near the origin. At intermediate times the flow straddles between the two limits.
This can be seen in figure 8(b), where the front evolution switches between viscous-like
behaviour to capillary-like behaviour over time.

We also display surface plots of the saturation at different times in figure 8(c). The
colouring in each plot is chosen as a binary value depending on whether the local capillary
number is above or below the transition value Nct (see also figure 8a, where one folding
scale is illustrated). The result is that the flow near the source is in the viscous limit, and
is consequently unaffected by heterogeneities. However, as the flood spreads through the
aquifer the heterogeneities play a strong role far away from the origin. The overall effect is
a deceleration, driven largely at the leading edge of the injection. Note that if we were to
choose a smaller value of the far-field saturation, such as s∞ = 0, a shock would develop
and the advection speed in the capillary limit would be faster than that of the viscous limit
(as in figure 7b,d, f ).

Similarly to the two-dimensional case, by neglecting the effects of heterogeneities,
flooding speeds can be misrepresented by as much as 50 %. Therefore, for applications in
CO2 sequestration, modelling the transition of the flow between the viscous and capillary
limits is critical for accurately predicting how far the injection has spread, and this is
important both from safety and efficiency perspectives.
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Figure 8. Axisymmetric flooding of an aquifer in the case of no shocks (si = 1, s∞ = 0.35) using composite
expression (2.61) for the equivalent relative permeabilities. (a) Radial variation in the capillary number at
different times, illustrating the front positions as markers, and the transition capillary number Nct (from § 2.7)
with dotted lines. (b) Logarithmic plot of front position R̂, also illustrating the viscous and capillary limits.
(c) Surface plots of the axial spread of saturation at different times.

4. Comparisons with experimental data

In this section we compare some of our results to different sources of experimental data
from other authors. Firstly, we compare the results of our steady-state upscaling from § 2
to some X-ray CT scan experiments. Then, we compare our dynamic predictions from § 3
to field measurements from a CO2 injection experiment in Salt Creek, USA.

4.1. Steady-state upscaling
We now quantitatively compare our results to data taken from core flooding experiments.
The recent study of Jackson et al. (2018) calculates equivalent relative permeabilities using
X-ray CT scans of Bentheimer sandstone with parallel layers (Peksa, Wolf & Zitha 2015).
Their analysis provides a three-dimensional map of the pore entry pressure in a rock core,
a two-dimensional slice of which is illustrated in figure 9(a). To upscale the observed
heterogeneities, the intrinsic relative permeabilities kri were first approximated by fitting
the empirical relationship proposed by Chierici (1984), which is given explicitly by (A3)
and (A4), to CT scans at very high capillary number. Then, a set of experiments at very low
capillary number was used to iteratively fit a numerical model of the core to experimentally
observed saturation data. A full list of the parameter values is given in appendix A.

Unlike their three-dimensional data, heterogeneities discussed here depend on the
vertical dimension alone. Therefore, we take an average of the experimental data, pe(z) =∫ ∫

peexp(x̂, ŷ, ẑ) dx̂ dŷ, which is illustrated in figure 9(b). Evidently, the experimental rock
core has some longitudinal variation, so we do not expect our comparison to be perfect.
Indeed, the mean relative error in approximating the pore entry pressure data in figure 9(a)
as the simplified transverse/longitudinal average in figure 9(b) is ∼15 %. However, a good
approximation should be attained, since the layering is predominantly parallel to the flow.

To compare with these experiments, we start with the two viscous and capillary limiting
cases, since all other cases must lie between these. The capillary and viscous limits derived
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Figure 9. (a) Colour map of a two-dimensional slice of the capillary heterogeneity pe(x, y, z), derived by
Jackson et al. (2018), for a core of Bentheimer sandstone. (b) Transverse/longitudinal average of (a) pe(z).
(c,d) Comparison of the equivalent relative permeabilities krneq , krweq over a range of capillary numbers, also
showing the viscous and capillary limits.

by Jackson et al. are displayed in figure 9(c). Spatial variation in the permeability k is
not provided, so we fit our power law relationship (2.6) against their capillary limit data,
giving B = 1/10, with a mean relative error of 23 %, which is most likely attributed to our
approximation of heterogeneity by a simple vertical variation. For each of the pore entry
pressure and permeability, we calculate the standard deviation divided by the mean, giving
σ( pe)/μ( pe) = 0.16 (which is the same as quoted by Jackson et al.) and σ(k)/μ(k) =
0.74 (which is similar to field observations from Salt Creek, discussed later).

The next step is to compare equivalent relative permeabilities for intermediate capillary
numbers. To do so, we use our numerical simulations, as described earlier. Our calculated
equivalent relative permeabilities are shown in figure 9(d), compared against the data of
Jackson et al. (2018) in figure 9(c). Each coloured line on the plot has the same value
of the total Darcy flow Utot = Un + Uw and different values of the flow fraction f0 =
Uw/Un. Consequently, the capillary number varies greatly over one value of Utot and so,
following Jackson et al., we quote the value at f0 = 0.5. To ensure that the quoted capillary
numbers are the same, we use the same definition as Jackson et al. for the capillary number,
where the pressure change in (1.1) is over the whole core. Overall, the comparison is
good, with our data points varying between the viscous and capillary limits in a similar
manner to Jackson et al. However, the slight differences in the curve shapes are most
likely attributed to our one-dimensional approximation of the heterogeneity (which is only
accurate to around ∼15 %, as described earlier).

For some core samples, the heterogeneities are not aligned with the flow direction
at all, such as the Bunter sandstone analysed by Jackson et al. (2018), where
perpendicular layering is present. In such situations, the details of the upscaling described
here for flow along parallel layers may not be appropriate. However, the continual
arrangement/rearrangement of the saturation as it moves downstream is similar to the flow
rearrangement observed in the boundary layer described earlier. This can therefore be
interpreted as an effective raising of the capillary number, since the flow is always close
to the viscous limit by virtue of the fact that it does not have the spatial freedom to align
with the capillary limit easily.
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Figure 10. Case study of CO2 injection at Salt Creek. (a) Vertical permeability profile inferred from downhole
porosity measurements (Bickle et al. 2017). (b) Vertical capillary limit saturation profiles for different values of
the power law B (2.6). (c) Corresponding equivalent relative permeability curves (experimental data taken from
Krevor et al. (2012) for Paaratte sandstone in the viscous limit). (d) Upscaled predictions of the volume fraction
of CO2 at the observation well (4.1), compared with field measurements. The CO2 volume fraction of the
produced fluids (red solid curve) is calculated from the temperature (e), assuming adiabatic cooling, given the
variation of density and coefficient of thermal expansion of CO2 with pressure and temperature from Dubacq,
Bickle & Evans (2013) and specific heats of CO2 and water from Holland & Powell (2011). Temperature drops
at days 15, 47–48 and 143–144 are related to reductions in production rates. High reported volumes of produced
CO2 between days 107–113 do not coincide with any changes in production rate or temperature fluctuations and
are disregarded.

4.2. Dynamic flooding
To compare our extension to the Buckley–Leverett problem for heterogeneous media to
field data, we use the Salt Creek CO2 injection experiments from 2010, as detailed by
Bickle et al. (2017). CO2 was injected into a sandstone aquifer with vertical permeability
structure as shown in figure 10(a), and aspect ratio δ ≈ 25 m/200 m. Injection was
performed in several rows of wells, so that a two-dimensional model is probably more
accurate than a radially symmetric one. Variations in the topography are neglected.

Relative permeability curves are not available for this sandstone, so to model this case
study we use the curves of a similar sandstone called the Paaratte formation located in SE
Australia, as detailed by Krevor et al. (2012). We display the empirical relationships (A5)
and (A6) in appendix A. Likewise, pore entry pressure variation is not available, so we try
using several different values of the power law B (2.6). We display the equivalent relative
permeability curves for both the viscous limit, and the capillary limit (for several different
values of B) in figure 10(c). Power laws 1/20 � B � 1/10 seem to give reasonable results.
Moreover, for these B values, the value of the ratio between the pore entry pressure
standard deviation and mean is σ( pe)/μ( pe) ∈ [0.1, 0.2], as compared to the Bentheimer
sandstone of Jackson et al. (2018) which has σ( pe)/μ( pe) = 0.16. For such pore entry
pressure distributions, we display the corresponding capillary limit saturation distributions
(2.38) in figure 10(b). For comparison with field data, we use a mid-range value of
B = 1/15.

Following our extension to the Buckley–Leverett problem (ignoring diffusion), we use
(3.1) to describe the temporal evolution of an injection of CO2, with si = 1, s∞ = 0.
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We use (2.61) for the equivalent relative permeabilities with Nct = 394 and Δ = 5.5, as
before. We choose a driving flow of Vtot = 1.6 × 10−6 m s−1 which results in a pressure
drop across the aquifer between 4–8 MPa, which is consistent with field measurements.
The full list of parameter values for this problem is given in appendix B.

Using all of the above information, we can compare our model predictions to field
measurements. One useful metric for comparison is the volume fraction of CO2 at the
observation well, for which field data are available. The predicted volume fraction of CO2
at any given saturation value and capillary number is

J(s,Nc) = un

un + uw
= Mkrneq(s,Nc)

Mkrneq(s,Nc)+ krweq(s,Nc)
, (4.1)

which we calculate at observation well 28WC2NW05 (200 m from the injection well)
and plot in figure 10(d) (dotted blue curve). Due to the small far-field saturation value, a
shock develops, creating a sharp advection front which moves at constant velocity through
the aquifer, such that arrival at the observation well manifests as a discontinuous jump
in CO2 volume fraction. The diffusion term (3.3) which we neglected would smooth out
the saturation profile near the shock in a diffusive boundary layer of growing width � ∝
(t/Pe)1/2. However, since the Péclet number for this flow is so large, this manifests in a
very small error margin, as illustrated with blue shading in figure 10(d).

In figure 10(d) we compare these predictions to field measurements of the volume
fraction of CO2 in the produced fluids. We consider that the volume fraction given
at reservoir temperature and pressure (red solid curve), which is calculated from the
temperature (figure 10e) of the produced fluids (assuming adiabatic cooling), is more
reliable than the reported CO2 production based on spot measurements (black curve).

Our modelling predicts breakthrough of CO2 at volume fraction J ≈ 75 %, after 66 days,
whereas the observations suggest significant CO2 (J ≈ 10–20 %) arriving between 65 and
86 days after the start of injection. The breakthrough times for the capillary and viscous
limits (which we plot in figure 13 in appendix B) are 50 and 83 days, indicating a significant
effect of heterogeneities.

It should be noted that, whilst the field measurements only detected significant CO2
breakthrough after ∼65 days, small quantities of noble gas tracers (3He and 129Xe) added
to the CO2 stream at the start of injection were detected only 10 days later. This suggests
that regions of the aquifer, such as the high permeability zone at mid-depth, may advect
CO2 at much greater velocity than the bulk. This would also explain why the field data
have a much lower, more spread out volume fraction than our predicted curve. Therefore,
this motivates a slightly more resolved upscaled model that breaks the aquifer up into
smaller regions. We discuss this and other questions regarding the choice of length scales
in the next section.

4.3. A note on the choice of length scales
One of the key difficulties, and still an open question in the process of upscaling, is
the choice of length scales. We demonstrated this earlier in figure 3 by showing that
the boundary layer thickness depends on the aspect ratio of the upscaling domain,
independently of the capillary number. Therefore, the viscous–capillary transition,
characterised by the parameter Nct clearly depends on the domain over which upscaling is
performed. However, as illustrated with regions (i)–(iii) in figure 11(a) for the Salt Creek
permeability data, the aquifer can sometimes be naturally divided into subdomains. For
the Salt Creek site, there is clearly a mid-depth region of very high permeability between
regions of relatively low permeability. As the field data in figure 10(d) suggest, this may be
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Figure 11. The effect of dividing the Salt Creek vertical heterogeneity into three different regions, each
upscaled separately (a). With a mean saturation of s̄ = 0.2, the saturation distribution is illustrated in (b,d).
After upscaling the heterogeneities within each of the three regions, the corresponding upscaled advection
velocities V in each region are illustrated in (c,e). We also illustrate the standard upscaled velocities Vcap, Vvisc,
as well as the average velocity after upscaling the three regions independently (V̄cap, V̄visc).

responsible for a more distributed arrival of CO2 at lower volume fraction than predicted
by our upscaled model. Hence, it is not obvious whether it is more accurate to think of
the aquifer as a single medium or three vertically stacked media, each to be upscaled
separately.

In figure 11(b,d) we illustrate how the saturation of CO2 would be distributed vertically
in the aquifer in each of the capillary and viscous limits (for a mean value of s̄ = 0.2). The
viscous limit has a uniform distribution, whereas the capillary limit is given by (2.38),
leading to a focusing of CO2 in the high-permeability region, and mean saturation values
within each of the three subdomains as s̄ = 0.082, 0.225 and 0.081. Now, if we upscale
each of the three subdomains separately, we get three sets of equivalent flow properties
krieq , and three different advection coefficients V̂ in the Buckley–Leverett problem. In
figure 11(c,e) we illustrate how each of the three individual upscaled advection speeds
would vary between subdomains, compared to the original viscous and capillary limits
for the whole domain. The high-permeability region has a high-speed finger of CO2
which precedes the low-permeability regions on either side, which is consistent with field
observations (Bickle et al. 2017). Indeed this CO2 finger may travel at almost double the
speed of the bulk in the case of the capillary limit, and at almost quadruple the speed of
the bulk in the viscous limit. In the viscous case, the mean advection speed of the three
upscaled regions V̄visc is equal to the upscaled speed of the whole region Vvisc, as expected.
By contrast, this is not the case for the capillary limit, with V̄cap being approximately 65 %
of the original upscaled advection speed Vcap.

We compare this three-layered upscaling approach to the Salt Creek field data in
figure 10(d) (blue dashed curve). Now, instead of a single bulk arrival of CO2, we see more
of a staircase structure, with the mid-depth region of the aquifer delivering a CO2 volume
fraction of 12 % at 20 days after injection, followed by the other two regions at 128 and
148 days. This gives much better comparison with the field observations, indicating that a
three-layered model is more appropriate than a single-layered model if one is interested in
predicting the first arrival of CO2 (e.g. the first tracers of CO2 were detected at Salt Creek
10 days after injection) and the arrival distribution, but less useful if one is only interested
in predicting the breakthrough of the bulk CO2 quantity (65 days). More generally, there is
an interesting question about how many upscaled layers are needed to accurately capture
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the CO2 injection in a given aquifer. By breaking the aquifer up into smaller and smaller
subdomains, we can achieve better and better comparison with field data, but at some point
this defeats the point of upscaling, since our original objective was to avoid resolving all
the heterogeneities.

The main implications from the comparison with Salt Creek are threefold: Firstly,
we have shown that bulk CO2 breakthrough times can be reasonably well predicted by
our single-layered upscaling approach, although with an over-predicted volume fraction.
Secondly, we illustrated that by breaking the aquifer into three subdomains, a much better
comparison with field data is achieved, including realistic predictions of CO2 volume
fraction at the observation well. Finally, we have shown that there is clearly significant
difference between capillary and viscous limit predictions, indicating that an accurate flow
description requires careful modelling of the heterogeneities.

It should be noted that, instead of treating the heterogeneities by upscaling, one could
alternatively use a three layer viscous limit model (such as figure 11d,e), which effectively
assumes each layer is homogeneous with different mean permeability, and achieve good
comparison with the data by fitting the other parameters of the problem. However, this
would result in misleading parameter values that account for the heterogeneities indirectly.
Therefore, a thorough upscaling approach is more advisable.

5. Concluding remarks

We have studied the effect of a vertical heterogeneity in a porous medium on the overall
flow properties by way of upscaling. This is characterised by the two limiting cases of large
capillary number (viscous limit), where heterogeneities play a weak role, small capillary
number (capillary limit), where heterogeneities play a dominant role, and intermediate
capillary number, for which a balance is sustained. In the former limiting cases we derived
analytical expressions for the upscaled equivalent relative permeabilities using asymptotic
analysis. For intermediate capillary numbers we used numerical simulations to suggest a
composite (heuristic) form for the equivalent relative permeabilities that remains accurate
across all flow regimes. These composite expressions enable fast, efficient simulations
of dynamic flow configurations, which highlight where and when heterogeneities play an
important role in the dynamics. The CT scan experiments of Jackson et al. (2018) were
used for comparison with some of these upscaling results.

Using an analysis that stemmed from the classic Buckley–Leverett problem (Buckley &
Leverett 1942), we applied the upscaled quantities to describe the flooding of an aquifer
with heterogeneities. We illustrated how and when heterogeneities accelerate/decelerate
the dynamic flow. By extending this analysis to the case of a radially symmetric injection,
we illustrated how the capillary number at the flooding front changes over time. At early
times, near the source, the front is in the viscous limit regime (where heterogeneities
are unimportant), whereas later on, far away from the source, it is in the capillary limit
regime (where heterogeneities dominate the flooding speed). The implications for CO2
sequestration are that heterogeneities can alter advection of CO2 by as much as 50 %,
indicating the need for modelling such effects, as illustrated by our comparisons with field
data from the injection experiments at Salt Creek, Wyoming. Finally, we illustrated how
the choice of length scales for upscaling significantly affects predictions, underlining one
of the key outstanding challenges in this field.

For future work, the effects of a dynamic flow on the equivalent properties could be
investigated (i.e. instead of steady-state upscaling), using some canonical time-dependent
case studies. This would be particularly useful for understanding when steady-state
upscaling is an accurate approach, and when more detailed models are necessary.
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Perhaps the clearest direction for future work would be to include the effects of
gravity. One can quantify the importance of such effects by considering the ratio between
buoyancy forces (due to gravity) and capillary forces (due to heterogeneities). Hence,
gravitational effects are characterised by the so-called Bond number, which is defined
as Bo = (ρw − ρn)gH/pe0 . Inputting parameter values that are typical for CO2 storage
applications, we find that gravitational effects can be neglected (Bo < 1) for aquifers that
are thinner than around H ∼ 1 m. For situations other than the thin aquifers we have
studied here, gravity plays a significant role (Nordbotten & Celia 2011). This manifests
in a saturation distribution that is determined not only by the heterogeneities (as we have
shown here) but also by a stratification due to gravity (pushing the buoyant CO2 upwards).
This stratification would in turn affect the upscaled flow properties, such as the equivalent
relative permeabilities, and consequently the upscaled flooding speeds.

For aquifers that are sufficiently wide, or which have sufficiently large Bond number,
vertical variations in the flow become so significant that an averaged approach, such as the
one taken here (in the Buckley–Leverett problem), is no longer applicable. Indeed, if the
CO2 is sufficiently buoyant that it rises and detaches from the lower aquifer boundary, a
gravity current forms on the upper boundary and spreads laterally (Golding et al. 2011).
The effects of heterogeneities on such flows have recently been investigated numerically
by Jackson & Krevor (2020). As a future step, the simple upscaling work presented here
could be extended to account for such cases. In other situations, the interface may remain
confined above and below, and instead propagates through the aquifer as a buoyant plume.
Recent studies have shown how vertical heterogeneities can alter such flows in the case of
miscible fluids (Hinton & Woods 2018). It would be interesting to compare and contrast
such results to the immiscible case, for which a simple upscaling approach as taken here
would be fitting.

Another common challenge in hydrology applications is estimating rock heterogeneities,
where it is often only possible to obtain very sparse measurements. It would be interesting
to use our analysis here to explore the inverse problem of estimating rock heterogeneities
from a small number of data points of the equivalent properties of the flow (and mean
saturation). This would be easiest in the case of small capillary number, where one could
use the function pe(z) and the power law B to fit the equivalent relative permeability
curves to measurements. This approach is unlikely to be well posed, since multiple types
of rock heterogeneity may give the same upscaled properties, but still one could develop
an ensemble of likely heterogeneity profiles as an informative tool for geoscientists.
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Appendix A: Empirical relationships for the relative permeabilities

Here, we give the explicit relationships for the intrinsic relative permeabilities of various
rock types, as discussed in the main text. In all of the following cases the Brooks–Corey
relationship is used to model the capillary pressure with different values of λ, pe0 and Swi.
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Parameter Description Value Units

H Aquifer depth 25 m
L Aquifer length 200 m
μw Viscosity of water 6 × 10−4 Pa s
μn Viscosity of CO2 2 × 10−5 Pa s
pe0 Base level pore entry pressure 2.1 × 103 Pa
k0 Mean permeability 4.3 × 10−14 m2

Vtot Total Darcy flow 1.6 × 10−6 m s−1

φ0 Mean porosity 0.22 —
Swi Irreducible water saturation 0.05 —

Table 1. Table of parameter values for the Salt Creek case study.

Firstly, the model of Corey (1954) used by Golding et al. (2011) for Ellerslie sandstone
is given by

krn = krn0sα, (A1)

krw = (1 − s)β, (A2)

where the parameters are given by krn0 = 0.116, α = 2, β = 2, Swi = 0.651, λ = 1. The
value of pe0 is not given.

Secondly, the model of Chierici (1984) used by Jackson et al. (2018) for Bentheimer
sandstone is given by

krn = e−B((1−s)/s)M , (A3)

krw = e−A(s/(1−s))L, (A4)

where the parameters are given by M = 0.65, L = 0.75, A = 3, B = 5, Swi = 0.081, λ =
2.3 and pe0 = 3.51 kPa.

Finally, the Brooks–Corey model (Dullien 2012) used by Krevor et al. (2012) for the
Paaratte sandstone is given by

krn = krn0s2[1 − (1 − s)α], (A5)

krw = (1 − s)β, (A6)

where the parameters are given by krn0 = 0.95, α = 2, β = 8, Swi = 0.05, λ = 0.9 and
pe0 = 2.1 kPa.

Appendix B. Parameter values and extra plots

In this appendix we present the parameter values used for the Salt Creek case study in
table 1 as well as two extra plots: figure 12 shows the equivalent relative permeabilities
calculated for a step permeability profile, and figure 13 shows the viscous and capillary
limit predictions for the time-dependant volume fraction of CO2 for the Salt Creek case
study.

For figure 12 we apply a similar methodology as outlined in § 2 except, instead of
using a sinusoidal permeability profile, here we use a smoothed step function given (in
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Figure 12. (a,b) Equivalent relative permeabilities (2.13) for a step-layered medium, calculated with numerical
simulations across a range of capillary numbers, also illustrating best fit of the composite expression (2.61).
The layered permeability profile, shown in dimensionless form in (c), consists of a smoothed step function
varying between two values.
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Figure 13. Upscaled (a) viscous limit and (b) capillary limit predictions for the volume fraction of CO2 (4.1)
at the observation well in Salt Creek, compared to field measurements (see figure 10).

dimensionless terms) by

k̂ = 1 + A(tanh[ζ(ẑ − ẑ1)] + tanh[ζ(ẑ2 − ẑ)] − 1), (B1)

using parameter values A = 0.5, ẑ1 = 1/4, ẑ2 = 3/4 and ζ = 40, which is illustrated in
figure 12(c). All other parameters are taken as the same as in figure 2 for the sinusoidal
permeability case. In figure 12(a,b) we display the equivalent relative permeabilities
calculated numerically for different values of the capillary number and mean saturation,
as well as best fit curves using the composite expression (2.61).

For figure 13 we use the same approach as outlined in § 4.2 for modelling injection at
the Salt Creek case study except, instead of using the composite expression (2.61) for the
equivalent relative permeabilities, we use the viscous limit (figure 13a) and the capillary
limit (figure 13b).
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