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1. Introduction. The object of this paper is to consider a problem suggested 
by Dr. K. F. Roth, on the distribution of integers n that are relatively prime 
to the integral part of an, a being a fixed real number. He conjectured that the 
number of positive integers up to x with this property is asymptotic to 6x/w2 

(or in other words that they have the density 6/7r2), for irrational a. I prove this 
and rather more in the following 

THEOREM. For every real number a the positive integers n such that 

(1) («, [an]) = 1 

have a density 8(a). For every irrational a, 8(a) = 6/71-2. For rational a — a/q> 
with (a, q) — 1 and q > 0, 8(a) depends only on q and has the value 

q-l 

which tends to the limit 6/ir2 as q~^ 00. 

Notation. Throughout the paper, Greek letters denote real numbers, e being 
positive and arbitrarily small. Latin letters denote rational integers, n, q, qf', 
x, d, R being positive, and a, q coprime. <j>(x) and p(x) are the functions of Euler 
and Môbius, d(x) is the number of divisors of x, and (yy z) is the highest common 
factor of y and z (not both zero), [a] is the greatest integer not exceeding a. 
The constants implied by the O-notation are absolute, except in formulae 
containing e, in which they depend on e only. 

We define 

f(x,a) = X) !> 
«<x,(l) 

where (1) refers to equation (1) above, and 

— r<^u<q—r 

where an empty sum is to be interpreted as zero. Thus 8(a) is the limit (to be 
proved to exist) of x~1f^x, a) a s x - ^ 00, and we have to show that 8(a/q) = 

2. Preliminary. The first of the following lemmas is a known result due to 
Vinogradov [1, chap. II, Ex. 19b], but the proof is reproduced as it is short. 
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LEMMA 1. For any I, u, x with u ^ 0 we have 

E l = xfrr1 *(\u\) + 0(d(\u\)). 
n<x,(tt+Z,tt)=l 

Proof. We may suppose u > 0, and 0 < / < u. Then the result for positive I 
follows from that for/ = 0 by putting first x + / and then / for x, and subtracting ; 
so we may suppose / = 0. With these preliminaries the sum to be estimated is 
equal to 

È E /»(<*) = E £>(<*) 
n=l d\u,d\n d\u nKx.dln 

= SL1JM id) 

= Z l M ( d ) + 0 ( d ( « ) ) 

= xw~ <£(w) + 0(d(u)). 

LEMMA 2. 

*(?,')= 3̂ +0(2*)+ 0(M-). 
7T 

Proof. It is sufficient to consider the case r = 0, which follows by partial 
summation from the known result [2, p. 266, Theorem 330] 

X q 2 

YJ 0 0 0 = 2 + 0(X log X). 

LEMMA 3. For R > g2, 

(2) R-1 Ë *(<Z< ') = H + 0(1). 
and 

(3) iT1 £ *(g, r)=H + 0(1). 

Proof. We count the number of times a summand with given u occurs in the 
double sum obtained by substituting the sum defining \p(q> r) in that on the left 
of (3) ; with unimportant exceptions it is precisely q. Thus 

E *(2,0- E E M_1*(M) «^o 
r=—R T=—R — r<w<<z— r, 

= g X) u^^iu) — Y (q — u) u~x<i>{u) 
l<u<R w = l 

+ É (2 - » + D(R + v - ir'HR + v-i) 

= qHR, 0) + 0(q2). 
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Hence, using R > g2, the left member of (3) is 

qR-^(R,0) + O(l)1 

and (3) follows on putting R, 0, \ for g, r, e in Lemma 2. 

The proof of (2) is similar. 

3. The case of rational a. In this section we take a = a/q, and prove a 
lemma which is a slight generalization of the latter part of the Theorem. 

LEMMA 4. We consider n satisfying (for fixed a, q, r) 

and define 

F(x;a,q,r) = ] £ 1. 
W<£, (4) 

Then (interpreting 0 log 0 as 0) we have 

F(x; a, g, r) = xg"1 f(q, r) + 0(g log g) + 0(\r\ log |r|) + 0(1). 

Proof We write 
(5) n = qnt + I, 0 < Z < g, 

^ \ fa?* + M , ,' 
(6) = am + I. 

We can choose a', g' so that a'q — ag' = ± 1, whence 

(y,z) = (ay - qz, afy - g'z), 

and so 

I [an 

v ' L V ~ J /
 = ^'m +1"̂  

where I" is independent of m and 

(7) u = al — qV. 

It is clear from (5) to (7) that —r^u<q — r and that u runs with / through 
a complete set of residues modulo q. Hence for / = 0, 1, . . . , g — 1, u takes 
the values — r, — r + 1, . . . , g — r — 1, in some order, each just once. 

Now we break up the sum F(x; a, g, r) into a double sum over /, m, or equi-
valently, over u, m. For u = 0, the inner sum over m is 0(1), since (4) can hold 
only if m — — V ± 1. For other w, we have to sum over m — 0, 1, . . . , [x/q], 
and possibly [x/q] + 1. But with error 0(1) we can omit the values 0, [x/q] + 1. 
Then using Lemmas 1 and 2 we find (for u ^ 0) 

F(x;a,q,r) = £ £ 1 + 0(g) 
—r<w<ff—r l < r a < 0 / f f ] , 

(w,7/H-Z")=l 
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= £ Ml«rV(l«l)+0( £ d(\u\))+0(q) 

= xff-1^(?)r) + o( £ d(|«|))+0(g). 
\—rKu<q—r / 

The Lemma now follows from 

d(l) + d(2) + . . . + d(x) = 0(x log x) ; 

more precise results implying this are well known [2, p. 262, Theorems 318 to 
320]. 

4. Proof of the Theorem. For rational a, we have only to take r = 0 
in Lemmas 2 and 4. 

Now let a be irrational, and let a/q, a'/g* be two successive convergents to its 
infinite continued fraction expansion. (In the case of negative a, which we could 
of course avoid, the convergents are those of the continued fraction for |a|, 
with the signs of the numerators changed.) For large x, we choose q to satisfy 

(8) q <x( logx)~ 2 < qf. 

Clearly q tends to infinity with x, and the theorem follows if we prove 

(9) f(x, a) =-~2 + O(x/log x) + 0{xq*). 
IT 

We define r = r(n) = r(n, a, q) by 

(10) r = [n(qa - a)], 

whence 

(ID Ian] = [VL±1] . 

As n takes the values 1, 2, . . . , x, we note that r takes the values 0, 1, . . . , 
R — 1 or —1, — 2, . . . , — R, according to the sign of a — a/q, where, by (8) 
and since \a — a/q\ < l/qqf, we have 

(12) R < 1 + x/qf < 1 + log2 x. 

If q > log3 x, (11) and (12) show that [an] = [an/q] except possibly for n 
in 0(R) = 0(q/ log x) residue classes (mod q). Now by (8) there are, up to x, 
only O(x/logx) such n, so (9) follows from 

fix, a) = f(x, a/q) + O(x/log x) 

= F(x; a, q, 0) + O(x/log x) 

= xq-1 \f/(q, 0) + 0(q log q) + O(x/log x) 

= xq~l \j/{q, 0) + O(x/log x), 

using Lemmas 2 and 4 (with r = 0) and (8). 
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We may therefore assume 

(13) q < log3 x. 

We write 

f{x, a) = X) X) 1» 
r Z r<n<Fr , ( l ) 

where Xr+1,...,YT ( = Xr±i unless r = R — 1 or — i?) are the consecutive 
values of n for which r takes a given value. The outer sum is over 0 < r < R or 
0 > r > — R as the case may be. By (11) and Lemma 4, the inner sum is 

F(Yr] a, q, r) - F(Xr; a, q, r) = xg"1 *(g, r) + 0(ff log g) + 0(R log i?). 

Hence using (12) and (13) we find 

(14) / (* , a) = £ (F r - X f) g"1 Hi, r) + O(log6 *) . 
r 

Now we may assume 

(15) R > q\ 

For otherwise (9) follows immediately from (14) and Lemma 2. 
We next note that, except for r — R — 1 or — R, Yr — Xr can take only two 

different values; these are consecutive integers, the smaller of which is 
[\qa — a|~r]. It easily follows that 

V - Y ixFrl + °(xRrl)> iir = R - lor -R, 
r r XxR-' + OixR-2), otherwise. 

Substituting in (14) we find 

/ (* , a) = xq-1 Rrly£ rP(q, r) + OipcST1) + O(log6 x). 
r 

Now (9) follows from (15) and Lemma 3, and so the proof is complete. 

5. Conclusion. It would not be difficult to prove a similar result (with 
6/7T2 k2 in place of 6/71-2) for n satisfying (w, [an]) = k in place of (1). 

I am indebted to Professor Davenport and Dr. Roth for reading earlier 
drafts of this paper, and pointing out some obscurities and errors. 
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