ON INTEGERS \boldsymbol{n} RELATIVELY PRIME TO $[\alpha n]$

G. L. WATSON

1. Introduction. The object of this paper is to consider a problem suggested by Dr. K. F. Roth, on the distribution of integers n that are relatively prime to the integral part of $\alpha n, \alpha$ being a fixed real number. He conjectured that the number of positive integers up to x with this property is asymptotic to $6 x / \pi^{2}$ (or in other words that they have the density $6 / \pi^{2}$), for irrational α. I prove this and rather more in the following

Theorem. For every real number α the positive integers n such that

$$
\begin{equation*}
(n,[\alpha n])=1 \tag{1}
\end{equation*}
$$

have a density $\delta(\alpha)$. For every irrational $\alpha, \delta(\alpha)=6 / \pi^{2}$. For rational $\alpha=a / q$, with $(a, q)=1$ and $q>0, \delta(\alpha)$ depends only on q and has the value

$$
q^{-1} \sum_{u=1}^{q-1} u^{-1} \phi(u)
$$

which tends to the limit $6 / \pi^{2}$ as $q \rightarrow \infty$.
Notation. Throughout the paper, Greek letters denote real numbers, ϵ being positive and arbitrarily small. Latin letters denote rational integers, n, q, q^{\prime}, x, d, R being positive, and a, q coprime. $\phi(x)$ and $\mu(x)$ are the functions of Euler and Möbius, $d(x)$ is the number of divisors of x, and (y, z) is the highest common factor of y and z (not both zero). $[\alpha]$ is the greatest integer not exceeding α. The constants implied by the O-notation are absolute, except in formulae containing ϵ, in which they depend on ϵ only.

We define

$$
f(x, \alpha)=\sum_{n \leqslant x,(1)} 1,
$$

where (1) refers to equation (1) above, and

$$
\psi(q, r)=\sum_{-r \leqslant u<q-r}|u|^{-1} \phi(|u|), \quad u \neq 0
$$

where an empty sum is to be interpreted as zero. Thus $\delta(\alpha)$ is the limit (to be proved to exist) of $x^{-1} f(x, \alpha)$ as $x \rightarrow \infty$, and we have to show that $\delta(a / q)=$ $\psi(q, 0)$.
2. Preliminary. The first of the following lemmas is a known result due to Vinogradov [1, chap. II, Ex. 19b], but the proof is reproduced as it is short.

Received March 4, 1953.

Lemma 1. For any l, u, x with $u \neq 0$ we have

$$
\sum_{n \leqslant x,(n+l, u)=1} 1=x|u|^{-1} \phi(|u|)+O(d(|u|)) .
$$

Proof. We may suppose $u>0$, and $0 \leqslant l<u$. Then the result for positive l follows from that for $l=0$ by putting first $x+l$ and then l for x, and subtracting; so we may suppose $l=0$. With these preliminaries the sum to be estimated is equal to

$$
\begin{aligned}
\sum_{n=1}^{x} \sum_{d|u, d| n} \mu(d) & =\sum_{d \mid u} \sum_{n \leqslant x, d \mid n} \mu(d) \\
& =\sum_{d \mid u}\left[\frac{x}{d}\right] \mu(d) \\
& =\sum_{d \mid u} \frac{x}{d} \mu(d)+O(d(u)) \\
& =x u^{-1} \phi(u)+O(d(u)) .
\end{aligned}
$$

Lemma 2.

$$
\psi(q, r)=\frac{6 q}{\pi^{2}}+O\left(q^{\epsilon}\right)+O\left(|r|^{\epsilon}\right)
$$

Proof. It is sufficient to consider the case $r=0$, which follows by partial summation from the known result [2, p. 266, Theorem 330]

$$
\sum_{n=1}^{x} \phi(n)=\frac{3 x^{2}}{\pi^{2}}+O(x \log x)
$$

Lemma 3. For $R \geqslant q^{2}$,

$$
\begin{equation*}
R^{-1} \sum_{r=0}^{R-1} \psi(q, r)=\frac{6 q}{\pi^{2}}+O(1) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
R^{-1} \sum_{r=-R}^{-1} \psi(q, r)=\frac{6 q}{\pi^{2}}+O(1) \tag{3}
\end{equation*}
$$

Proof. We count the number of times a summand with given u occurs in the double sum obtained by substituting the sum defining $\psi(q, r)$ in that on the left of (3); with unimportant exceptions it is precisely q. Thus

$$
\begin{aligned}
\sum_{r=-R}^{-1} \psi(q, r)= & \sum_{r=-R}^{-1} \sum_{-r \leqslant u<q-r,}|u|^{-1} \phi(|u|) \quad u \neq 0 \\
= & q \sum_{1 \leqslant u<R} u^{-1} \phi(u)-\sum_{u=1}^{q-1}(q-u) u^{-1} \phi(u) \\
& \quad+\sum_{v=1}^{q}(q-v+1)(R+v-1)^{-1} \phi(R+v-1) \\
= & q \psi(R, 0)+O\left(q^{2}\right) .
\end{aligned}
$$

Hence, using $R \geqslant q^{2}$, the left member of (3) is

$$
q R^{-1} \psi(R, 0)+O(1)
$$

and (3) follows on putting $R, 0, \frac{1}{2}$ for q, r, ϵ in Lemma 2.
The proof of (2) is similar.
3. The case of rational α. In this section we take $\alpha=a / q$, and prove a lemma which is a slight generalization of the latter part of the Theorem.

Lemma 4. We consider n satisfying (for fixed a, q, r)

$$
\begin{equation*}
\left(n,\left[\frac{a n+r}{q}\right]\right)=1 \tag{4}
\end{equation*}
$$

and define

$$
F(x ; a, q, r)=\sum_{n \leqslant x,(4)} 1
$$

Then (interpreting $0 \log 0$ as 0) we have

$$
F(x ; a, q, r)=x q^{-1} \psi(q, r)+O(q \log q)+O(|r| \log |r|)+O(1) .
$$

Proof We write

$$
n=q m+l, \quad 0 \leqslant l<q,
$$

$$
\begin{equation*}
\left[\frac{a n+r}{q}\right]=a m+l^{\prime} \tag{6}
\end{equation*}
$$

We can choose a^{\prime}, q^{\prime} so that $a^{\prime} q-a q^{\prime}= \pm 1$, whence

$$
(y, z)=\left(a y-q z, a^{\prime} y-q^{\prime} z\right),
$$

and so

$$
\left(n,\left[\frac{a n+r}{q}\right]\right)=\left(u, m+l^{\prime \prime}\right)
$$

where $l^{\prime \prime}$ is independent of m and

$$
\begin{equation*}
u=a l-q l^{\prime} . \tag{7}
\end{equation*}
$$

It is clear from (5) to (7) that $-r \leqslant u<q-r$ and that u runs with l through a complete set of residues modulo q. Hence for $l=0,1, \ldots, q-1, u$ takes the values $-r,-r+1, \ldots, q-r-1$, in some order, each just once.

Now we break up the sum $F(x ; a, q, r)$ into a double sum over l, m, or equivalently, over u, m. For $u=0$, the inner sum over m is $O(1)$, since (4) can hold only if $m=-l^{\prime \prime} \pm 1$. For other u, we have to sum over $m=0,1, \ldots,[x / q]$, and possibly $[x / q]+1$. But with error $O(1)$ we can omit the values $0,[x / q]+1$. Then using Lemmas 1 and 2 we find (for $u \neq 0$)

$$
F(x ; a, q, r)=\sum_{-r \leqslant u<q-r} \sum_{\substack{1 \leqslant m \leqslant[x / q] \mid \\\left(u, m+l^{\prime}\right)=1}} 1+O(q)
$$

$$
\begin{aligned}
& =\sum_{-r \leqslant u<q-r}\left[\frac{x}{q}\right]|u|^{-1} \phi(|u|)+O\left(\sum_{-r \leqslant u<q-r,} d(|u|)\right)+O(q) \\
& =x q^{-1} \psi(q, r)+O\left(\sum_{-r \leqslant u<q-r} d(|u|)\right)+O(q) .
\end{aligned}
$$

The Lemma now follows from

$$
d(1)+d(2)+\ldots+d(x)=O(x \log x)
$$

more precise results implying this are well known [2, p. 262, Theorems 318 to 320].
4. Proof of the Theorem. For rational α, we have only to take $r=0$ in Lemmas 2 and 4.

Now let α be irrational, and let $a / q, a^{\prime} / q^{\prime}$ be two successive convergents to its infinite continued fraction expansion. (In the case of negative α, which we could of course avoid, the convergents are those of the continued fraction for $|\alpha|$, with the signs of the numerators changed.) For large x, we choose q to satisfy

$$
\begin{equation*}
q \leqslant x(\log x)^{-2}<q^{\prime} \tag{8}
\end{equation*}
$$

Clearly q tends to infinity with x, and the theorem follows if we prove

$$
\begin{equation*}
f(x, \alpha)=\frac{6 x}{\pi^{2}}+O(x / \log x)+O\left(x q^{-\frac{1}{2}}\right) \tag{9}
\end{equation*}
$$

We define $r=r(n)=r(n, \alpha, q)$ by

$$
\begin{equation*}
r=[n(q \alpha-a)], \tag{10}
\end{equation*}
$$

whence

$$
\begin{equation*}
[\alpha n]=\left[\frac{a n+r}{q}\right] . \tag{11}
\end{equation*}
$$

As n takes the values $1,2, \ldots, x$, we note that r takes the values $0,1, \ldots$, $R-1$ or $-1,-2, \ldots,-R$, according to the sign of $\alpha-a / q$, where, by (8) and since $|\alpha-a / q|<1 / q q^{\prime}$, we have

$$
\begin{equation*}
R<1+x / q^{\prime}<1+\log ^{2} x \tag{12}
\end{equation*}
$$

If $q>\log ^{3} x$, (11) and (12) show that $[\alpha n]=[a n / q]$ except possibly for n in $O(R)=O(q / \log x)$ residue classes $(\bmod q)$. Now by (8) there are, up to x, only $O(x / \log x)$ such n, so (9) follows from

$$
\begin{aligned}
f(x, \alpha) & =f(x, a / q)+O(x / \log x) \\
& =F(x ; a, q, 0)+O(x / \log x) \\
& =x q^{-1} \psi(q, 0)+O(q \log q)+O(x / \log x) \\
& =x q^{-1} \psi(q, 0)+O(x / \log x),
\end{aligned}
$$

using Lemmas 2 and 4 (with $r=0$) and (8).

We may therefore assume

$$
\begin{equation*}
q \leqslant \log ^{3} x \tag{13}
\end{equation*}
$$

We write

$$
f(x, \alpha)=\sum_{r} \sum_{X_{r}<n \leqslant Y_{r},(1)} 1,
$$

where $X_{r}+1, \ldots, Y_{r}\left(=X_{r \pm 1}\right.$ unless $r=R-1$ or $\left.-R\right)$ are the consecutive values of n for which r takes a given value. The outer sum is over $0 \leqslant r<R$ or $0>r \geqslant-R$ as the case may be. By (11) and Lemma 4, the inner sum is

$$
F\left(Y_{r} ; a, q, r\right)-F\left(X_{r} ; a, q, r\right)=x q^{-1} \psi(q, r)+O(q \log q)+O(R \log R)
$$

Hence using (12) and (13) we find

$$
\begin{equation*}
f(x, \alpha)=\sum_{r}\left(Y_{r}-X_{r}\right) q^{-1} \psi(q, r)+O\left(\log ^{6} x\right) \tag{14}
\end{equation*}
$$

Now we may assume

$$
\begin{equation*}
R \geqslant q^{2} . \tag{15}
\end{equation*}
$$

For otherwise (9) follows immediately from (14) and Lemma 2.
We next note that, except for $r=R-1$ or $-R, Y_{r}-X_{r}$ can take only two different values; these are consecutive integers, the smaller of which is $\left[|q \alpha-a|^{-1}\right]$. It easily follows that

$$
Y_{r}-X_{r}=\left\{\begin{array}{lr}
x R^{-1}+O\left(x R^{-1}\right), & \text { if } r=R-1 \text { or }-R \\
x R^{-1}+O\left(x R^{-2}\right), & \text { otherwise }
\end{array}\right.
$$

Substituting in (14) we find

$$
f(x, \alpha)=x q^{-1} R^{-1} \sum_{r} \psi(q, r)+O\left(x R^{-1}\right)+O\left(\log ^{6} x\right)
$$

Now (9) follows from (15) and Lemma 3, and so the proof is complete.
5. Conclusion. It would not be difficult to prove a similar result (with $6 / \pi^{2} k^{2}$ in place of $6 / \pi^{2}$) for n satisfying $(n,[\alpha n])=k$ in place of (1).

I am indebted to Professor Davenport and Dr. Roth for reading earlier drafts of this paper, and pointing out some obscurities and errors.

References

1. I. M. Vinogradov, Osnovy teorii ${ }^{\text {čisel }}$ (Moscow and Leningrad, 1949).
2. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers (Oxford, 1938).

University College, London

