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Numerical simulations are carried out on the vortex-induced rotations of a freely rotatable
rigid square cylinder in a two-dimensional uniform cross-flow. A range of Reynolds
numbers between 40 and 150 and density ratios between 0.1 and 10 are considered.
Results show eight different characteristic regimes, expanding the classification of Ryu &
Iaccarino (J. Fluid Mech., vol. 813, 2017, pp. 482–507). New regimes include the transition
and wavy rotation regimes; in the π-limited oscillation regime we observe multipeak
subregimes. Moment-generating mechanisms of these regimes and subregimes are further
elucidated. A phenomenon related to the influence of density ratio is the tooth-like shape
of the π/2-limit oscillation regime observed in the regime map, which is explained as a
result of the imbalance relation between the main frequencies of rotation response and
the vortex shedding frequency. In addition, existence of multiple regimes and multistable
states are discussed, indicating multiple stable attractive structures in phase space.

Key words: flow-structure interactions, vortex shedding

1. Introduction

Fluid–structure interactions lead to many important phenomena in engineering
applications, including the vortex-induced vibrations (VIVs) and vortex-induced
rotations (VIRs). Both VIVs and VIRs are simplified but fundamental models for
understanding the mechanisms of fluid–structure interactions. In this section we will
briefly revisit the literature to explain the related concepts, and to clarify the motivation of
the present study.

† Email address for correspondence: le.fang@buaa.edu.cn
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There have been extensive experimental and numerical investigations on VIVs in past
years (Sarpkaya 2004; Williamson & Govardhan 2004). In these studies, circular cylinder
is the simplest model but can already lead to typical VIV phenomena. Griffin (1985)
and Williamson & Roshko (1988) investigated systematically the fluctuating lift and drag
forces on a two-dimensional cylinder in a uniform cross-flow, coupled with the alternate
vortex shedding with three typical patterns, i.e. the 2S mode, 2P mode and P+S mode,
respectively. These results were validated by using numerical simulations (Minewitsch,
Franke & Rodi 1994; Taylor & Vezza 1999). As one of the most interesting phenomena of
VIVs, the frequency lock-in has been systematically studied. As an example, considering
the transverse oscillation of a circular cylinder, discussions on the parameter influences
can be found in Bearman (2011). Towards complicated reality, there have also been many
studies on the VIVs of square cylinders (Cheng, Zhou & Zhang 2003; Amandolèse &
Hémon 2010; Bao, Wu & Zhou 2012; Jiang et al. 2016; Zhang et al. 2018; Han & de Langre
2022; Qiu et al. 2022) and multiple objects (Mittal, Kumar & Raghuvanshi 1997; Assi,
Bearman & Meneghini 2010). By comparing with a single circular cylinder, these results
reveal more complicated VIVs, where the responses of objects are affected by additional
setting parameters.

On the other hand, the investigations on VIRs are not so broad by comparison with
VIVs. There exist some investigations on the VIRs of typical shapes of freely rotating
cylinders, such as circular cylinders (Juarez et al. 2000), triangular cylinders (Wang
et al. 2011, 2019) and rectangular cylinders (Robertson et al. 2003). However, the most
common model for studying VIRs is to use square cylinders. Early experimental and
numerical studies by Zaki, Sen & Gad-El-Hak (1994) recognized four typical modes of
square cylinder response, i.e. static stability, oscillation, reverse rotation and autorotation,
respectively. A systematic study was performed by Ryu & Iaccarino (2017) and enriched
the response modes into six characteristic regimes through a parameter investigation,
i.e. stable, small-amplitude oscillation, π/2-limit oscillation, random rotation, π-limit
oscillation and autorotation regimes, respectively. Comparing with Zaki et al. (1994),
this classification showed more details and complexities at moderate Reynolds numbers,
by discussing the phase synchronization/differences between the moment generation and
angle of rotation in different regimes. There also exist other studies considering more
complicated cases, such as the combination of square cylinders (Shao et al. 2019) and
rotation in a microchannel (Pan, Chen & Wu 2019). Similar to the VIVs, these complicated
settings lead to different response of the square cylinder, but the responses were not beyond
the classification of Ryu & Iaccarino (2017). In the present paper we will show more
complicated response of a single cylinder by expanding the parameter space. In fact, Ryu &
Iaccarino (2017) remarked that the rotational inertia of a square cylinder, which can also be
dimensionlessly parameterized to the density ratio between cylinder and fluid, might also
affect the dynamics responses of a square cylinder, but almost all existing studies used
a constant rotational inertia. Expanding the parameter space by considering the change
of rotational inertia will then be performed in the present paper, aiming at revealing new
response modes and underlying mechanisms in VIRs.

Some phenomena of VIRs are analogous to VIVs, for example, the small-amplitude
oscillation regime of square cylinders can also be considered as an angular vibration and
analytically predicted by introducing a free-streamline boundary-layer model (Luo et al.
2023), where the elastic force is not generated by a solid property, but is the result of a
flow field. In this sense, the autorotation regime shows its particularity by comparing with
the phenomena in VIVs and has attracted many investigations, for example Lugt (1980,
1983), Ryu (2018) and Xia et al. (2018). In the present paper, we will also contribute to
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Figure 1. Schematic diagram of rigid square cylinder moving in a uniform flow with velocity u∞.

this understanding. Specifically, we will show a ‘wavy rotation’ regime, which is similar
to the autorotation regime but contains periodically short-time back swing.

This paper is organized as follows: the problem formation and computational method
are described in § 2; the results and discussion are presented in § 3; finally, in § 4 we give
the conclusions.

2. Problem description and numerical method

In the present paper, we consider a two-dimensional case that a uniform incompressible
flow passes and interacts with a freely rotatable rigid square cylinder, as sketched in
figure 1. The streamwise and normal directions are denoted as x and y, respectively.
The square cylinder, with side length L, can freely rotate around its centre O, which is
located 8.5L from the inlet in the streamwise direction, and in the centre in the normal
direction. The computational domain size is 32L × 16L, with all boundaries having the
free stream velocity condition, i.e. u = (u∞, 0) with u being the flow velocity. The flow
field is governed by the incompressible Navier–Stokes equations,

∇ · u = 0, (2.1)

ρ0

(
∂u
∂t

+ u · ∇u
)

= −∇p + μ�u + f , (2.2)

with flow parameters ρ0 the fluid density and μ the dynamics viscosity. Here t is the time,
p is the pressure and f is the momentum forcing applied to enforce the no-slip boundary
condition along the immersed boundary.

According to the theorem of angular momentum, the governing equation for a freely
rotatable rigid body is

I
d2θ

dt2
= T, (2.3)

where I is the moment of inertia about the centre of the cylinder, θ is the rotation angle and
T = |T | is the torque exerted on the mass by the fluid. For the case of a square cylinder
we can write

I = ρsL4/6, (2.4)

T =
∫

Γ

F × X r ds, (2.5)
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where ρs is the density of the cylinder, Γ is the boundary of the cylinder, F is the
Lagrangian force exerted on the cylinder surface and X r is the displacement vector with
the centre of the cylinder. Substituting (2.4) into (2.3) leads to

T = 1
6
ρsL4 d2θ

dt2
. (2.6)

The non-dimensionalization on the above equations is performed by introducing the
following characteristic scales: u∞ for velocity; L for length; ρ0 for fluid density; L/u∞ for
t; ρ0u2∞ for p; ρ0u2∞/L for f ; ρ0u2∞ for F ; ρ0L4 for I; ρ0u2∞L2 for T . The non-dimensional
governing equations are therefore

∂u∗

∂t∗
+ u∗ · ∇∗u∗ = −∇∗p∗ + 1

Re
Δ∗u∗ + f ∗, (2.7)

1
6
ρ

d2θ

dt∗2 = T∗, (2.8)

where Re = ρ0u∞L/μ is the Reynolds number, and ρ = ρs/ρ0 is the non-dimensional
solid density. The initial condition of the cylinder is set as θ |t=0 = θ0 and dθ/dt|t=0 = 0.

The interaction between the fluid and the immersed boundary is described by
introducing the Lagrangian force, calculated as

F ∗ = α

∫ t∗

0
(U∗

ib − U∗
s ) dt′ − β(U∗

ib − U∗
s ), (2.9)

where α and β are negative constants, U∗
s is the velocity of the cylinder boundary and

U∗
ib is the fluid velocity obtained by interpolation at the immersed boundary, which is

expressed as

U∗
ib(s, t) =

∫
Ω

u∗(x, t)δ(X (s, t) − x) dx (2.10)

with δ() the Dirac delta function (in calculations we use a smoothed delta function
instead). The relation between Lagrangian force and Eulerian force is

f ∗(x, t) =
∫

Γ

F ∗(s, t)δ(x − X (s, t)) ds. (2.11)

The details on the immersed boundary method and numerical discretizations can be found
in Huang, Shin & Sung (2007).

In order to verify the correctness of the calculation, we calculate the case where flow
passes a fixed square cylinder. The Reynolds number is Re = 100. Mesh and calculation
domain independence is verified in table 1. It is shown that when the calculation domain
is larger than 16L × 32L, and the grid number is more than 512 × 1024, the aerodynamic
performances, including the mean drag coefficient CD, root-mean-square (r.m.s.) lift
coefficient CL,rms and Strouhal number St, can converge.

To assess the accuracy of the code, we select the case with 512 × 1024 grids,
in a 16L × 32L calculation domain, and simulate a fixed, rigid square cylinder in a
two-dimensional uniform cross-flow. Compared with the results in the literature, as shown
in table 2, a good agreement can be observed to support the present calculations.

Further validations by comparing with Ryu & Iaccarino (2017) are performed at
different Reynolds numbers, respectively, as shown in figure 2. In the insets we plot the
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Calculation domain Grid number CD CL,rms St

8L × 8L 256 × 256 2.3643 0.1705 0.1883
8L × 16L 256 × 512 1.8267 0.1906 0.1650
16L × 32L 512 × 1024 1.5874 0.1938 0.1477
32L × 64L 1024 × 2048 1.5084 0.1805 0.1409
16L × 32L 256 × 512 1.6585 0.1853 0.1433
16L × 32L 512 × 1024 1.5874 0.1938 0.1477
16L × 32L 1024 × 2048 1.5733 0.2006 0.1483

Table 1. Comparison of mean drag coefficient CD, r.m.s. lift coefficient CL,rms and Strouhal number St under
different computational domains and grid numbers. Reynolds number Re = 100.

Re = 100 CD CL,rms St

Arnal, Goering & Humphrey (1991) 1.39 — 0.14
Sohankar, Norbergb & Davidson (1997) 1.47 0.156 0.146
Cheng, Whyte & Lou (2007) 1.44 0.152 0.144
Yoon, Yang & Choi (2010) 1.4385 0.1774 —
Sen, Mittal & Biswas (2011) 1.5287 0.1928 0.1452
Park et al. (2015) 1.378 0.161 0.141
Ryu & Iaccarino (2017) 1.5642 0.1932 0.1506
The present calculation 1.5874 0.1938 0.1477

Table 2. Comparison of mean drag coefficient CD, r.m.s. lift coefficient CL,rms and Strouhal number St with
reference results, for the case that flow passes a fixed square cylinder. Reynolds number Re = 100. The present
calculation is performed with 512 × 1024 grids, in a 16L × 32L calculation domain.
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Figure 2. Comparison of (a) drag coefficient (b) lift coefficient with Ryu & Iaccarino (2017) at Reynolds
number from 45 to 150, respectively. The insets show the relative difference between the present study and the
reference work.

relative differences between them, which are always less than 4 %. This value is small
by comparison with the literature (see table 2), indicating the correctness of the present
results.

In the following parts, we perform calculations on the freely rotatable square cylinder
under various parameters of 0.1 � ρ � 10 and 40 � Re � 150.
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3. Results

In order to better describe and analyse the phenomena, here we first define two terms.
Following Park et al. (2015), Ryu & Iaccarino (2017), Pan et al. (2019) and Shao et al.
(2019), we use ‘regime’ to refer to the dynamic responses of the square cylinder; by
contrast, the term ‘region’ is used to describe an area in the (ρ, Re) phase plane, for
the ease of following discussions. As will be shown in the following parts, ‘region’ and
‘regime’ are not a bijection. We will discuss the regimes in § 3.1 and show the regime map
by defining the regions in § 3.2.

3.1. Regimes of dynamic responses of a square cylinder
In this subsection we will summarize and classify the regimes we observed in calculations.
We follow Ryu & Iaccarino (2017) to define six regimes, i.e. stable, small-amplitude
oscillation, π/2-limit oscillation, random rotation, π-limit oscillation and autorotation
regimes. Note that these definitions are not exactly the same as Ryu & Iaccarino (2017),
for example, we observe different dynamic responses in the π-limit oscillation regime.
Besides, we will show two new regimes, i.e. wavy rotation and transition regimes, which,
to our knowledge, have not been reported in the literature.

These typical regimes are presented in figure 3, by selecting some typical combinations
(ρ, Re). Their descriptions are listed as follows.

(a) The stable regime indicates that the initial perturbation is damped, and the square
cylinder reaches a stable equilibrium point.

(b) The small-amplitude oscillation regime indicates that the square cylinder oscillates
monoharmonically with small amplitudes less than 10−2. This threshold value is
consistent with Ryu & Iaccarino (2017).

(c) The π/2-limit oscillation regime indicates that the amplitude of the rotation angle is
close to ±π/4. In addition, multiharmonic oscillations can be observed.

(d) The transition regime can be considered as a mixture of the π/2-limit oscillation
and random rotation regimes. Specifically, the regime randomly switches between
different quasi-π/2-limit oscillation regimes with different quasiequilibrium angles.

(e) The random rotation regime indicates intermittent oscillations and rotations
in a temporally random fashion. Comparing with the transition regime, no
quasi-π/2-limit oscillation can be observed.

( f ) The π-limit oscillation regime indicates another temporal oscillation of the cylinder
with a rotation limit π. The cylinder may oscillate or rotate in a random fashion at
the beginning, and then oscillates periodically. Note that Ryu & Iaccarino (2017)
reported that the π-limit oscillation regime always contains a single bell-like curve
in each period, but we also find other subregimes with multiple peaks and valleys
in a period (see the dashed line in figure 3f as an example). The details of these
phenomena will be analysed in § 3.4.3.

(g) The wavy rotation regime indicates that in a period, the cylinder rotates for a
large angle in a certain direction and then reverses for a small angle. According to
symmetry, the rotation direction of the cylinder can be clockwise or anticlockwise.
In addition, we also find another subregimes of this regime which reverses two times
in one period (see discussions later in § 3.4.2).
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(h) The autorotation regime indicates that the cylinder undergoes random rotations at
the beginning and then autorotates in one direction without reversal. According to
symmetry, the rotation direction of the cylinder can be clockwise or anticlockwise.

3.2. Overview of the region map of regimes
Based on our calculations, we summarize the regimes under different Reynolds numbers
and density ratios in figure 4. Each symbol corresponds to a numerical test case, while
the different symbol styles are used to represent different regimes. Based on these results,
we further divide the (ρ, Re) phase plane into six regions (contours in figure 4). Their
descriptions are listed as follows.

Region (1) corresponds to the stable regime at Re = 40. Changing the value of ρ does
not affect the regime.

Region (2) corresponds to the small-amplitude oscillation regime. Again, changing the
value of ρ does not affect the regime.

Region (3) corresponds to the π/2-limit oscillation regime. According to figure 4, it is
interesting that an irregular tooth-like shape is observed at ρ = 5 and Re = 130, 140. This
phenomenon will be explained later in § 3.3.

Region (4) corresponds to both the transition and random rotation regimes. We classify
these two regimes in the same region since both of them correspond to unstable motions
of the cylinder.

Region (5) is complicated since there exists four regimes chaotically, i.e. random
rotation, π-limit oscillation, wavy rotation and autorotation regimes. In figure 4 we present
seven test cases as ‘multiple regimes’, but indeed we have calculated many more cases in
this region and found that the results are quite uncertain. For instance, in figure 5 we show
the regimes of 40 test cases for Re = 140 and ρ � 4. It can be observed that regimes are
chaotic. In addition, we can observe different dynamics for the π-limit oscillation and
wavy rotation regimes in this region, in which one period can contain multiple peaks.
These different dynamics have not been discussed in the literature, and they will be named
as ‘subregimes’ in the present study. The complexity in this region is also reflected from
the fact that different initial angles of the cylinder can lead to different regimes (see
discussions in § 3.5).

Region (6) corresponds to the autorotation regime.
We remark that Ryu & Iaccarino (2017) have defined a classification for the ρ = 2 cases.

Here our classifications are principally consistent with Ryu & Iaccarino (2017), while the
differences are mainly due to the slight differences in the definition of regimes.

In the following subsections, we will first discuss the tooth-like shape of the π/2-limit
oscillation regime, and then visit in detail the typical regions in figure 4.

3.3. Tooth-like shape in the regime map
As summarized in § 3.2, an interesting phenomenon in the region map of regimes is the
irregular tooth-like shape of region (3), which is located at ρ = 5 and Re = 130, 140. In
order to understand why these parameters lead to the π/2-limit oscillation regime instead
of the transition or random rotation regimes, an analysis of the frequency spectrum on the
dynamic responses of the square cylinder is carried out.

At Reynolds number Re = 120, we select two typical cases with ρ = 5 and 6. It
can be found from figure 4 that both cases lead to π/2-limit oscillation, hence it is
possible to transfer the time evolution of the lift coefficient (shown in figures 6a and 6b,
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Figure 3. Time histories of rotation angle of typical regimes: (a) stable regime (Re = 40, ρ = 2);
(b) small-amplitude oscillation regime (Re = 70, ρ = 10); (c) π/2-limit oscillation regime (Re = 80, ρ = 2);
(d) transition regime (solid line, Re = 90, ρ = 4; dashed line, Re = 100, ρ = 1); (e) random rotation regime
(Re = 100, ρ = 2); ( f ) π-limit oscillation regime (solid line (1-peak subregime), Re = 130, ρ = 1; dashed
line (2-peak subregime), Re = 140, ρ = 3.1); (g) wavy rotation regime (solid line, Re = 140, ρ = 2.5; dashed
line, Re = 140, ρ = 2.6); (h) autorotation regime (solid line, Re = 150, ρ = 2; dashed line, Re = 150, ρ =
0.1).
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Figure 4. Overview of regimes on the (ρ, Re) phase plane. According to the regimes, the phase plane is
further divided into six regions. The cases with ρ = 2 correspond to the set-up of Ryu & Iaccarino (2017).
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Figure 5. Regimes and subregimes for the cases of Re = 140, ρ � 4. Initial angle is selected as θ0 = 0.1.

respectively) to frequency space. As seen from figures 6(c) and 6(d), both cases have
two main frequencies. This is qualitatively consistent with the observations of Ryu &
Iaccarino (2017) for lower Reynolds number Re = 90, but here the two main frequencies
have comparable amplitudes, rather than the quasimonofrequency responses in Ryu &
Iaccarino (2017). In fact, in Ryu & Iaccarino (2017) the main frequency was shown to
correspond to the vortex shedding frequency, while the small-amplitude small-frequency
envelope was weak, and was not explained. By contrast, in our cases both frequencies have
their amplitudes at the same order, leading to the transition to other complicated regimes.

Clearly, by naming the frequency of largest amplitude as ‘basic frequency’, and the
other one as ‘subfrequency’, the comparison between figures 6(c) and 6(d) shows their
different orders. We can perform the same operation on all cases with π/2-limit oscillation
regime near the tooth-like shape in the regime map, as shown in table 3. It is interesting
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Figure 6. Comparison between (a) Re = 120, ρ = 5 and (b) Re = 120, ρ = 6, showing (i) the evolution of
lift coefficient CL and (ii) its frequency spectrum.

that for all the ρ = 5 cases the basic frequency is always smaller than the subfrequency,
while for other cases it is the opposite. In table 3 we also use the reference frequencies
of the lift coefficient evolution in the flow past a fixed circular cylinder (denoted as RF1)
and square cylinders (denoted as RF2 and RF3) as references, which could approximately
represent the frequencies of natural vortex shedding. It can be found that for the ρ = 5
cases the subfrequency is close to the reference frequencies, while for other cases the
basic frequency is close to the reference frequencies. We can therefore explain that the
transition from π/2-limit oscillation regime to other unstable regimes can be related to the
interaction between the cylinder and the natural vortex shedding. For the ρ /= 5 cases,
the basic frequency is close to the reference frequencies, indicating that the influence
of natural vortex shedding is dominant. Hence, increasing the Reynolds number will
lead to instability of natural vortex shedding and then a change of the regime of the
cylinder. By contrast, for the ρ = 5 cases the dominant factor for the cylinder response
is a lower-frequency envelope, therefore the instability of natural vortex shedding will be
more difficult to change the regime of the cylinder.

In brief, the comparison of the frequency with that of vortex shedding can explain the
formation of the tooth-like shape of the π/2-limit oscillation regime.

3.4. Moment-generating mechanisms of new regimes and subregimes
As summarized in § 3.1, in the present study we have observed new regimes and
subregimes for the cylinder responses. In this section we will follow the analysis method of
Ryu & Iaccarino (2017), to show the underlying moment-generating mechanisms of these
regimes and subregimes.

3.4.1. Transition regime
As shown in figure 3(d), the typical dynamics of the transition regime indicates that
the regime randomly switches between different quasi-π/2-limit oscillation regimes with
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Vortex-induced rotation of a square cylinder

Re = 120 ρ = 5 ρ = 6 ρ = 7 ρ = 8 RF1 RF2 RF3
Basic frequency 0.0425 0.145 0.1375 0.1425 0.17 0.154 0.154
Subfrequency 0.1275 0.0425 0.04 0.0375 — — —
Re = 130 ρ = 5 ρ = 6 ρ = 7 ρ = 8
Basic frequency 0.0525 * 0.1425 0.145 0.173 0.156 0.156
Subfrequency 0.155 * 0.035 0.035 — — —
Re = 140 ρ = 5 ρ = 6 ρ = 7 ρ = 8
Basic frequency 0.0534 * * 0.145 0.177 0.158 0.157
Subfrequency 0.1602 * * 0.0325 — — —

Table 3. Comparison of main frequencies of lift coefficient evolution in different cases. Here, RF1 refers to
the reference frequency of lift coefficient evolution in the flow past a fixed circular cylinder (Williamson 1989);
RF2 and RF3 refer to the reference frequency of lift coefficient evolution in the flow past a fixed square cylinder
with angle 0 and π/4, respectively. The sign * corresponds to transition or random rotation regimes without
any main frequency.
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0 –π/4 θ
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ω
, 
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m
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ω
θ

Cm–0.4

1

0
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–2

280 290 300

t
310 320 330

Figure 7. Time histories of the rotation angle θ , angular velocity ω and moment coefficient Cm, in the switch
procedure of transition regime (Re = 90, ρ = 4).

different quasiequilibrium angles. Since the dynamics of the π/2-limit oscillation regime
has already be analysed with substantial details in Ryu & Iaccarino (2017), here we will
emphasize the switch procedure and the corresponding moment-generating mechanisms,
as presented in figure 7. In the figure we show the time history of the rotation angle (θ ),
the non-dimensional angular velocity ω (defined as ω∗L/u∞) and the moment coefficient
Cm (defined as 2T∗/ρ0u2∞L2). Seven typical instants (A–G) are marked. Between A and C,
the square cylinder is driven by the out-of-phase synchronized moments, as the same as
the π/2-limit oscillation regime described by Ryu & Iaccarino (2017). However, between
C and F the behaviour is different, where ω and Cm are close to zero and change slowly,
corresponding to a quasiequilibrium point with instable properties. Finally, after F the
system switches to another π/2-limit oscillation regime with a new quasiequilibrium
angle.

Figure 8 shows the pressure and spanwise vorticity contours with streamlines at six
instants (B to G) marked in figure 7. At B, two recirculation zones are observed on the
leeward surfaces of the cylinder, the same as the π/2-limit oscillation regime of Ryu
& Iaccarino (2017). At C, the cylinder has rotated by approximately ±π/4 clockwise.
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The stagnation pressure pocket is now near corner ‘p’, which produces an anticlockwise
moment. As shown in figure 7, the moment reaches its maximum and the magnitude of
angular velocity decreases rapidly as a consequence. The flow patterns in the downstream
wake region in A to C fall into the 2S mode, and a regular von Kármán vortex street with
uniform intensity of the shed vortices is observed, the same as the π/2-limit oscillation
regime of Ryu & Iaccarino (2017).

At D we can clearly observe the vortex shedding. The position of the stagnation pressure
pocket does not generate a significant rotational moment, so the moment at D is close to
zero. However, compared with A, the angular velocity at D is stronger, leading to the vortex
shedding by inertia.

From D to E, the rotation angle fluctuates around −π/4, while the moment and angular
velocity fluctuate around zero. At E the recirculation zone is located near the lower part
of the wake region. However, the net moment is in the clockwise direction and drives the
cylinder towards clockwise rotation.

At F, the cylinder overcomes the asymptotic limit (−π/4) and keeps rotating. The
stagnation pressure pocket is now located near corner ‘q’ and generates a clockwise
moment that drives the cylinder towards clockwise rotation. The flow pattern is the
asymmetric P+S mode from D to F (as displayed with red circles in figure 8h). By contrast,
the flow patterns in the downstream wake region in G return to the 2S mode, as displayed
with red circles in figure 8(l).

Furthermore, we compare the transition regime with the π/2-limit oscillation regime
in figure 9. Note that in order to better account for differences in the moments of inertia
between the two regimes, here we present the angular acceleration α (which equals to
Cm/2I) instead of the moment. We choose the similar starts and observe the difference
afterwards. As shown in figure 9, between instants A and C, the angle and angular
acceleration of the two regimes are nearly synchronous. Between instants C and F, the
π/2-limit oscillation repeats periodically while the transition regime switches to another
quasi-π/2-limit oscillation regime with a different quasiequilibrium angle. The initial
difference happens from B to C, in which the angular acceleration of the transition
regime is lower than that of the π/2-limit oscillation regime. This leads to a slower and
clockwise variation of the angular velocity for the transition regime, and finally yields the
inverse rotations between the two regimes at C. In the transition regime, the cylinder then
continues to rotate and cross the −π/4 asymptotic limit. We can also explain the transition
if we compare the quasi-π/2-limit oscillation of the transition regime with the π/2-limit
regime from A to B. It can be observed that for the transition regime, the oscillation
amplitude of the angle is larger, while at A the angle is closer to the −π/4 asymptotic
limit. This larger-amplitude oscillation is accordingly more unstable.

3.4.2. Wavy rotation regime and the multipeak subregimes
As discussed in § 3.1, the wavy rotation regime indicates that the cylinder undergoes a large
rotation in one direction followed by a slight reversal in the opposite direction periodically.
The wavy rotation regime can be regarded as a mixture of the π-limit oscillation and
autorotation regimes.

Similar to the last subsection, figure 10 represents the time history of typical quantities
and marks six instants (A–F). The snapshots of the flow field are accordingly shown in
figure 11.

As the square cylinder rotates to its minimum angle at A, a stagnation point is formed
near corner ‘s’, generating a clockwise moment. The cylinder approaches a symmetric
diamond configuration, and two large recirculation regions are observed behind the two
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Figure 8. Pressure contours (a,c,e,g,i,k) and streamlines with spanwise vorticity contours (b,d, f,h, j,l) for the
transition regime at six instants (B to G) marked in figure 7. The arrow inside the cylinder represents the angular
velocity of cylinder.
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Figure 9. Comparison of angle θ and angular acceleration α, between the π/2-limit oscillation (Re = 80,
ρ = 2, denoted as ‘π/2-limit’) and transition regimes (Re = 90, ρ = 4, denoted as ‘trans’).
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Figure 10. Time histories of the rotation angle θ , angular velocity ω and moment coefficient Cm, in a time
interval for the transition regime (Re = 140, ρ = 2.4).

leeward faces. The pressure distributions on the two leeward faces are nearly symmetric,
resulting in a net clockwise moment that drives the cylinder to rotate farther in the same
direction.

At B, the cylinder and the recirculation zones near the two leeward sides have similar
positions as at A. However, the stagnation pressure pocket is symmetrically located, and the
net moment approaches zero. Due to inertia, the rotation angle θ exceeds the asymptotic
value 5π/4. It can be observed in figure 10 that Cm is a small positive value from B to
C, resulting in the increasing angular velocity ω. At C, it can be observed in figure 11
that a stagnation point pressure pocket is located near the midpoint of this edge, while the
recirculation zone is located directly behind the cylinder. The position of the stagnation
pressure pocket and recirculation zone does not generate a significant rotational moment,
leading to approximately zero Cm and consequently quasiconstant angular velocity from
C to D. This situation changes at D since the stagnation pressure pocket moves closer
to the corner ‘q’, leading to a clockwise moment and consequently decreasing angular
velocity. The cylinder then stays at this position from D to E, corresponding to the fact
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Figure 11. Pressure contours (a,c,e,g,i,k) and streamlines with spanwise vorticity contours (b,d, f,h, j,l) for
wavy rotation regime at six instants (A to F) marked in figure 10. The arrow inside the cylinder represents the
angular velocity of cylinder.
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Figure 12. Comparison between the time intervals [AB] and [EF] in figure 10. (a) Rotation angle θ ;
(b) angular velocity ω; (c) moment coefficient Cm.
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Figure 13. Distribution of pressure coefficient on the surface of cylinder, at (a) instant B, and (b) instant F,
respectively. The instants are defined in figure 10.

that the stagnation pressure pocket remains similar, but vortex shedding happens on the
leeward side. Finally, it can be observed in figure 10 that the kinetic quantities are very
close between instants A and F (considering for a π/2 rotation for θ ), indicating the start
of another period. Note that the flow pattern in the downstream wake region is always the
P+S mode, represented by the red circles in figure 11(d,l).

It is interesting to compare between the instants B and F in figure 10, which should be
two similar peak instants for the π/2 regime (see figure 9 for example). We then put the
evolution in time intervals [AB] and [EF] together for comparison, as shown in figure 12.
As mentioned above, the time histories of θ , ω and Cm should all be symmetric between
[AB] and [EF] if it is a π/2-limit regime, but differences exist in figure 12. For example, a
qualitative difference exists for Cm between instants B and F: in figure 12(c), the value
of Cm is nearly zero at B, but is non-zero at F. To dig a little more, in figure 13 we
draw the distribution of pressure coefficient Cp, which is usually a dominant contribution
for the moment (Ryu & Iaccarino 2017). From figure 13, it can be observed that all
leeward faces (i.e. qs and ps) are affected by approximately constant pressure, leading
to negligible contribution to the net moment. For the windward faces (i.e. qr and pr), at B
the distributions are nearly symmetric, but at F it is obviously asymmetric and yields a net
moment. In brief, we can summarize that the peaks of wavy rotation regime are principally
affected by the symmetry properties of the windward faces.
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Figure 14. Time history of rotation angle of the 2-peak subregime in the wavy rotation regime
(Re = 140, ρ = 3.6).
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Figure 15. Time histories of rotation angle θ , angular velocity ω and moment coefficient Cm, in a time
interval for the 2-peak subregime (Re = 140, ρ = 3.6) in the wavy rotation regime.

The above analysis describes the motion of the wavy rotation regime, in which we
observe one peak and one valley of angular velocity in each period. However, this is
not the only subregime of the wavy rotation regime. In fact, as indicated in figure 5, for
Re = 140, ρ = 3.6, 3.7, we can observe another subregime of the wavy rotation regime,
with two peaks and two valleys in each period (see figure 14). We will denote this as
‘2-peak subregime’ as a specific response dynamics of the wavy rotation regime, while
the case in figure 10 is denoted as ‘1-peak subregime’ for clarity. The time histories of
the dynamic quantities are shown in figure 15. The maximum angular velocity in this
subregime is 0.250, which is lower than the value 0.269 in figure 10.

Comparison of angle θ and angular acceleration α between the 2-peak and 1-peak
subregimes is shown in figure 16. The dynamics for these two subregimes is quite similar
from A to C. The evolution of the 2-peak subregime is slightly slower than the 1-peak
subregime, and θ reaches its peak value (at C) slightly later than the 1-peak subregime.
This difference is accumulated, finally at E the 2-peak subregime does not have enough
angular acceleration to switch to an autorotation state.

Further examinations can be performed by looking at the snapshots in figure 17.
We can compare the instant C of figure 17 with the instant E of figure 11 since the
positions of the cylinder are similar. A difference exists for the recirculation zone, which is
quasisymmetric for instant C of the 2-peak subregime but asymmetric for instant E of the
1-peak subregime. The instant D of figure 17 is comparable to the instant F of figure 11
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Figure 16. Comparison of angle θ and angular acceleration α, between the 2-peak subregime (Re = 140,

ρ = 3.6) and the 1-peak subregime (Re = 140, ρ = 2.4) in the wavy rotation regime. Instants are defined as
the same as figure 15.

as the angle evolutions are both in a valley; however, differences in the recirculation zone
are more obvious. Finally, the instant E of figure 17 is comparable to the instant B of
figure 11, while evident differences in the recirculation zone leads to different dynamics.
To summarize, the difference between the 2-peak and 1-peak subregimes is caused by a
gradual accumulation of angle difference from C to E (instants defined in figure 15).

3.4.3. Multipeak subregimes in the π-limit oscillation regime
As a complement to the observations in Ryu & Iaccarino (2017), we observed multipeak
subregimes in the π-limit oscillation regime, as indicated in figure 5, namely the 2-peak
and 3-peak subregimes. Typical time histories of these subregimes are shown in figures 18
and 19, respectively. For clarity, the dynamics of π-limit oscillation reported in Ryu
& Iaccarino (2017) is specified as the 1-peak subregime. In this subsection the 2-peak
subregime will be selected as an example to analyse, while for the 3-peak subregime the
mechanism is similar.

Regarding the 2-peak subregime, the time histories of rotation angle θ , angular velocity
ω and moment coefficient Cm in a period are shown in figure 20. This figure is comparable
to the 1-peak subregime shown in figure 12 of Ryu & Iaccarino (2017). A difference
between them is the maximal angular velocity, which is 0.253 for the 2-peak subregime
and 0.318 for the 1-peak subregime. Qualitatively, this global lack of kinetic energy yields
the generation of a second peak at instant D in figure 20. A detailed comparison can be
found in figure 21.

The snapshots of the flow field at different instants (from A to F), defined in figure 21,
are accordingly shown in figure 22. At A, the cylinder is close to a symmetric diamond
shape, and there are two symmetrical large recirculation zones near the two leeward
sides. The stagnation pressure pocket is located near the corner ‘r’ and the pressure
distribution around the cylinder is nearly symmetrical. Therefore, the net moment at A
is small but positive (anticlockwise) and drives the cylinder to rotate anticlockwise. At
B, the angular velocity of the cylinder reaches a local minimum, but it is still positive.
The moment approaches zero due to the symmetrical location of the stagnation pressure
pocket. However, the moment after B becomes positive, which drives the cylinder to cross

986 A15-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

34
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.346


Vortex-induced rotation of a square cylinder

C Cp: –4.0 –2.6 –1.6 –0.6 0.4

–0.1–0.8–1.5Vorticity: 0.6 1.3

sq p
r

D Cp: –4.0 –2.6 –1.6 –0.6 0.4

–0.1–0.8–1.5Vorticity: 0.6 1.3

s
q pr

E Cp: –4.0 –2.6 –1.6 –0.6 0.4

–0.1–0.8–1.5Vorticity: 0.6 1.3

s
q p
r

(a) (b)

(c) (d)

(e) ( f )

Figure 17. Pressure contours (a,c,e) and streamlines with spanwise vorticity contours (b,d, f ) for the 2-peak
subregime in the wavy rotation regime at three instants (C, D, E) marked in figure 15. The arrow inside the
cylinder represents the angular velocity of cylinder.
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Figure 18. Time history of rotation angle of 2-peak subregime (Re = 140, ρ = 3.1) in the π-limit oscillation
regime.

over the asymptotic limit −π/4. At C, the stagnation pressure pocket is near the corner ‘p’,
while the recirculation zone is near the leeward side, leading to a clockwise net moment.
The moment reaches a local minimum and causes the cylinder to reverse its rotation to
a clockwise direction. At D, the moment is anticlockwise, which differs from the case of
the 1-peak subregime, and yields a second peak. Compared with the 1-peak subregime,
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Figure 19. Time history of rotation angle of 3-peak subregime (Re = 140, ρ = 3.9) in the π-limit oscillation
regime.
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Figure 20. Time histories of rotation angle θ , angular velocity ω and moment coefficient Cm, in a time
interval for the 2-peak subregime (Re = 140, ρ = 3.1) in the π-limit oscillation regime.

0.2

0.4

0
–π/4

θα

A B C D E F G

–0.2

–0.4

0

–2

–3

–1

1

70 80 90 100

t
110 130120 140 150

θ (1-peak)

θ (2-peak)
α (1-peak)

α (2-peak)

0.6

–0.6

–0.8

Figure 21. Comparison of angle θ and angular acceleration α, between the 2-peak subregime
(Re = 140, ρ = 3.1) and the 1-peak subregime (Re = 140, ρ = 1) in the π-limit oscillation regime.
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Figure 22. Pressure contours (a,c,e,g,i,k) and streamlines with spanwise vorticity contours (b,d, f,h, j,l) for the
2-peak subregime in the π-limit oscillation regime at six instants (A–F) indicated in figure 20. The arrow inside
the cylinder represents the angular velocity of cylinder.
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Figure 23. Regime distributions around region (5) defined in figure 4 with different initial angles:
(a) θ0 = 0.001; (b) θ0 = 0.01; (c) θ0 = 0.1; (d) θ0 = 0.5. For comparison, region (6) and a part of region (4)
are also shown.

the clockwise angular acceleration of the 2-peak subregime from C to A is weak. This
prevents the cylinder from crossing over the −π/4 asymptotic limit.

3.5. Multistable states
The phenomenon of bistability has been observed in various problems of fluid–structure
interactions, such as the forward and inverted flapping flags (Zhang et al. 2000; Zhu &
Peskin 2002; Hao et al. 2012; Kim et al. 2012; Lee, Huang & Sung 2014; Tang, Liu &
Lu 2015; Jia, Fang & Huang 2019). In numerical simulations, this phenomenon means
that the regime of the structure response can be sensitive to initial conditions. In the
present work, we use the similar strategy for the VIR of square cylinder. The initial angles
are selected to be different values, i.e. θ0 = 0.001, 0.01, 0.1 and 0.5. Figure 23 shows
the corresponding regimes around region (5) defined in figure 4. In fact, as illustrated in
figure 5 with θ0 = 0.1, the region (5) can generate chaotic regimes and subregimes when
the parameters are slightly changed. Here figure 23 further indicates that the responses
are also sensitive to initial conditions. It is observed that for ρ � 2 in region (5), there
exists bistable and multistable states. For example, for Re = 140 and ρ = 1, the four initial
angles lead to three different regimes.

In order to further investigate the stability of these states, we select the case with
Re = 140 and ρ = 1 as an example. As shown in figure 23, three regimes were observed
at different initial angles. Here these regimes are examined with short-time perturbations,
respectively. Specifically, additional clockwise or anticlockwise torque is externally added
as a perturbation to observe the response of the cylinder. The amplitude of this perturbation
is set to one-quarter of the maximum torque, while the time duration of the perturbation is
set as 0.5.
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Figure 24. Time histories of the rotation angle of the autorotation regime (Re = 140, ρ = 1, θ0 = 0.01) with
clockwise or anticlockwise perturbation at (a) t = 40, (b) t = 100 and (c) t = 200, respectively, comparing
with the case without perturbation.

For the autorotation regime (θ0 = 0.01), perturbations are added at t = 40, t = 100 and
t = 200, respectively, as shown in figure 24. From the response without perturbation,
we can observe that the autorotation regime is established at approximately t = 60.
Perturbations before this time (i.e. t = 40 as shown in figure 24a) lead to the π-limit
oscillation regime, while perturbations after this time (i.e. t = 100 and 200 as shown in
figure 24b,c) do not change the response of the autorotation regime. This indicates that
the autorotation regime can be regarded as a phase-space region close to a stable attractive
structure (for instance, a fixed point or a limit cycle). Early evolution (t = 40) corresponds
to the stage that is not attracted to this structure yet, then small perturbations can turn to
other attractive structures (π-limit oscillation regime here); by contrast, in later evolution
(t = 100 and 200) the motion is attracted and cannot be simply perturbed.

For the π-limit oscillation regime (θ0 = 0.1), as shown in figure 25, the conclusion is
similar. The anticlockwise perturbation before the establishment of the π-limit oscillation
regime (i.e. t = 100 as shown in figure 25a) leads to a random rotation regime, while
other perturbations do not change the response of the π-limit oscillation regime. Again,
this indicates that the π-limit oscillation regime can also be regarded as a phase-space
region close to a stable attractive structure.

For the random rotation regime (θ0 = 0.001), as shown in figure 26, results are more
complicated. It is observed that the anticlockwise perturbation at t = 100 yields the

986 A15-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

34
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.346


R.-Y. Mou, W.-X. Huang, X.-R. Huang and L. Fang

–4

–2

0

4

θ 
(r

ad
)

θ 
(r

ad
)

θ 
(r

ad
)

2

–4

–2

0

4

2

0

10

5

100

Without perturbation
Anticlockwise perturbation
Clockwise perturbation

200

t = 300

t = 200

t = 100

t
300 400 500

0 100 200 300 400

0 100 200 300 400

(b)

(a)

(c)

Figure 25. Time histories of the rotation angle of the π-limit oscillation regime (Re = 140, ρ = 1, θ0 = 0.1)
with clockwise or anticlockwise perturbation at (a) t = 100, (b) t = 200 and (c) t = 300, respectively,
comparing with the case without perturbation.

autorotation regime, the clockwise perturbation at t = 200 yields a random rotation
regime, while all other perturbations lead to the π-limit oscillation regime. A way to
explain this fact is to consider the random rotation regime as a motion in phase space which
is not attracted by any stable structure, and a perturbation can turn it to any stable structure.
A similar sketch of this mechanism can refer to figure 4 of Kerswell (2018). In this sense,
although the random rotation regime is regarded as a stable state since the regime can
remain for enough of a long time, it differs from the concept of stable equilibrium defined
in autonomous systems.

To summarize, we argue that the multistable states in region (5) are results of the
existence of multiple stable attractive structures in phase space. This explanation indicates
a different mechanism by comparing with the bistable states of flexible flags which were
explained as a hysteresis process between two modes (Kim et al. 2012; Lee et al. 2014).
An analogical phenomenon might be the bistable states of freely falling heavy plates (Lau,
Huang & Xu 2018), resulting from the competition of unsteady flow and object inertia.

4. Conclusion

In this paper, the VIR of a square cylinder under the influence of Reynolds number and
density ratio is investigated by using numerical simulations. Regimes are summarized and
classified in figure 4. Cases with a fixed density ratio show good agreement with Ryu &
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Figure 26. Time histories of the rotation angle of the random rotation regime (Re = 140, ρ = 1, θ0 = 0.001)
with clockwise or anticlockwise perturbation at (a) t = 50, (b) t = 100 and (c) t = 200, respectively, comparing
with the case without perturbation.

Iaccarino (2017), while changing the density ratio leads to more complicated distribution
of regimes and subregimes. The main conclusions are listed as follows.

(a) A phenomenon related to the influence of density ratio is the tooth-like shape of
the π/2-limit oscillation regime, observed in the regime map. This phenomenon can
be explained as a result of the imbalance relation between the main frequencies of
rotation response and the vortex shedding frequency.

(b) A transition regime is observed, behaving as a mixture of the π/2-limit oscillation
and random rotation regimes. Specifically, the regime randomly switches between
different quasi-π/2-limit oscillation regimes with different quasiequilibrium angles.

(c) A wavy rotation regime is observed, indicating that in a period, the cylinder rotates
for a large angle in a certain direction and then reverses its rotation for a small
angle. Moment-generating mechanisms suggest that the peaks of the wavy rotation
regime are principally affected by the symmetry properties of the windward faces.
In addition, the wavy rotation regime can be classified into subregimes, according to
the number of peaks in a period.

(d) In the π-limit oscillation regime, new subregimes are observed, which are defined
according to the number of peaks in a period. The multipeak subregimes correspond
to the process of accumulating kinetic energies.
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(e) The region (5) defined in figure 4 contains multiple regimes, which are generated
without regularity with the same initial condition (see figure 5). Furthermore,
changing initial conditions can also lead to multistable states for the same Reynolds
number and density ratio. Comparing with existing observations of bistable states in
other problems of fluid–structure interactions, with the same Reynolds number and
density ratio, changing initial conditions can yield up to different regimes. These
multistable states are probably results of the existence of multiple stable attractive
structures in phase space.
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