
4
Spontaneous symmetry breaking

4.1 General background

As already mentioned in previous chapters, the nuclear structure exhibits many
similarities with the electron structure of metals. In both cases, one is dealing with
systems of fermions which may be characterized in a first approximation in terms
of independent particle motion. However in both systems, important correlations
in the particle motion arise from the action of the forces between particles. In
particular, it is well established that nucleons moving close to the Fermi energy
in time-reversal states have the tendency to form Cooper pairs which eventually
condense (Bohr, Mottelson and Pines (1958), Bohr and Mottelson (1975)). This
phenomenon, which has its parallel in low-temperature superconductivity, mod-
ifies the structure of nuclei in an important way. In particular it influences the
occupation numbers of single-particle levels around the Fermi surface (Chap-
ter 3), the moment of inertia of deformed nuclei (Chapter 3), the lifetime of
alpha and cluster decay and fission processes (Chapter 7), the depopulation of
superdeformed configurations (Chapter 6) and the cross-sections of two-nucleon
transfer reactions (Chapter 5).

While one does not expect the transition between the normal and the super-
fluid phases of the atomic nucleus to be sharp because of finite size effects and
the central role played by fluctuations (see Chapter 6), there is a strong anal-
ogy between phenomena in nuclei and the corresponding phenomena in bulk
superconductors. Spontaneous symmetry breaking is important in both nuclei
and superconductors. We focus our attention on one of the fingerprints of the
broken symmetry, namely the consequences it has for the energy level spectra
of the systems.

The phenomenon of spontaneous symmetry breaking had been known for a
long time before the formulation of the BCS theory of superconductivity in 1957.
An example is the Jahn–Teller effect in solid state physics; if the symmetry of
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a crystal is such that ground-state degeneracy of electron states at a crystal site
is not the Kramers minimum then it is energetically favourable for the crystal
to distort in such a way as to lower the symmetry enough to remove the degen-
eracy. The same phenomenon is the origin of deformed shapes in nuclei (see
Reinhardt and Otten (1984)). The Hartree–Fock single-particle states in a spher-
ical potential for a nucleus with neutron and proton numbers far from closed
shells are degenerate or almost degenerate. The energy is reduced by allowing
the self-consistent potential to deform to remove the degeneracy. Even though
the nuclear Hamiltonian is rotationally invariant the Hartree–Fock wavefunction
of a deformed nucleus is not an eigenstate of angular momentum. The theory
produces a nucleon density distribution which is deformed and has a definite
orientation in space. A rotation applied to a Hartree–Fock state produces an
equivalent state with the same energy as the original state. This idea is the ba-
sis of Bohr and Mottelson’s (1953) and Nilsson’s (1955) theory of deformed
nuclei.

The situation is similar with Bardeen, Cooper and Schrieffer’s (1957a,b) the-
ory of superconductivity. The Hamiltonian of the BCS theory commutes with
the electron number operator N̂ . The ground state of a finite superconductor
should be an eigenstate of N̂ but the BCS wavefunction does not have this prop-
erty. A gauge transformation applied to the BCS ground state produces another,
different, BCS state with the same ground-state energy. There are an infinite
number of equivalent states connected by gauge transformations. The BCS the-
ory predicts that there is an energy gap 2� between the ground state and excited
two-quasiparticle states. Anderson (1958) investigated corrections to the BCS
theory using the random phase approximation (RPA). He found a dispersion
relation predicting a phonon-like collective mode related to zero sound with en-
ergies within the BCS energy gap. He related this collective excitation to the
gauge symmetry breaking. Similar results were obtained by a different method
at about the same time by Bogoliubov et al. (1958). His approach was based on
a development of his quasiparticle theory (Bogoliubov (1958b)).

The connection between the gauge symmetry breaking and Anderson’s col-
lective states (Anderson (1958)) was studied in more detail by Nambu (1959). He
argued that the phonon-like collective states are essential to the gauge-invariant
character of the theory and that they are a necessary consequence of the gauge
invariance. He showed that gauge invariance, the energy gap and the collective
states are related to each other. In a subsequent paper Nambu (1960) extended
his ideas to a γ5-invariant theory with zero-mass fermions. There γ5-symmetry
breaking (or chiral symmetry breaking) leads to non-zero baryon masses (analo-
gous to the BCS energy gap) and zero-mass pseudoscalar mesons (analogous to
Anderson’s collective states). Nambu’s ideas were incorporated in the Nambu,
Jona-Lasinio (1961a,b) model of baryons and mesons which was motivated by
the BCS theory of superconductors.
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74 Spontaneous symmetry breaking

Nambu’s (1959) paper is based on a mean field generalization of the BCS
theory with RPA corrections (see also Eguchi and Nisijima (1995)). Goldstone
(1961) extended Nambu’s work in a paper on symmetry breaking with the title
‘Field theories with “superconductor” solutions’. He considered several simple
covariant models and conjectured that, whenever the original Lagrangian has a
continuous symmetry group and the new solutions have a reduced symmetry,
then the theory must contain massless bosons. The models he considered were
renormalizable, so that Goldstone’s result might be very general, and apply not
only to approximate mean field solutions, but also to exact solutions.

Goldstone’s conjecture was put on a firmer footing by Goldstone, Salam and
Weinberg (1962). They proved by three different methods that, if there is a
continuous symmetry transformation under which the Lagrangian is invariant,
then either the vacuum state is also invariant, or there must exist spinless bosons
of zero mass. In particle physics these bosons are called Goldstone bosons. We
refer to them as Anderson, Goldstone, Nambu (AGN) bosons because analogous
excitations were discovered in theories of superconductivity by Anderson and
Nambu and their relation to gauge symmetry breaking was recognized by those
authors.

In the following discussion we distinguish between large and small systems,
or more properly between three-dimensional (3D-) and zero-dimensional (0D-)
systems. We make use of the random phase approximation treatment of pairing
developed by Anderson (1958) for the case of a large neutral system and by
Högaasen-Feldman (1961) and Bes and Broglia (1966) for the case of the atomic
nucleus (see also Scadron (1985) and Broglia et al. (2000)).

4.1.1 Infinite systems and finite systems

As discussed in Section 1.7, in normal metals at low temperature the coherence
length ξ is of the order of 103 Å. This quantity is much larger than the spacing
between electrons (rs ≈ 1–3 Å) where

rs =
(

3

4πn

)1/3

, (4.1)

is the Wigner–Seitz radius, while n is the electron density of the system. At the
same time, the quantity ξ is also much smaller than the physical dimension L
of a typical macroscopic sample. The inequalities rs � ξ � L are typical of
three-dimensional (3D-) superconductors. In keeping with these results, within
the region occupied by any given pair will be found the centre of mass of many
(of the order of 106) pairs. In a superconductor the pair phase φ(	r ) (gauge angle)
is approximately constant over spatial regions characteristic of the correlations
in the superconducting phase, and a supercurrent with gauge-invariant velocity
v s = −�/2me(∇φ − 2e/�cA) where A is the vector potential, can be defined.
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It is obtained by multiplying the wavefunctions of all the effectively interacting
particles by approximately the same phase factor. In an anisotropic superfluid
such as 3He-A the order parameter not only has a phase but also has an orientation,
the preferred direction of l, the relative orbital angular momentum of the l = 1
Cooper pairs. In this system the superfluid velocity depends not only on the spatial
change of the phase φ, but also on that of l. Parametrizing l by the azimuthal (β)
and the polar (α) angles, v s now takes the form v s = �/2m3(∇φ − cosβ∇α),
where m3 is the mass of the 3He atom (Vollhardt and Wölfle (1990)).

The situation is quite different in nuclei, where ξ ≈ 30 fm (see equation
(1.39)), a quantity which is much larger than the average distance between nucle-
ons (≈2 fm) (see Appendix C). On the other hand, pairs must be located inside
the nucleus (radius R ≈ 5–7 fm for medium heavy nuclei). Thus a nucleus
can be viewed as a 0D-system, where the phenomenon of quantized superflow
observed in infinite 3D-systems does not seem to have a counterpart. Superflow
may, on the other hand, play an important role in the dynamics of nuclear matter
occurring in neutron stars (see Section 1.10 and Ruderman (1972), Anderson
et al. (1982), Pines et al. (1980), (1992) and references therein).

The BCS solution of the pairing problem in a finite nucleus has been presented
in Chapter 3 and Appendix G. In the next section we will discuss the RPA
(collective) modes which are built on it (see Appendices I and J) with special
reference to spontaneous symmetry breaking. Then in Section 4.3 we will make a
comparison with Anderson’s (1958) derivation of collective modes in infinite 3D
neutral superconductor and comment on the similarities and differences between
the finite and infinite cases.

4.2 Pairing in atomic nuclei (0D systems; ξ�R)

The present section is concerned with gauge symmetry breaking in a system of
neutrons or protons interacting with a pairing force. We begin it by dividing the
Hamiltonian into a mean field part and a fluctuating part. The ground state of
the mean field part is represented by a BCS wavefunction. The original Hamil-
tonian is invariant with respect to rotations in gauge space but the mean field
Hamiltonian and the BCS wavefunction are not (see Section 3.8). There is a
discussion of the transformation properties under rotations in gauge space. The
next step is to derive the RPA equations for the fluctuations about the mean field
wavefunctions. The RPA equations can be solved exactly for the simple pairing
problem. The gauge invariance of the original Hamiltonian requires that the RPA
equations must have a zero-frequency mode. This mode comes out automatically
from the explicit solution of the RPA equations, but it can also be found by a
general argument from gauge symmetry (Section 4.2.3). The zero-frequency
mode is related to pair addition and removal processes (Section 4.2.4). The nu-
cleon number dependence of the ground-state energy is contained in the Fermi
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76 Spontaneous symmetry breaking

energy, which gives a linear dependence, and a ‘moment of inertia’ which gives a
quadratic dependence. The arguments are illustrated by a simple schematic model
in Section 4.2.5, and by Weinberg’s (1996) discussion of symmetry breaking in
macroscopic systems. Section 4.2.6 presents a comparison with experiment.

4.2.1 Deformation in gauge space: mean-field approximation

Our Hamiltonian describes the motion of independent particles interacting
through a pairing force,

H = Hsp + Hp. (4.2)

Here

Hsp =
∑
ν>0

(εν − λ)(a†
νaν + a†

ν̄aν̄) , (4.3)

is the single-particle Hamiltonian. The operator a†
ν creates a particle (fermion)

with quantum numbers ν. For spherical nuclei, ν stands for n, l, j and m, i.e. the
number of nodes, the orbital angular momentum, the total angular momentum
and its projection, respectively. The state |ν̄〉 is obtained from the state |ν〉 by the
operation of time reversal. The condition ν > 0 means m > 0, where m is the
magnetic quantum number. The single-particle energies εν are measured from
the Fermi energy λ. The pairing Hamiltonian

Hp = −G P†P, (4.4)

is written in terms of the pair operator

P† =
∑
ν>0

a†
νa

†
ν̄ , (4.5)

which creates a pair of particles in time-reversal states. In a spherical nu-
cleus these are coupled to angular momentum zero. The BCS solution of this
Hamiltonian provides a mean-field approximation to H , where the pairing gap
parameter,

� = Gα0, (4.6)

plays a central role in determining the properties of the system. The quantity

α0 = 〈BCS|P†|BCS〉 (4.7)

is the average value of the pair transfer operator in the pairing mean-field ground
state |BCS〉.

As a function of these parameters, the total Hamiltonian

H = HMF + Hfluct, (4.8)
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can be written as a sum of a mean field term

HMF = Hsp −�(P† + P)+ �
2

G
(4.9)

and a fluctuation term

Hfluct = −G(P† − α0)(P − α0). (4.10)

BCS theory assumes α0� (P† − α0)(P − α0) and solves the reduced Hamilto-
nian HMF making an ansatz for |BCS〉.

As in Chapter 3 we make a special choice of gauge and define a standard BCS
wavefunction as

|BCS〉K =
∏
ν>0

(Uν + Vνa
†
νa

†
ν̄)|0〉, (4.11)

where Uν and Vν are real. This wavefunction does not have a fixed number of
particles and selects a privileged orientation in gauge space. The Hamiltonian
H (equations (4.2) or (4.8)) is invariant with respect to rotations in gauge space
generated by the operator

G(φ) = e−
iN̂
2 φ, (4.12)

where N̂ =∑
ν a†

νaν is the particle number operator. The state

|BCS (φ)〉K = G(φ)
∏
ν>0

(Uν + Vνa
†
νa

†
ν̄)|0〉 (4.13)

=
∏
ν>0

(Uν + e−iφVνa
†
νa

†
ν̄)|0〉 (4.14)

is obtained from the standard state |BCS〉K by rotating it through an angle φ in
gauge space. The new BCS state has the same energy and a similar structure as
|BCS〉K. The rotated state can be written in another way as

|BCS (φ)〉K = |BCS〉K′ =
∏
ν>0

(Uν + Vνa
′†
ν a′†ν̄ )|0〉, (4.15)

in terms of rotated creation operators

a′†ν = G(φ)a†
νG−1(φ) ,

= e−
i
2φa†

ν. (4.16)

This allows us to define an intrinsic (body-fixed) coordinate frame K′ (see
Fig. 4.1), in terms of the primed operators.

The state |BCS(φ)〉K with gauge angle φ with respect to the laboratory coor-
dinate system K has the angle φ = 0 with respect to the intrinsic system K′.
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z (  : laboratory frame)

( ′ : body-fixed,
intrinsic system)

f
z′

Figure 4.1. Schematic representation of a deformation in gauge space defining a privileged
orientation z′ in the two-dimensional space and thus an intrinsic, body-fixed, coordinate
system of reference K′, making an angle φ with the laboratory frame of reference K.

The mean-field pairing Hamiltonian becomes diagonal in the quasiparticle
basis, i.e.

HMF = U + H11, (4.17)

where

U = 2
∑
ν>0

(εν − λ)V 2
ν −

�2

G
(4.18)

and

H11 =
∑
ν

Eνα
†
ναν. (4.19)

The quasiparticle creation operator

α†ν = Uνa
†
ν − Vνaν̄ (4.20)

is defined in terms of the BCS theory Uν and Vν occupation numbers, the state
|BCS〉 is the quasiparticle vacuum. The quasiparticle energy is

Eν =
√

(εν − λ)2 +�2 . (4.21)

We shall see that restoration of symmetry is obtained by diagonalizing the resid-
ual interaction acting among the quasiparticles associated with the terms H ′′p in
the expression (Anderson (1958), Bes and Broglia (1966), Broglia (1985))

Hfluct = H ′p + H ′′p + C, (4.22)

https://doi.org/10.1017/9781009401920.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401920.005


4.2 Pairing in atomic nuclei (0D systems; ξ�R) 79

where

H ′p = −
G

4

(∑
ν>0

(U 2
ν − V 2

ν )(�†
ν + �ν)

)2

(4.23)

and

H ′′p =
G

4

(∑
ν>0

(�†
ν − �ν)

)2

, (4.24)

with

�†
ν = α†ν α†ν̄ . (4.25)

The term C in equation (4.22) stands for constant terms, as well as for terms
proportional to the number of quasiparticles, and which consequently vanish
when acting on the BCS ground state (see Appendices I and J). Neglecting terms
proportional to the number of quasiparticles is an important approximation in
the RPA and it has to be done consistently. The structure displayed by H ′p and
H ′′p is a consequence of the fact that, neglecting terms of type C , one can write

P† + P =
∑
ν>0

(U 2
ν − V 2

ν )(�†
ν + �ν) (4.26)

and

P† − P =
∑
ν>0

(U 2
ν + V 2

ν )(�†
ν − �ν) =

∑
ν>0

(�†
ν − �ν). (4.27)

In other words, there are two fields which can create (annihilate) two quasiparti-
cles, namely U 2

ν and V 2
ν . These fields can be combined in a symmetric (U 2

ν + V 2
ν )

and in an antisymmetric (U 2
ν − V 2

ν ) fashion with respect to the Fermi surface.
Making use of the approximate commutation relation (see Appendix A, Sec-

tion A.4)

[�ν, �
†
ν ′] = δ(ν, ν ′), (4.28)

which neglects terms proportional to the number of quasiparticles, the solutions
of

H̃ = HMF + H ′p + H ′′p , (4.29)

in particular the collective modes, can be obtained in the harmonic approximation
(RPA), through the equations of motion (see Appendix A)

[H̃ , �†
n] = �ωn�

†
n (4.30)

and

[�n, �
†
n′] = δ(n, n′), (4.31)
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where

�†
n =

∑
ν

(anν�
†
ν + bnν�ν), (4.32)

is the creation operator of the nth vibrational mode. Equations (4.30) and (4.31)
lead to a dispersion relation and to the normalization condition of the eigenstates,
which determine the frequenciesωn = (Cn/Dn)1/2, the RPA energies Wn = �ωn ,
and the zero point fluctuations (�/2ωn Dn)1/2 associated with the modes, and
thus the restoring force (Cn) and inertia (Dn) parameters for the corresponding
harmonic motion.

Note that to neglect C in equation (4.22) is equivalent to a quasi-boson ap-
proximation. In fact, defining the conjugate variables

qν = 1√
2

(�†
ν + �ν), pν = − i√

2
(�†
ν − �ν),

fulfilling the condition (see equation (4.28))

[qν, pν ′] = iδ(ν, ν ′),

one can write

H ′p + H ′′p = −
G

2

[(∑
ν>0

(U 2
ν − V 2

ν )qν
)2
+

(∑
ν>0

pν
)2]
.

This is diagonalized by the transformation (equivalent to equations (4.30) and
(4.31))

Qn =
∑
ν ′
λnν ′qν ′, Pn =

∑
ν ′
μnν ′ pν ′,

so that

H̃ =
∑

n

( P2
n

2Dn
+ Cn

2
Q2

n

)
and

[Qn, Pn′] = iδ(n, n′), [Qn, H̃ ] = i
Pn

Dn
, [Pn, H̃ ] = −iCn Qn,

implying that the eigenvalues are Wn = �(Cn/Dn)1/2.

4.2.2 Solution of the RPA equations

In what follows we do not diagonalize the full Hamiltonian HMF + H ′p + H ′′p
but discuss two special cases (for the simultaneous diagonalization of HMF, H ′p
and H ′′p we refer the reader to Appendix J). As a first case we consider the
Hamiltonian (see equations (4.17) and (4.23)) HMF + H ′p where the odd term H ′p
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in the interaction is antisymmetric with respect to the Fermi surface. The even
term H ′′p is neglected. Equation (4.30) leads, in this case, to the dispersion relation∑

ν>0

2Eν(U 2
ν − V 2

ν )2

(2Eν)2 − (W ′
n)2
= 1

G
. (4.33)

Making use of the BCS relation

U 2
ν − V 2

ν =
εν − λ

Eν
, (4.34)

which is equivalent to the BCS gap equation, it can be shown that the lowest
energy solution of equation (4.33) is W ′

1 = �ω1 = 2�. These pairing vibrations
(Bes and Broglia (1966)) have been studied extensively through two-nucleon
transfer processes (see e.g. Broglia et al. (1973) and references therein) and
found to be weakly collective, a property also shared with the pairing vibration
of a 3D-system (Anderson (1958)). However, they become very collective in
the case of normal nuclei, where multiphonon pairing vibration states have been
strongly excited through two-particle transfer reaction (see Chapter 5, see also
Section 8.4). These modes have not been observed in normal infinite systems.

The second special case includes the even-interaction H ′′p which is symmetric
with respect to the Fermi surface and neglects the odd term H ′p. The Hamiltonian
is (see equations (4.17) and (4.24)) HMF + H ′′p . Equation (4.30) leads to∑

ν>0

2Eν
(2Eν)2 − (W ′′

n )2
= 1

G
. (4.35)

Using the gap equation ∑
ν>0

1

Eν
= 2

G
, (4.36)

this reduces to ∑
ν>0

1

2Eν

(W ′′
n )2

(2Eν)2 − (W ′′
n )2
= 0. (4.37)

The lowest energy solution of this equation is W ′′
1 = 0. The general amplitudes

associated with the one-phonon amplitude (see equation (4.32)) are

anν = �′′n
2Eν −W ′′

n

, bnν = �′′n
2Eν +W ′′

n

. (4.38)

The normalization factor

�′′n =
1

2

(∑
ν>0

2Eν�ω′′n(
(2Eν)2 − (�ω′′n)2

)2

)−1/2

(4.39)
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is proportional to the zero-point fluctuation of the corresponding vibrational
mode. In the case of the zero-frequency mode �′′1 is infinite. The amplitudes of
the zero-frequency mode are a1ν = b1ν ∝ 1/Eν but cannot be normalized.

4.2.3 The zero-frequency mode

There is a more general way of looking at the zero-frequency mode. The operator
N̂ which counts the number of nucleons is

N̂ =
∑
ν

a†
νaν =

∑
ν

(
Uνα

†
ν + Vναν̄

) (
Uναν + Vνα

†
ν̄

)
. (4.40)

The RPA approximation Ñ for N̂ can be written in terms of the quasiboson
operators introduced in (4.25) as

Ñ = 2
∑
ν>0

UνVν(�
†
ν + �ν)+ N0

= �
∑
ν>0

1

Eν
(�†
ν + �ν)+ N0, (4.41)

where N0 = 2
∑
ν>0 V 2

ν is the average number of particles in the quasiparticle
vacuum state. Terms proportional to the number of quasiparticles have been
neglected. The operator N̂ commutes with the exact Hamiltonian and it is easy
to check that Ñ commutes with the RPA Hamiltonian defined in equation (4.29).
In fact, because [(�ν + �†

ν), (�ν ′ + �†
ν ′)] = 0, one can show that [H′p, Ñ ] = 0.

Furthermore, because 2Uν�ν = �/Eν and the quasiparticle energies satisfy
the gap equation (4.36) one can demonstrate that [HMF + H

′′
p, Ñ ] = 0 (see

Appendix I). There are two conclusions to be drawn from these results. One is
that particle number conservation is restored, by taking into account the fluctu-
ations of the pairing mean field around the static deformation α0, in the RPA (in
particular those associated with H

′′
p ). The other is that the operator (N̂ − N0)

is the creation operator of the zero-frequency mode of the RPA equation of
motion (4.30).

In fact, the one-phonon state associated with the zero-frequency mode is

|1′′〉 = �†
1|0′′〉 ∼ �′′1

∑
ν>0

1

2Eν
(�†
ν + �ν)|0′′〉 (4.42)

= �′′1
2�

(N̂ − N0)|0′′〉, (4.43)

where |0′′〉 is the ground state of the RPA Hamiltonian. The first line in the
above equation is obtained from (4.38) by putting W ′′

1 = 0, and the second line
is from equation (4.41). In equation (4.42) �†

1 is a boson creation operator and
should be finite. On the other hand the normalization constant �′′1 →∞ for
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the zero energy mode. This is possible only if in (4.43) (Ñ − N0)→ 0 which
is another demonstration that particle number conservation is restored in the
RPA approximation. This, together with equation (4.45), are the basic equations
which testify to the fact that gauge symmetry is being restored.

Because a finite (rigid) rotation in gauge space can be generated by a series
of infinitesimal operations of the type defined in equation (4.12), i.e.

G(δφ) ≈ 1− i
N̂

2
δφ , (4.44)

the state |1′′〉 in equation (4.43) is obtained by a gauge rotation of the ground
state.

The zero-point amplitude associated with this state, proportional to the quan-
tity�′′1, diverges (see equation (4.39 )) but nonetheless defines a finite inertia for
pairing rotations (see (I.34)). By a proper inclusion of these fluctuations (of the
orientation angle in gauge space, see also discussion at the end of Appendix I)
one can restore gauge invariance to the |BCS〉K′ state. In fact the states,

|N 〉 ∼
∫

dφ ei N
2 φ|BCS〉K′

=
(∏
ν>0

Uν

)∫
dφ ei N

2 φ

×
⎛⎝1+ e−iφ

∑
ν>0

c(ν)a†
νa

†
ν̄ + e−2iφ

(∑
ν>0

c(ν)a†
νa

†
ν̄

)2

+ · · ·
⎞⎠ |0〉

∼
(∑
ν>0

c(ν)a†
νa

†
ν̄

) N
2

|0〉 , (4.45)

where

c(ν) = Vν
Uν
, (4.46)

are states with fixed number N of particles.∗ They are the members of a pair-
ing rotational band (rotations in gauge space) (Bes and Broglia (1966), see also
Belyaev (1972)). Examples of such a rotational band are provided by the ground
state of even–even nuclei with many particles outside the closed shell (see Sec-
tion 4.2.5 and Fig. 4.2). The operation carried out in equation (4.45) is number
projection. It can be viewed as a change of representation between the conju-
gate variables N and φ, from the φ-representation to the N -representation (see
Anderson (1964)).

∗ See Section 6.6 for a discussion of alternative techniques of projection devised to restore particle number
conservation.
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The BCS wavefunction |BCS〉K′ has a definite orientation in gauge space. The
RPA ground state |0′′〉 in equation (4.42) and the zero-frequency mode built on it
has a uniform distribution in φ-space, corresponding to the RPA representation
of the number projected states |N 〉 given in equation (4.45).

The inertia associated with pairing rotational bands is obtained by recognizing
that the normalization quantity�′′n is also the particle-vibration coupling strength
of the nth mode. Thus

D′′1
�2
= 4

∑
ν>0

U 2
ν V 2

ν

Eν
. (4.47)

This result is derived and discussed in Appendix I. It coincides with the cranking
model moment of inertia (Ring and Schuck (1980), equation (3.91)).

J
�2
= 2

∑
ν>0

∣∣〈νν̄|N̂ |BCS〉∣∣2

2Eν
. (4.48)

We shall see that, although this moment of inertia is finite, the associated rota-
tional energies are much smaller than typical quasiparticle energies, as expected
for a collective mode.

4.2.4 Two-particle transfer reaction

The basic feature characterizing a family of states as belonging to a rotational
(or vibrational) band is the fact that there exists an operator Ô whose matrix
elements between members of the band, aside from displaying very simple rela-
tions, are conspicuosly enhanced with respect to the value of the same operator
between pure particle states. Consequently, the (external) field associated with
the operator Ô constitutes the specific probe to excite the band. In particular, in
the case of rotations in normal space of quadrupole-deformed nuclei, it is the E2-
operator which displays large matrix elements, while Coulomb excitation is the
specific probe of dynamic and static nuclear deformations, and of the associated
collective bands.

The specific probes of the pairing modes are two-nucleon transfer reactions
(see e.g. Lane (1964), Mottelson (1977), Broglia (1985c), Broglia et al. (1985c))
and references therein). In fact, the existence of a large static pair deformation
(pairing gap) manifests itself very directly in the pattern of two-particle transfer
intensities, in keeping with the fact that

〈BCS|P†|BCS〉 = �
G
. (4.49)
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Consequently, the two-particle cross-section between members of the pairing
rotational band is

σrot ∼
(
�

G

)2

∼ A

4
, (4.50)

where use was made of the empirical values � ≈ 12 MeV/
√

A and G ≈
25 MeV/A (Bohr and Mottelson (1975)). The two-particle transfer cross-section
associated with a typical two-quasiparticle state is

σ2qp ∼ 〈νν̄|P†|BCS〉2 = U 4
ν ≈ 1 . (4.51)

From the ratio

R̄ = σrot

σ2qp
∼ A

4
(4.52)

one expects that, in superfluid nuclei, a large fraction of the cross-section associ-
ated with the transfer of two nucleons in time-reversal states connects members
of the same pairing rotational band.

Note that the total two-particle transfer cross-section, once Q-value effects are
eliminated, is the same for a system of nucleons which move independently of
each other in the mean field as it is for the same system of nucleons interacting via
a pairing force; i.e. the same before and after the pairing interaction is switched
on. The basic difference introduced by the presence of U and V factors in
the corresponding cross-sections is that of concentrating a large fraction of the
original strength on the ground-state transition (see Broglia et al. (1972a)).

4.2.5 A schematic model

Let us consider particles moving in a single j-shell with pair degeneracy � =
(2 j + 1)/2. The BCS occupation numbers can be written directly as (Appendix
H, see also Section 3.7)

V =
(

N

2�

)1/2

, U =
(

1− N

2�

)1/2

, (4.53)

and lead to a gap and a Fermi energy

� = G

2

√
N (2�− N ) (4.54)

and

λ = −G

2
(�− N ), (4.55)
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respectively. The quasiparticle energy is given by

E = G�

2
. (4.56)

Typical superfluid nuclei, i.e. nuclei with many particles outside the closed shell
and thus with a large number of 0+ pairs (Cooper pairs) in the ground state,
display a large pairing gap. Within the present simplified model, this situation
corresponds to N ≈ �. In fact, the pairing gap given in equation (4.54) acquires
its largest value � = G�/2 for N = �. In what follows we shall have this
situation in mind in discussing the properties of the excitation spectrum. The
ground-state energy (see Appendices H, I) is

E0 = U + λN = λN + G

4
N 2

= λN + �
2

2J N 2, (4.57)

where n = N/2 is the number of pairs, and where the moment of inertia is
determined by the relation

2J
�2
= 4

G
. (4.58)

This result coincides with that obtained from equation (4.48) making use of the
occupation numbers and quasiparticle energy provided by equations (4.53) and
(4.56) respectively.

From the ratio,

�
2/2J
2E

≈ 1

�
� 1. (4.59)

This indicates that the rotational excitations have an energy which is much
smaller than that associated with the quasiparticle energies, the ratio approaching
zero, as N = �→∞. In this connection, it is illuminating to quote part of the
discussion in Weinberg (1996) on spontaneously broken global symmetries,
where he uses a chair as an example of a macroscopic system:

spontaneous symmetry breaking actually occurs only for idealized systems that
are infinitely large. The appearance of broken symmetry for a chair arises be-
cause it has a macroscopic moment of inertia J , so that its ground state is part
of a tower of rotationally excited states whose energies are separated by only tiny
amounts, of the order of �

2/J . This gives the state vector of a chair an exquisite
sensitivity to external perturbations; even very weak external fields will shift the
energy much more than the energy difference of these rotational levels. In con-
sequence, any rotationally asymmetric external field will cause the ground state
or any other state of the chair with definite angular momentum rapidly to develop
components with other angular momentum quantum numbers. The states of the
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chair that are relatively stable with respect to small external perturbations are not
those with definite angular momentum quantum numbers, but rather those with a
definite orientation, in which the rotational symmetry of the underlying theory is
broken.

Weinberg’s arguments are true for an atomic nucleus only in the limit N →∞
when deformation and rotation are rigorously defined. Nevertheless when one
observes a (pairing) rotational spectrum one can talk about a privileged direction
in gauge space, which can be clamped down in a collision between two superfluid
nuclei (see Broglia and Winther (1991)) resulting in the transfer of a Cooper pair
(this is a Josephson-like phenomenon, see Anderson (1972), Anderson (1964)
p. 134; see also Appendix L).

Broken symmetries in relativistic theories and in many-body systems imply
an Anderson–Goldstone–Nambu (AGN) boson (zero-mass particle or phonon
branch respectively). The analogous property in the case of the RPA description
of pairing in atomic nuclei is the �ω′′1 = 0 solution (see Section 4.2 as well as
equation (4.57)) and the associated pairing rotational band built out of the ground
state of systems with N , N ± 2, N ± 4, . . . , particles. As shall be seen in the
next subsection, there exists strong experimental evidence which testifies to the
validity of this picture.

4.2.6 Comparison with experiment

In Fig. 4.2 we summarize the experimental information concerning the ground-
state energies of one of the longest sequences of isotopes of nuclei with many
nucleons outside a closed shell, that associated with the Sn-isotopes (A

50Sn)
(Broglia et al. (1973), Broglia (1985c), Bes and Broglia (1977)). The data
can be rather accurately fitted, after a linear term has been removed, with the
parabola corresponding to an energy parameter �

2/2J = 0.1 MeV, in overall
agreement with the simple estimate provided by the prefactor of N 2 in equation
(4.57) (G/4 ≈ 28/4A MeV≈ 0.07 MeV, A ≈ 100, see equation (2.27) and Ap-
pendix H). Also displayed in Fig. 4.2 is systematic information on the transfer of
two neutrons in time-reversal states (single Cooper pair transfer). The average
value of R̄ = 24.4 is in overall agreement with the simple estimate provided by
equation (4.52) (R̄ = 25 for A ≈ 100, see also Appendix H).

The diagonalization of the total Hamiltonian H = HMF + H ′p + H ′′p in the
RPA has still a root at ω1 = 0 (corresponding to the ω′′1 = 0 root of the
Hamiltonian HMF + H ′′p ), orthogonal to all the other two-quasiparticle like states
(pairing vibrations), and which are somewhat modified by the Coriolis cou-
pling associated with the rotation of the system in gauge space as a whole
(see Appendix J). Pairing vibrations of superfluid nuclei correspond to the
odd solution discussed by Anderson in his RPA treatment of superconductivity
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Neutron number

Figure 4.2. Experimental energies of the Jπ = 0+ states of the even Sn isotopes excited in
two-particle transfer reactions ((t, p) and (p, t)). The heavy drawn lines represent the values
of the expression E = −B(Sn)+ Eexc + 8.58N + 45.3 (MeV), where the binding energies
B(A) (in MeV) are taken from Wapstra and Gove (1971). The dashed line represents the
parabola 0.10(N − 65.4)2 Also displayed is the excited pairing rotational band associated with
the pairing vibrational mode. In all cases where more than one Jπ = 0+ state has been excited
below 3 MeV in two-neutron transfer processes, the energy

∑
i σ (0i )E(0+i )/

∑
i σ (0+i ) of the

centroid is quoted, as well as the corresponding cross-section
∑

i σ (0+i ). The quantity σ (0+i )
is the relative cross-sections with respect to the ground-state cross-sections. The numbers
along the abscissa are the ground-state (p, t) and (t, p) cross-sections normalized to the
116Sn↔ 118Sn(gs) cross-section. The (t, p) and (p, t) data utilizing in constructing this figure
were taken from Bjerregaard et al. (1968), Bjerregaard et al. (1969), Flynn et al. (1970),
Flemming et al. (1970).

(Anderson (1958)), lying at the top of the pairing gap. These solutions are, as a
rule, both in the 0D and in the 3D systems, almost pure two-quasiparticle states
(see Broglia et al. (1977)). This is the reason why we should not refer to them
further. As will be discussed in Chapter 5 pairing vibrations play an important
role in closed shell (normal) nuclei.

4.3 Infinite 3D neutral superconductors (ξ L)

In this section we follow Anderson (1958) and study the correlated two-
quasiparticle excitations associated with the Hamiltonian

H =
∑
k,σ

εka†
kσakσ + 1

2

∑
k �=k ′,q

∑
σ,σ ′

V (	k, 	k ′)a†
k ′,σ ′a

†
−k ′+q,σa−k+q,σak,σ . (4.60)

�
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Here the (Galilean invariant) Coulomb and induced interactions have been
lumped together in V (k, k ′), while σ denotes the projection of the electron spin.
Making use of the RPA equations of motion for the operators

b̂Q
k = a−k−Q↓ak↑, (4.61)

ρ̂
Q
k = a†

k+Q↑ak↑, (4.62)

and for the corresponding Hermitian, and time-reversal conjugate operators,
Anderson (1958) obtains for the even solution of the Hamiltonian H,∣∣∣∣1− 2VD f l

2VDh 1− g

∣∣∣∣ = 0 , (4.63)

where

f =
∑

k

ωk Qnk Q

(νQ
k )2 − ν2

, (4.64)

g =
∑

k

(−V )νQ
k cos2

[
1
2 (θk − θk+Q)

]
(νQ

k )2 − ν2
, (4.65)

h =
∑

k

(−V )(bk + bk+Q)

(νQ
k )2 − ν2

, (4.66)

l =
∑

k

ω2
k Q(bk + bk+Q)

ν2 − (νQ
k )2

, (4.67)

and where VD indicates the ‘direct’, unscreened interaction. In the above equa-
tions one has used the definitions

bk = 〈a−k↓ak↑〉 = b∗k = Uk Vk, (4.68)

ωk Q = εk+Q − εk, (4.69)

nk Q = nk+Q − nk, (4.70)

ν
Q
k = Ek + Ek+Q,

(
Ek = (ε2

k +�2
k)1/2

)
, (4.71)

cos θk = U 2
k − V 2

k . (4.72)

The collective modes associated with the secular equation (4.63) have entirely
different behaviour, depending on whether we consider the charged or neutral
case. In the charged case, VD is singular and large, and f determines the fre-
quencies. In the neutral case the frequencies are mostly determined by g.

4.3.1 Neutral superconductor

Following Anderson (1958) we assume VD = V as Q→ 0. Since f ∼ Q2, and
thus 1− 2VD f ≈ 1, equation (4.63) can be approximated as

1− g = 2V hl. (4.73)

https://doi.org/10.1017/9781009401920.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401920.005


90 Spontaneous symmetry breaking

Because also l ∼ Q2, in the limit Q → 0 the dispersion relation reads (see (4.35))∑
k

(−V )2Ek

(2Ek)2 − ν2
= 1 , (4.74)

where 2Ek ≈ νQ
k . In keeping with the BCS gap equation, equation (4.74) admits

a solution with ν = 0.
In the following we use the approximation ω2

k Q ≈ 1
3

( kF Q
m

)2
. The factor 1/3

comes from the average 〈cos2 γ 〉 where γ is the angle between 	k and 	Q. Ex-
panding h and l to the lowest non-vanishing order in Q2 and ν2, and g to first
order,

h ≈
∑

k

(−V )2Uk Vk

(2Ek)2
= 2�

∑
k

(−V )

(2Ek)3
, (4.75)

l ≈ −
∑

k

ω2
k Q2Uk Vk

(2Ek)2
= −1

3
k2

F
Q2

m2

∑
k

2Uk Vk

(2Ek)2
, (4.76)

g ≈ 1+ ν2
∑

k

(−V )

(2Ek)3
−

∑
k

(−V )ω2
k Q

(2Ek)3
, (4.77)

the dispersion relation equation (4.73) becomes

1 −
(

1+ ν2
∑

k

(−V )

(2Ek)3
−

∑
k

(−V )ω2
k Q

(2Ek)3

)

= 2V

(
2�

∑
k

(−V )

(2Ek)3

)(
−

∑
k

ω2
k Q2Uk Vk

(2Ek)2

)
, (4.78)

which can also be written as

ν = 1√
3
vF Q

(
1+ 4V�

∑
k

2Uk Vk

(2Ek)2

)1/2

, (4.79)

where the assumption has been made that �k = �. The AGN-phonon velocity
vF/
√

3 seems to be a kinematical ‘ideal gas’ effect, which has also been derived
in a different way by Bogoliubov et al. (1958). It is curious that the term which
modifies the ‘ideal gas’ velocity in equation (4.79) is related to the pairing
moment of inertia (see Appendix H, equation (H.17) and Appendix I, equation
(I.24)) and (4.47),

4V�
∑

k

2Uk Vk

(2Ek)2
= V

I
�2
= V

∂N

∂λ
. (4.80)

An example of an AGN boson in a neutral system is provided by the fourth
sound in superfluid 3He, which corresponds to the oscillatory motion of the
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superfluid phase in a confined geometry (superleak) where the normal fluid
is clamped. The corresponding sound velocity C2

4 = C2
1 ρ̄s/ρ, where ρ̄s is the

superfluid density and ρ the total density of the system, is proportional to the
first sound velocity (Vollhardt and Wölfle (1990)), C2

1 = 1
3v

2
F(1+ Fs

0 )(1+ 1
3 Fs

1 ),
where Fs

l are the spin symmetric l = 0 and l = 1 Landau parameters (see Section
10.5.1).

Let us now return to the main subject discussed above, namely the relation
between the solutions of the dispersion relations given in equations (4.35) and
(4.74) (see also equations (J.27) and (4.63))), solutions which look suggestively
similar (see also equations (4.57) and (4.79)). It has been argued that in relativistic
theory, as well as in 3D many-body systems, the Q → 0 is a proper solution of
the problem (zero-mass particle and phonon branch respectively), while in a 0D
system like the nucleus, it is a spurious solution to be eliminated in terms of
a pairing rotational band whose inertia is that of the ω1 = 0 root or spurious
state (see equation (4.47)). To this line of reasoning one could argue that, had
we used a more powerful technique than RPA to diagonalize the Hamiltonian
H = H0 + H ′p + H ′′p , we would have obtained the modified two-quasiparticle-
like states (pairing vibrations), and the pairing rotational band, without further
ado.

For a discussion of these subjects which goes beyond the RPA, we refer the
reader to Bes and Kurchan (1990).
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