
Bull. Aust. Math. Soc. 97 (2018), 453–458
doi:10.1017/S0004972718000138

INEQUALITIES ASSOCIATED WITH RATIOS OF
GAMMA FUNCTIONS

JENICA CRINGANU

(Received 4 January 2018; accepted 19 January 2018; first published online 23 April 2018)

Abstract

We use properties of the gamma function to estimate the products
∏n

k=1(4k − 3)/4k and
∏n

k=1(4k − 1)/4k,
motivated by the work of Chen and Qi [‘Completely monotonic function associated with the gamma
function and proof of Wallis’ inequality’, Tamkang J. Math. 36(4) (2005), 303–307] and Mortici et al.
[‘Completely monotonic functions and inequalities associated to some ratio of gamma function’, Appl.
Math. Comput. 240 (2014), 168–174].
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1. Introduction

Chen and Qi [2] proved the following inequalities for the Wallis ratio:

1
√
π(n + a)

≤
(2n − 1)!!

(2n)!!
<

1
√
π(n + b)

, for all n ≥ 1, (1.1)

with the best possible constants a = 4/π − 1 and b = 1/4. These inequalities are a
consequence of the complete monotonicity on (0,∞) of the function

x→ ln
xΓ(x)√

(x + 1
4 )Γ(x + 1

2 )
,

where Γ(x) =
∫ ∞

0 tx−1e−x dt for x > 0 is the gamma function. Mortici et al. [3] found
the following inequalities:

a
3√
n2
≤

1 · 4 · · · (3n − 2)
3 · 6 · · · (3n)

<
b

3√
n2
,

c
3
√

n
≤

2 · 5 · · · (3n − 1)
3 · 6 · · · (3n)

<
d
3
√

n
,

where the constants

a =
1
3
≈ 0.3333, b =

1
Γ( 1

3 )
≈ 0.3732, c =

2
3
≈ 0.6666, d =

1
Γ( 2

3 )
≈ 0.7384
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are sharp. The inequalities on the left-hand sides hold with equality if and only if
n = 1. These inequalities are a consequence of the complete monotonicity on (0,∞) of
the functions

x→ ln

(
1

2π

√
3Γ( 2

3 )
)3

x2
(

Γ(x+ 1
3 )

Γ(x+1)Γ( 1
3 )

)3 , x→ − ln
x
(

Γ(x+ 2
3 )

Γ(x+1)Γ( 2
3 )

)3

( 1
Γ( 2

3 )
)3

.

Inspired by Mortici et al. [3], we consider the following products for an integer
n ≥ 1:

P1 =
1 · 5 · · · (4n − 3)

4 · 8 · · · (4n)
, P2 =

2 · 6 · · · (4n − 2)
4 · 8 · · · (4n)

, P3 =
3 · 7 · · · (4n − 1)

4 · 8 · · · (4n)
.

Note that P2 = (2n − 1)!!/(2n)!!, for which we already have the estimate (1.1).
Expressing P1 and P3 in terms of the gamma function by

P1 =
Γ(n + 1

4 )

Γ(n + 1)Γ( 1
4 )
, P3 =

Γ(n + 3
4 )

Γ(n + 1)Γ( 3
4 )

(1.2)

motivates us to consider the functions

x→ ln

(
1

2π

√
2Γ( 3

4 )
)4

x3
(

Γ(x+ 1
4 )

Γ(x+1)Γ( 1
4 )

)4 , x→ − ln
x
(

Γ(x+ 3
4 )

Γ(x+1)Γ( 3
4 )

)4

(
1

Γ( 3
4 )

)4 .

We prove that these functions are completely monotonic on (0,∞) and, as a result, we
establish sharp inequalities for P1 and P3.

2. The main results

The digamma function ψ : (0,∞)→ R is defined by

ψ(x) =
d
dx

(ln Γ(x)) =
Γ′(x)
Γ(x)

and its derivatives ψ′, ψ′′, . . . are the polygamma functions. We have the following
integral representations:

ψ(n)(x) = (−1)n−1
∫ ∞

0

tne−xt

1 − e−t dt (2.1)

and
1
xn =

1
(n − 1)!

∫ ∞

0
tn−1e−xt dt (2.2)

for every real number x > 0 and integer n ≥ 1 (see, for example, [1]).
Recall that a function s : (0,∞)→ R is completely monotonic if it is infinitely

differentiable on (0,∞) and (−1)ns(n)(x) ≥ 0, for every real x > 0 and integer n ≥ 0.
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As a consequence of the Hausdorff–Bernstein–Widder theorem (see [4]), a function
s(x) is completely monotonic on (0,∞) if and only if

s(x) =

∫ ∞

0
e−xtψ(t) dt,

where ψ is a nonnegative function on (0,∞) such that the integral converges for all
x > 0 (see [4]). Now we can state and prove our results.

Theorem 2.1. The function f : (0,∞)→ R given by

f (x) = ln

(
1

2π

√
2Γ( 3

4 )
)4

x3
(

Γ(x+ 1
4 )

Γ(x+1)Γ( 1
4 )

)4

is completely monotonic on (0,∞).

Proof. First observe that

f (x) = 4 ln
( 1
2π

√
2Γ

(3
4

)
Γ

(1
4

))
− 3 ln x − 4 ln Γ

(
x +

1
4

)
+ 4 ln Γ(x + 1).

By a standard calculation,

f ′′(x) =
3
x2 − 4ψ′

(
x +

1
4

)
+ 4ψ′(x + 1).

Using (2.1) and (2.2),

f ′′(x) = 3
∫ ∞

0
te−xt dt − 4

∫ ∞

0

te−(x+ 1
4 )t

1 − e−t dt + 4
∫ ∞

0

te−(x+1)t

1 − e−t dt =

∫ ∞

0

tϕ( t
4 )

et − 1
e−xt dt,

where ϕ(t) = 3e4t − 4e3t + 1. Since ϕ′(t) = 12e3t(et − 1) > 0 for all t > 0, it follows that
ϕ is strictly increasing on [0,∞) and so ϕ(t) > ϕ(0) = 0 for all t > 0.

According to the Hausdorff–Bernstein–Widder theorem, f ′′ is completely
monotonic, that is, (−1)n( f ′′)(n) ≥ 0, or

(−1)n( f )(n) ≥ 0, for all n ≥ 2. (2.3)

In particular, f ′′ > 0, so that f ′ is strictly increasing. Since f ′(∞) = 0, it follows that
f ′ < 0. Thus, f is strictly decreasing with f (∞) = 0 and so f > 0.

Finally, (2.3) is true also for n ∈ {0, 1}, so f is completely monotonic. �

Theorem 2.2. Define the function g : (0,∞)→ R by

g(x) = ln
x
(

Γ(x+ 3
4 )

Γ(x+1)Γ( 3
4 )

)4

(
1

Γ( 3
4 )

)4 .

Then −g is completely monotonic on (0,∞).
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Proof. Observe that

g(x) = ln x + 4 ln Γ(x + 3
4 ) − 4 ln Γ(x + 1)

and so
g′′(x) = −

1
x2 + 4ψ′

(
x +

3
4

)
− 4ψ′(x + 1).

Using (2.1) and (2.2),

g′′(x) = −

∫ ∞

0
te−xt dt + 4

∫ ∞

0

te−(x+ 3
4 )t

1 − e−t dt − 4
∫ ∞

0

te−(x+1)t

1 − e−t dt =

∫ ∞

0

tφ( t
4 )

et − 1
e−xt dt,

where φ(t) = 4et − e4t − 3.
Since φ′(t) = 4et(1 − e3t) < 0 for all t > 0, we deduce that φ is strictly decreasing.

Thus, φ(t) < φ(0) = 0 for all t > 0. From the Hausdorff–Bernstein–Widder theorem,
−g′′ is completely monotonic, that is, (−1)n(−g′′)(n) ≥ 0, or

(−1)n(−g)(n) ≥ 0, for all n ≥ 2. (2.4)

Since g′′ < 0, it follows that g′ is strictly decreasing. But g′(∞) = 0, so g′ > 0. Thus,
g is strictly increasing with g(∞) = 0 and so g < 0. Consequently, (2.4) is also true for
n ∈ {0, 1}, so −g is completely monotonic. �

As a consequence of the complete monotonicity of the functions f and −g, we can
give the following sharp inequalities for P1 and P3.

Corollary 2.3. For all integers n ≥ 1,

a
4√
n3
≤

1 · 5 · · · (4n − 3)
4 · 8 · · · (4n)

<
b

4√
n3
,

with the best constants a = 1
4 = 0.25 and b = 1/Γ( 1

4 ) = 0.2758 . . ..

Proof. Since f is completely monotonic, it is also strictly decreasing. Thus, for every
integer n ≥ 1,

f (∞) < f (n) ≤ f (1).

From (1.2) and a standard computation,

1 <
1

2π

√
2Γ

(3
4

)/1 · 5 · · · (4n − 3)
4 · 8 · · · (4n)

4√
n3 ≤ exp

{1
4

f (1)
}

or √
2Γ( 3

4 )

2π
4√
n3

exp
{
−

1
4

f (1)
}
≤

1 · 5 · · · · · (4n − 3)
4 · 8 · · · · · (4n)

<

√
2Γ( 3

4 )

2π
4√
n3

,

so that
1

4
4√
n3
≤

1 · 5 · · · · · (4n − 3)
4 · 8 · · · · · (4n)

<

√
2Γ( 3

4 )

2π
4√
n3

=
1

Γ( 1
4 )

4√
n3
,

which is the desired conclusion. �
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Remark 2.4. Since limn→∞ f (n) = 0, it follows that

lim
n→∞

1 · 5 · · · (4n − 3)
4 · 8 · · · (4n)

4√
n3 =

1
Γ( 1

4 )
. (2.5)

(In fact, we can see that limn→∞ P1n3/4 = 1/Γ( 1
4 ), by simple application of the

asymptotic result Γ(n + a)/Γ(n + b) ∼ na−b as n→ ∞.) The left-hand inequality of
(2.5) can be improved in the following way. For r ∈ (0, 1/Γ( 1

4 )), there exists nr ∈ N
such that

r
4√
n3

<
1 · 5 · · · (4n − 3)

4 · 8 · · · (4n)
for all n ≥ nr.

Corollary 2.5. For all integers n ≥ 1,

c
4
√

n
≤

3 · 7 · · · (4n − 1)
4 · 8 · · · (4n)

<
d
4
√

n
,

with the best constants c = 3
4 = 0.75 and d = 1/Γ( 3

4 ) = 0.8160 . . . .

Proof. Since −g is completely monotonic, we deduce that g is strictly increasing.
Then, for all integers n ≥ 1,

g(1) ≤ g(n) < g(∞).

From 1.2 and a standard computation,

3
4

Γ

(3
4

)
≤

4√n
Γ(n + 3

4 )

Γ(n + 1)Γ( 3
4 )

/
1

Γ( 3
4 )
< 1

or
3

4 4
√

n
≤

3 · 7 · · · (4n − 1)
4 · 8 · · · (4n)

<
1

Γ( 3
4 ) 4
√

n
,

which is the desired conclusion. �

Remark 2.6. Since limn→∞ g(n) = 0, it follows that

lim
n→∞

3 · 7 · · · (4n − 1)
4 · 8 · · · (4n)

4√n =
1

Γ( 3
4 )
.

The left-hand inequality can be improved in the following way. For r ∈ (0, 1/Γ( 3
4 )),

there exists nr ∈ N such that

r
4
√

n
<

3 · 7 · · · (4n − 1)
4 · 8 · · · (4n)

for all n ≥ nr.

Remark 2.7. We can apply the same approach to P2, using the function

x→ ln

(
1

Γ( 1
2 )

)2

x
(

Γ(x+ 1
2 )

Γ(x+1)Γ( 1
2 )

)2 .
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We obtain
e
√

n
≤

1 · 3 · · · (2n − 1)
2 · 4 · · · (2n)

<
f
√

n
, for all n ≥ 1,

with the best constants e = 1
2 = 0.5 and f = 1/

√
π = 0.5641 . . . , but these inequalities

are weaker than (1.1).
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