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ON THE WEAK GLOBAL DIMENSION OF PSEUDO-
VALUATION DOMAINS 

BY 

DAVID E. DOBBS 

1. Introduction. In [7], Hedstrom and Houston introduce a type of 
quasilocal integral domain, therein dubbed a pseudo-valuation domain (for 
short, a PVD), which possesses many of the ideal-theoretic properties of 
valuation domains. For the reader's convenience and reference purposes, 
Proposition 2.1 lists some of the ideal-theoretic characterizations of PVD's 
given in [7]. As the terminology suggests, any valuation domain is a PVD. 
Since valuation domains may be characterized as the quasilocal domains of 
weak global dimension at most 1, a homological study of PVD's seems 
appropriate. This note initiates such a study by establishing (see Theorem 2.3) 
that the only possible weak global dimensions of a PVD are 0, 1, 2 and <*>. One 
upshot (Corollary 3.4) is that a coherent PVD cannot have weak global 
dimension 2: hence, none of the domains of weak global dimension 2 which 
appear in [10, Section 5.5] can be a PVD. 

As detailed in [5, Proposition 4.9(i)], an ample supply of PVD's is provided 
by the "D + M construction". (Not all PVD's are so constructed, even in the 
coherent case: see Remark 2.2.) Happily, the conclusions of [1] and [3], which 
were designed for the D + M construction, extend naturally to the PVD 
context, albeit with more complicated proofs. The reworking of [1] also yields 
facts about coherent PVD's which generalize results established, by very 
different means, in [5] under the assumption of finite Krull dimension. 

We caution that familiarity with [1] and [3] will be assumed. As usual, weak 
dimension and weak global dimension will be denoted by w.d. and w.gl.dim, 
respectively. Throughout, R will denote a quasilocal integral domain, with 
maximal ideal M. 

2. Background and statement of main result. We begin by recalling some 
results of Hedstrom and Houston [7, Theorems 1.4, 2.7 and 2.10] concerning 
our principal object of study. 

PROPOSITION 2.1. Let K be the quotient field of the quasilocal domain R. Then 
the following two conditions are equivalent: 
(a) There is an overring of R (i.e., a subring of K which contains R) which is a 

valuation domain whose maximal ideal coincides with the maximal ideal, 
M, of R; 

(b) For any ideals I and J of R, either I<^J or M/<= ML 
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If R satisfies (a) and (b), then R is said to be a pseudo-valuation domain 
(PVD). If R is not a valuation domain, then (a) and (b) are equivalent to 
(c) M _ 1 = {x in K.xM^R} is a valuation overring of R with maximal ideal M. 
Moreover, if R is not a valuation domain and if (c) holds, then M~l={x in 
K.xM^M) and the prime ideals of M"1 coincide with those of R. 

REMARK 2.2. Since the major themes of this note concerning coherence and 
PVD's have already been pursued in [1] and [3] in the context of the D + M 
construction, it seems just to pause and exhibit a coherent PVD which is not of 
the form D + M. Let S be the Noetherian (hence, coherent) PVD given in [7, 
Example 3.6]. Explicitly, let m be a positive square-free integer with m = 5 
(mod 8), let T=Z[Jm], let N = (2, 1 + Vm) and set S = TN. If S assumes the 
form D + M, then S has a valuation overring L + M with maximal ideal 
M( ^ 0), such that L is a field containing the ring D. As S has Krull dimension 
1, the integral closure of S is of the form F+M, where F is a field contained in 
L. Then 0 ( c F ) is integral over S. By multiplying an integrality equation for \ 
over S by a sufficiently large power of 2, we infer § e S, the desired absurdity. 

We may now state the main result of this note. 

THEOREM 2.3. Suppose that R is a PVD, but not a valuation domain. Then: 
(a) The following four conditions are equivalent: 

(1) M = M2; 
(2) M is R-flat; 
(3) Each prime ideal of R is R-flat; 
(4) w.gl.dim(£) = 2. 

(b) The following three conditions are equivalent: 
(i) M^M2; 

(ii) w.d.R(M) = oo; 

(iii) w.gl.dim(JR) = oo. 

The proof of Theorem 2.3 will be obtained in the next section after some 
preliminaries. 

3. Proofs. The statements of the next two lemmas are suggested by the 
results of [1] and [3]. Indeed, Lemma 3.1 explores a technique studied in [2, 
Proposition 4.5], [1, Theorem 3] and [3, Proposition 3.1]. The ancestry of 
Lemma 3.2 includes [1, Theorem 7 and Remark 9] and [3, Propositions 2.3 
and 3.1]. 

As usual, Ein) will denote the direct sum of n copies of an R -module E. 

LEMMA 3.1. Let R be a PVD, let A be a nonzero ideal of R, and letn = m + l 
be the cardinality of a minimal R-generating set of A. Then there is a short exact 
sequence of R-modules 

0->Mirn)-+RM^>A-^>0. 
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Proof. Let S = {xj be a minimal jR-generating set of A. Well-order S; let xx 

be its first element, x2 its second element, etc. Consider the R -module 
epimorphism /:l?(n)—> A which sends the i-th basis element, ex, of R(n) to xt. 
By minimality of S, we have ker(/)<=:MR(n). It suffices to prove that the 
R-module homomorphism g:ker(/) —» M (m), given by g(£ m ^ ) = (m2, m 3 , . . . ) , 
is an isomorphism. Now, g is a monomorphism: if £ ™i*i = ® with mt = 0 for 
each i > l , then m ^ ^ O , whence cancellation of x^^O) gives m1 = 0. The 
proof that g is surjective depends upon condition (b) in Proposition 2.1. 
Indeed, given a finite set {m2, • • •, mk}c: M with fc < n, produce m1 in M such 
that m1x1 + - • - + mkjck = 0 as follows. Consider the ideals i ^ R ^ and J = 
Rx2 + - * * + Rxk. By minimality of S, note J<t= /. If R is a valuation domain then 
/<=/ ; if R isn't valuation, (b) yields that MJ^MI. In either case, 
m2x2 + ' ' - + mkxkeMxu to complete the proof. 

Lemma 3.1 will be used to treat finitely generated ideals A, as any such has a 
minimal generating set. For the ideal M, which need not be finitely generated, 
it will be convenient to record the following companion result. 

LEMMA 3.1. (bis). Let Rbe a PVD which is not a valuation domain.. Let Vbe 
its valuation overring described in Proposition 2.1(c). Let n = m + l be the 
dimension of V/M as an R/M-vector space. If M^ M2 , then there is a short exact 
sequence of R-modules 

0 - * M ( m ) - + £ ( n ) - ^ M - ^ 0 . 

Proof (sketch). Note that M= Vu, for any u in MXM2. Consider {vt +M}, a 
well-ordered .R/M-basis of V/M, with v1 = l. The R-module homomorphism 
f:Rin)-> M, given by f(et) = v{u, is surjective since its image contains X Rvtu + 
Mvxu = (X Rvt+M)u=Vu. As before, one constructs an isomorphism 
g:ker(/) —» M (m). (Show that ( m 2 , . . . , mk, 0, 0 , . . . ) is in the image of g with 
the aid of 1 = Rvtu = Ru and J = Rv2u + - • - + Rvku.) Details may safely be 
omitted. 

LEMMA 3.2. Let R be a PVD which is not a valuation domain. Then: 
(a) Let P be an ideal of R.IfP = MP, then P is R-flat. If P is prime and R-ftat, 

then P = MP. 
(b) If M^M2, then w.d.R(M) = oo. 

Proof, (a) Suppose that P = MP. To establish R -flatness of P, we show that 
any relation £i rtpt = 0 (with rt in R, pt in P) arises from elements vt in P, rtj in 
R and equations pt =£,- i-u,. (for each i) and £i rj^ = 0 (for each /). 

Let V = M _ 1 be the valuation overring of R described in Proposition 2.1(c). 
As PV is V-flat (any ideal of a valuation domain is flat), the given relation 
yields elements ny in PV and vtj in V such that pt = X; v^ and £* r^ = 0. Since 
V is a valuation domain, we may write n, = xwp with x in P and w, in V. Use 

3 
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the fact that V is valuation, this time in tandem with the hypothesis that 
P = MP, to write x = yz, with y in M and z in P. A computation verifies that 
setting Vj = z and rtj = v^y produces the required equations. (To show pt = 
X; rtjVj, first note that i^n, = rtjz.) Thus, P is .R-flat, as required. 

Conversely, we show that if a prime ideal P is .R-flat, then P = MP. Without 
loss of generality, P^O. By [8, Lemma 2.1], it suffices to eliminate the 
possibility that P is a principal ideal. Since JR is not a valuation domain, this is 
accomplished by an appeal to [7, Corollary 2.9]. 

(b) Assume that M ^ M2 . By part (a), M is not 2?-flat. Then, if m + 1 is the 
cardinality of an JR/M-basis of VIM, Lemma 3.1 (bis) implies that w.d.R(M) = 
l+w.d.R(M ( m )) = l+w.d.R (M), whence w.d.R(M) = o°? as required. 

COROLLARY 3.3. If R is a PVD and P is a nonmaximal prime ideal of R, then 
P is R-flat. 

Proof. Of course, 1? may be assumed nonvaluation. As noted in [5], it 
follows readily that any PVD is divided, in the sense of [4]; i.e., any prime ideal 
of R is comparable to any principal ideal of R under inclusion. In particular, if 
b is in M\P, then P^Rb, whence P = Pb<^ PM, and so R -flatness of P follows 
from Lemma 3.2(a). 

Proof of Theorem 2.3. Note that w.gl.dim(R)>2 since R is not a valuation 
domain. Moreover, for each finitely generated ideal A of R, the exact sequence 
guaranteed by Lemma 3.1 yields, as in the proof of Lemma 3.2(b), that 
w.d.R (A)<l+w.d.R (M). Thus, w.gl .dim(£)<l+supAw.d.R(A)<2+w.d.R(M). 
In particular, (2 )^ (4) . By Lemma 3.2, we have (1)<*(2) and (i)z^(ii); 
Corollary 3.3 yields (2)4>(3); and the implications (3)=>(2) and (ii)^>(iii) 
are trivial. Since exactly one of the conditions "M = M2" and "M^M2" 
holds, the implications (1)4>(4) and (i)=^>(iii), which have already been estab
lished, now yield (4) 4> (1) and (iii) => (i), to complete the proof. 

It was noted in the proof of Corollary 3.3 that, if R is a PVD, then R is 
divided and, hence by [4, Proposition 2.1], R is a going-down ring. If, in 
addition, R is coherent but not valuation, [2, Proposition 2.5] shows that R has 
infinite global dimension. The next result strengthens the conclusion in this 
case to w.gl.dim(i?) = oo. 

COROLLARY 3.4. / / R is a coherent PVD, then the only possible values of 
w.gl.dimCR) are 0, 1 and <». 

Proof. According to Theorem 2.3, it suffices to rule out the possibility that 
w.gl.dim(JR) = 2. However, in that case, M is i^-flat (thanks to Theorem 2.3), 
and coherence then entails that R is a valuation domain [9, Lemma 3.9], so 
that w.gl.dimCR) < 1, the desired contradiction. 

We close by showing how the methods of [1] serve to generalize some results 
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in [5]. Corollary 3.6 and the equivalence of (a), (b), and (c) in Proposition 3.5 
were obtained in [5, Corollary 4.7] and [5, Lemma 4.5(ii) and Remark 4.8(b)], 
respectively, under the additional hypothesis that R has finite Krull dimension. 

PROPOSITION 3.5. Let R be a PVD which is not a valuation domain. Let V be 
its valuation overring described in Proposition 2.1(c). The following conditions 
are equivalent: 

(a) R is coherent; 
(b) R is finite-conductor; i.e., the intersection of any two principal ideals of R is 

finitely generated as an ideal of R; 
(c) M is a finitely generated ideal of R; 
(d) V is a finitely generated R-module and M^M2. 

Proof. (a)=>(b) trivially, while (b)4>(c) was established in [5, Lemma 
4.5(H)]. 

To prove that (c)=̂ > (d), assume (c). As M ^ 0, Nakayama's lemma guarantees 
M9^ M2. To show that V is a finitely-generated R-module, we ape the proof of 
[1, Lemma 1]. Observe that MIM2 is both a finite-dimensional jR/M-vector 
space and (since M is a principal ideal of V) also a cyclic V/M-space. Then, 
V/M^M/Af2, whence there exists a finite i?/M-basis {v1 + M,... ,vn+M} of 
V/M, thus forcing V = M + S Rvh a sum of two finitely-generated R-
submodules. 

Finally, to establish (d)=>(a), assume (d). With the aid of Ferrand's desent 
result as in the proof of [1, Theorem 3], our task is reduced to showing that V 
is a finitely presented JR-module. To this end, write M= Vm and V = LRvt 

(with m in MXM2; vl9... 9vn in V), so that M = XR(vim) is finitely generated 
over R. Now, Lemma 3.1 supplies an exact sequence 

where t is the cardinality of a minimal i?-generating set of M; thus, M is 
finitely presented over R. As V= Vm = M, the proof is complete. 

COROLLARY 3.6 If R is a coherent PVD, then each overring of R is coherent. 

Proof. As overrings of valuation domains are valuations domains (and, 
hence, coherent), we may suppose that R is not a valuation domain. By [5, 
Proposition 4.2], the integral closure of R is a valuation domain which, as 
explained in [5, Remark 4.8(a)], must coincide with the overring V = M~X 

described in Proposition 2.1(c). It now follows readily (as, e.g., in [6, Proposi
tion 8]) that each overring of R compares with V under inclusion. It remains 
only to prove that each integral overring T( ^ V) of R is coherent. Now, any 
such T is a PVD (by [5, Proposition 4.2]) with maximal ideal M. Coherence of 
R assures that M is finitely generated over R (by Proposition 3.5) and, a 
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fortiori, finitely generated over T, whence another application of Proposition 
3.5 establishes coherence of T. 

REMARK 3.7. (a) By virtue of Lemma 3.2(a), the appeal to [9] in the proof of 
Corollary 3.4 may be replaced by an appeal to the equivalence (a)<=>(d) in 
Proposition 3.5. 

(b) In view of Corollary 3.4, it is of interest to note that a PVD of infinite 
weak global dimension need not be coherent. For an example, let L c F be an 
infinite-dimensional algebraic extension of fields, let F+N be a valuation 
domain with maximal ideal N^ N2, and set S = L + N. Then S is a PVD (by [7, 
Example 2.1] or [5, Proposition 4.9(i)]), has maximal ideal N with infinite weak 
dimension (by Theorem 2.3), and is not coherent (since S does not satisfy 
condition (d) of Proposition 3.5). Observe finally that, despite the noncoher-
ence of S, each overring of S is a PVD. 
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