Canad. Math. Bull. Vol. 21 (2), 1978

ON THE WEAK GLOBAL DIMENSION OF PSEUDO-VALUATION DOMAINS

BY DAVID E. DOBBS

1. Introduction. In [7], Hedstrom and Houston introduce a type of quasilocal integral domain, therein dubbed a pseudo-valuation domain (for short, a PVD), which possesses many of the ideal-theoretic properties of valuation domains. For the reader's convenience and reference purposes, Proposition 2.1 lists some of the ideal-theoretic characterizations of PVD's given in [7]. As the terminology suggests, any valuation domain is a PVD. Since valuation domains may be characterized as the quasilocal domains of weak global dimension at most 1, a homological study of PVD's seems appropriate. This note initiates such a study by establishing (see Theorem 2.3) that the only possible weak global dimensions of a PVD are 0, 1, 2 and ∞ . One upshot (Corollary 3.4) is that a coherent PVD cannot have weak global dimension 2: hence, none of the domains of weak global dimension 2 which appear in [10, Section 5.5] can be a PVD.

As detailed in [5, Proposition 4.9(i)], an ample supply of PVD's is provided by the "D+M construction". (Not all PVD's are so constructed, even in the coherent case: see Remark 2.2.) Happily, the conclusions of [1] and [3], which were designed for the D+M construction, extend naturally to the PVD context, albeit with more complicated proofs. The reworking of [1] also yields facts about coherent PVD's which generalize results established, by very different means, in [5] under the assumption of finite Krull dimension.

We caution that familiarity with [1] and [3] will be assumed. As usual, weak dimension and weak global dimension will be denoted by w.d. and w.gl.dim, respectively. Throughout, R will denote a quasilocal integral domain, with maximal ideal M.

2. Background and statement of main result. We begin by recalling some results of Hedstrom and Houston [7, Theorems 1.4, 2.7 and 2.10] concerning our principal object of study.

PROPOSITION 2.1. Let K be the quotient field of the quasilocal domain R. Then the following two conditions are equivalent:

- (a) There is an overring of R (i.e., a subring of K which contains R) which is a valuation domain whose maximal ideal coincides with the maximal ideal, M, of R;
- (b) For any ideals I and J of R, either $I \subseteq J$ or $MJ \subseteq MI$.

Received by the editors April 18, 1977.

If R satisfies (a) and (b), then R is said to be a pseudo-valuation domain (PVD). If R is not a valuation domain, then (a) and (b) are equivalent to (c) $M^{-1} = \{x \text{ in } K : xM \subseteq R\}$ is a valuation overring of R with maximal ideal M. Moreover, if R is not a valuation domain and if (c) holds, then $M^{-1} = \{x \text{ in } K : xM \subseteq M\}$ and the prime ideals of M^{-1} coincide with those of R.

REMARK 2.2. Since the major themes of this note concerning coherence and PVD's have already been pursued in [1] and [3] in the context of the D+M construction, it seems just to pause and exhibit a coherent PVD which is not of the form D+M. Let S be the Noetherian (hence, coherent) PVD given in [7, Example 3.6]. Explicitly, let m be a positive square-free integer with $m \equiv 5 \pmod{8}$, let $T \equiv \mathbb{Z}[\sqrt{m}]$, let $N = (2, 1 + \sqrt{m})$ and set $S = T_N$. If S assumes the form D+M, then S has a valuation overring L+M with maximal ideal $M(\neq 0)$, such that L is a field containing the ring D. As S has Krull dimension 1, the integral closure of S is of the form F+M, where F is a field contained in L. Then $Q(\subset F)$ is integral over S. By multiplying an integrality equation for $\frac{1}{2}$ over S by a sufficiently large power of 2, we infer $\frac{1}{2} \in S$, the desired absurdity.

We may now state the main result of this note.

THEOREM 2.3. Suppose that R is a PVD, but not a valuation domain. Then: (a) The following four conditions are equivalent:

- (1) $M = M^2$;
- (2) M is R-flat;
- (3) Each prime ideal of R is R-flat;
- (4) w.gl.dim(R) = 2.
- (b) The following three conditions are equivalent:
 - (i) $M \neq M^2$;
 - (ii) w.d._R(M) = ∞ ;
 - (iii) w.gl.dim $(R) = \infty$.

The proof of Theorem 2.3 will be obtained in the next section after some preliminaries.

3. **Proofs.** The statements of the next two lemmas are suggested by the results of [1] and [3]. Indeed, Lemma 3.1 explores a technique studied in [2, Proposition 4.5], [1, Theorem 3] and [3, Proposition 3.1]. The ancestry of Lemma 3.2 includes [1, Theorem 7 and Remark 9] and [3, Propositions 2.3 and 3.1].

As usual, $E^{(n)}$ will denote the direct sum of *n* copies of an *R*-module *E*.

LEMMA 3.1. Let R be a PVD, let A be a nonzero ideal of R, and let n = m + 1 be the cardinality of a minimal R-generating set of A. Then there is a short exact sequence of R-modules

 $0 \to M^{(m)} \to R^{(n)} \to A \to 0.$

160

Proof. Let $S = \{x_i\}$ be a minimal *R*-generating set of *A*. Well-order *S*; let x_1 be its first element, x_2 its second element, etc. Consider the *R*-module epimorphism $f: R^{(n)} \to A$ which sends the *i*-th basis element, e_i , of $R^{(n)}$ to x_i . By minimality of *S*, we have $\ker(f) \subset MR^{(n)}$. It suffices to prove that the *R*-module homomorphism $g: \ker(f) \to M^{(m)}$, given by $g(\sum m_i e_i) = (m_2, m_3, \ldots)$, is an isomorphism. Now, *g* is a monomorphism: if $\sum m_i x_i = 0$ with $m_i = 0$ for each i > 1, then $m_1 x_1 = 0$, whence cancellation of $x_1 \ne 0$ gives $m_1 = 0$. The proof that *g* is surjective depends upon condition (b) in Proposition 2.1. Indeed, given a finite set $\{m_2, \dots, m_k\} \subset M$ with $k \le n$, produce m_1 in *M* such that $m_1 x_1 + \cdots + m_k x_k = 0$ as follows. Consider the ideals $I = Rx_1$ and $J = Rx_2 + \cdots + Rx_k$. By minimality of *S*, note $I \ne J$. If *R* is a valuation domain then $J \subset I$; if *R* isn't valuation, (b) yields that $MJ \subset MI$. In either case, $m_2 x_2 + \cdots + m_k x_k \in Mx_1$, to complete the proof.

Lemma 3.1 will be used to treat finitely generated ideals A, as any such has a minimal generating set. For the ideal M, which need not be finitely generated, it will be convenient to record the following companion result.

LEMMA 3.1. (bis). Let R be a PVD which is not a valuation domain. Let V be its valuation overring described in Proposition 2.1(c). Let n = m+1 be the dimension of V/M as an R/M-vector space. If $M \neq M^2$, then there is a short exact sequence of R-modules

$$0 \to M^{(m)} \to R^{(n)} \to M \to 0.$$

Proof (sketch). Note that M = Vu, for any u in $M \setminus M^2$. Consider $\{v_i + M\}$, a well-ordered R/M-basis of V/M, with $v_1 = 1$. The R-module homomorphism $f: \mathbb{R}^{(n)} \to M$, given by $f(e_i) = v_i u$, is surjective since its image contains $\sum Rv_i u + Mv_1 u = (\sum Rv_i + M)u = Vu$. As before, one constructs an isomorphism $g: \ker(f) \to M^{(m)}$. (Show that $(m_2, \ldots, m_k, 0, 0, \ldots)$ is in the image of g with the aid of $I = Rv_1 u = Ru$ and $J = Rv_2 u + \cdots + Rv_k u$.) Details may safely be omitted.

LEMMA 3.2. Let R be a PVD which is not a valuation domain. Then:

- (a) Let P be an ideal of R. If P = MP, then P is R-flat. If P is prime and R-flat, then P = MP.
- (b) If $M \neq M^2$, then w.d. $_R(M) = \infty$.

Proof. (a) Suppose that P = MP. To establish *R*-flatness of *P*, we show that any relation $\sum_i r_i p_i = 0$ (with r_i in *R*, p_i in *P*) arises from elements v_j in *P*, r_{ij} in *R* and equations $p_i = \sum_i r_{ij}v_j$ (for each *i*) and $\sum_i r_i r_{ij} = 0$ (for each *j*).

Let $V = M^{-1}$ be the valuation overring of R described in Proposition 2.1(c). As PV is V-flat (any ideal of a valuation domain is flat), the given relation yields elements n_j in PV and v_{ij} in V such that $p_i = \sum_j v_{ij}n_j$ and $\sum_i r_i v_{ij} = 0$. Since V is a valuation domain, we may write $n_j = xw_j$, with x in P and w_j in V. Use the fact that V is valuation, this time in tandem with the hypothesis that P = MP, to write x = yz, with y in M and z in P. A computation verifies that setting $v_j = z$ and $r_{ij} = v_{ij}w_jy$ produces the required equations. (To show $p_i = \sum_j r_{ij}v_j$, first note that $v_{ij}n_j = r_{ij}z$.) Thus, P is R-flat, as required.

Conversely, we show that if a prime ideal P is R-flat, then P = MP. Without loss of generality, $P \neq 0$. By [8, Lemma 2.1], it suffices to eliminate the possibility that P is a principal ideal. Since R is not a valuation domain, this is accomplished by an appeal to [7, Corollary 2.9].

(b) Assume that $M \neq M^2$. By part (a), M is not R-flat. Then, if m+1 is the cardinality of an R/M-basis of V/M, Lemma 3.1 (bis) implies that w.d._R $(M) = 1 + w.d._R(M) = 1 + w.d._R(M)$, whence w.d._R $(M) = \infty$, as required.

COROLLARY 3.3. If R is a PVD and P is a nonmaximal prime ideal of R, then P is R-flat.

Proof. Of course, R may be assumed nonvaluation. As noted in [5], it follows readily that any PVD is divided, in the sense of [4]; i.e., any prime ideal of R is comparable to any principal ideal of R under inclusion. In particular, if b is in $M \setminus P$, then $P \subset Rb$, whence $P = Pb \subset PM$, and so R-flatness of P follows from Lemma 3.2(a).

Proof of Theorem 2.3. Note that w.gl.dim $(R) \ge 2$ since R is not a valuation domain. Moreover, for each finitely generated ideal A of R, the exact sequence guaranteed by Lemma 3.1 yields, as in the proof of Lemma 3.2(b), that w.d._R $(A) \le 1+$ w.d._R(M). Thus, w.gl.dim $(R) \le 1+$ sup_Aw.d._R $(A) \le 2+$ w.d._R(M). In particular, $(2) \ge (4)$. By Lemma 3.2, we have $(1) \Leftrightarrow (2)$ and $(i) \ge (ii)$; Corollary 3.3 yields $(2) \ge (3)$; and the implications $(3) \ge (2)$ and $(ii) \ge (iii)$ are trivial. Since exactly one of the conditions " $M = M^2$ " and " $M \ne M^2$ " holds, the implications $(1) \ge (4)$ and $(ii) \ge (iii)$, which have already been established, now yield $(4) \ge (1)$ and $(iii) \ge (i)$, to complete the proof.

It was noted in the proof of Corollary 3.3 that, if R is a PVD, then R is divided and, hence by [4, Proposition 2.1], R is a going-down ring. If, in addition, R is coherent but not valuation, [2, Proposition 2.5] shows that R has infinite global dimension. The next result strengthens the conclusion in this case to w.gl.dim $(R) = \infty$.

COROLLARY 3.4. If R is a coherent PVD, then the only possible values of w.gl.dim(R) are 0, 1 and ∞ .

Proof. According to Theorem 2.3, it suffices to rule out the possibility that w.gl.dim(R) = 2. However, in that case, M is R-flat (thanks to Theorem 2.3), and coherence then entails that R is a valuation domain [9, Lemma 3.9], so that w.gl.dim $(R) \le 1$, the desired contradiction.

We close by showing how the methods of [1] serve to generalize some results

162

in [5]. Corollary 3.6 and the equivalence of (a), (b), and (c) in Proposition 3.5 were obtained in [5, Corollary 4.7] and [5, Lemma 4.5(ii) and Remark 4.8(b)], respectively, under the additional hypothesis that R has finite Krull dimension.

PROPOSITION 3.5. Let R be a PVD which is not a valuation domain. Let V be its valuation overring described in Proposition 2.1(c). The following conditions are equivalent:

- (a) R is coherent;
- (b) R is finite-conductor; i.e., the intersection of any two principal ideals of R is finitely generated as an ideal of R;
- (c) M is a finitely generated ideal of R;
- (d) V is a finitely generated R-module and $M \neq M^2$.

Proof. (a) \Rightarrow (b) trivially, while (b) \Rightarrow (c) was established in [5, Lemma 4.5(ii)].

To prove that $(c) \Rightarrow (d)$, assume (c). As $M \neq 0$, Nakayama's lemma guarantees $M \neq M^2$. To show that V is a finitely-generated R-module, we ape the proof of [1, Lemma 1]. Observe that M/M^2 is both a finite-dimensional R/M-vector space and (since M is a principal ideal of V) also a cyclic V/M-space. Then, $V/M \cong M/M^2$, whence there exists a finite R/M-basis $\{v_1 + M, \ldots, v_n + M\}$ of V/M, thus forcing $V = M + \Sigma Rv_i$, a sum of two finitely-generated R-submodules.

Finally, to establish $(d) \Rightarrow (a)$, assume (d). With the aid of Ferrand's desent result as in the proof of [1, Theorem 3], our task is reduced to showing that V is a finitely presented R-module. To this end, write M = Vm and $V = \sum Rv_i$ (with m in $M \setminus M^2$; v_1, \ldots, v_n in V), so that $M = \sum R(v_im)$ is finitely generated over R. Now, Lemma 3.1 supplies an exact sequence

$$0 \to M^{(t-1)} \to R^{(t)} \to M \to 0$$

where t is the cardinality of a minimal R-generating set of M; thus, M is finitely presented over R. As $V \cong Vm = M$, the proof is complete.

COROLLARY 3.6 If R is a coherent PVD, then each overring of R is coherent.

Proof. As overrings of valuation domains are valuations domains (and, hence, coherent), we may suppose that R is not a valuation domain. By [5, Proposition 4.2], the integral closure of R is a valuation domain which, as explained in [5, Remark 4.8(a)], must coincide with the overring $V = M^{-1}$ described in Proposition 2.1(c). It now follows readily (as, e.g., in [6, Proposition 8]) that each overring of R compares with V under inclusion. It remains only to prove that each integral overring $T(\neq V)$ of R is coherent. Now, any such T is a PVD (by [5, Proposition 4.2]) with maximal ideal M. Coherence of R assures that M is finitely generated over R (by Proposition 3.5) and, a

D. E. DOBBS

fortiori, finitely generated over T, whence another application of Proposition 3.5 establishes coherence of T.

REMARK 3.7. (a) By virtue of Lemma 3.2(a), the appeal to [9] in the proof of Corollary 3.4 may be replaced by an appeal to the equivalence (a) \Leftrightarrow (d) in Proposition 3.5.

(b) In view of Corollary 3.4, it is of interest to note that a PVD of infinite weak global dimension need not be coherent. For an example, let $L \subset F$ be an infinite-dimensional algebraic extension of fields, let F+N be a valuation domain with maximal ideal $N \neq N^2$, and set S = L + N. Then S is a PVD (by [7, Example 2.1] or [5, Proposition 4.9(i)]), has maximal ideal N with infinite weak dimension (by Theorem 2.3), and is not coherent (since S does not satisfy condition (d) of Proposition 3.5). Observe finally that, despite the noncoherence of S, each overring of S is a PVD.

REFERENCES

1. D. E. Dobbs and I. J. Papick, When is D+M coherent?, Proc. Amer. Math. Soc. 56 (1976), 51-54.

2. D. E. Dobbs, On going-down for simple overrings, II, Comm. in Algebra 1 (1974), 439-458.

3. —, On the global dimensions of D+M, Canad. Math. Bull. 18 (1975), 657–660.

4. ----, Divided rings and going-down, Pac. J. Math. 67 (1976), 353-363.

5. —, Coherence, ascent of going-down and pseudo-valuation domains, submitted for publication.

6. R. Gilmer and J. A. Huckuba, *Δ-rings*, J. Algebra 28 (1974), 414-432.

7. J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, Pac. J. Math., to appear.

8. J. D. Sally and W. V. Vasconcelos, Flat ideals, I, Comm. in Algebra 3 (1975), 531-543.

9. W. V. Vasconcelos, Divisor theory in module categories, North-Holland, Amsterdam, 1974.

10. —, The rings of dimension two, Dekker, New York, 1976.

UNIVERSITY OF TENNESSEE

KNOXVILLE, TENNESSEE 37916 U.S.A.

164