ON THE WEAK GLOBAL DIMENSION OF PSEUDOVALUATION DOMAINS

BY
DAVID E. DOBBS

1. Introduction. In [7], Hedstrom and Houston introduce a type of quasilocal integral domain, therein dubbed a pseudo-valuation domain (for short, a PVD), which possesses many of the ideal-theoretic properties of valuation domains. For the reader's convenience and reference purposes, Proposition 2.1 lists some of the ideal-theoretic characterizations of PVD's given in [7]. As the terminology suggests, any valuation domain is a PVD. Since valuation domains may be characterized as the quasilocal domains of weak global dimension at most 1, a homological study of PVD's seems appropriate. This note initiates such a study by establishing (see Theorem 2.3) that the only possible weak global dimensions of a PVD are $0,1,2$ and ∞. One upshot (Corollary 3.4) is that a coherent PVD cannot have weak global dimension 2: hence, none of the domains of weak global dimension 2 which appear in [10, Section 5.5] can be a PVD.

As detailed in [5, Proposition 4.9(i)], an ample supply of PVD's is provided by the " $D+M$ construction". (Not all PVD's are so constructed, even in the coherent case: see Remark 2.2.) Happily, the conclusions of [1] and [3], which were designed for the $D+M$ construction, extend naturally to the PVD context, albeit with more complicated proofs. The reworking of [1] also yields facts about coherent PVD's which generalize results established, by very different means, in [5] under the assumption of finite Krull dimension.

We caution that familiarity with [1] and [3] will be assumed. As usual, weak dimension and weak global dimension will be denoted by w.d. and w.gl.dim, respectively. Throughout, R will denote a quasilocal integral domain, with maximal ideal M.
2. Background and statement of main result. We begin by recalling some results of Hedstrom and Houston [7, Theorems 1.4, 2.7 and 2.10] concerning our principal object of study.

Propostrion 2.1. Let K be the quotient field of the quasilocal domain R. Then the following two conditions are equivalent:
(a) There is an overring of R (i.e., a subring of K which contains R) which is a valuation domain whose maximal ideal coincides with the maximal ideal, M, of R;
(b) For any ideals I and J of R, either $I \subset J$ or $M J \subset M I$.

If R satisfies (a) and (b), then R is said to be a pseudo-valuation domain (PVD). If R is not a valuation domain, then (a) and (b) are equivalent to (c) $M^{-1}=\{x$ in $K: x M \subset R\}$ is a valuation overring of R with maximal ideal M. Moreover, if R is not a valuation domain and if (c) holds, then $M^{-1}=\{x$ in $K: x M \subset M\}$ and the prime ideals of M^{-1} coincide with those of R.

Remark 2.2. Since the major themes of this note concerning coherence and PVD's have already been pursued in [1] and [3] in the context of the $D+M$ construction, it seems just to pause and exhibit a coherent PVD which is not of the form $D+M$. Let S be the Noetherian (hence, coherent) PVD given in [7, Example 3.6]. Explicitly, let m be a positive square-free integer with $m \equiv 5$ $(\bmod 8)$, let $T=\mathbb{Z}[\sqrt{ } m]$, let $N=(2,1+\sqrt{ } m)$ and set $S=T_{N}$. If S assumes the form $D+M$, then S has a valuation overring $L+M$ with maximal ideal $M(\neq 0)$, such that L is a field containing the ring D. As S has Krull dimension 1, the integral closure of S is of the form $F+M$, where F is a field contained in L. Then $\oslash(\subset F)$ is integral over S. By multiplying an integrality equation for $\frac{1}{2}$ over S by a sufficiently large power of 2 , we infer $\frac{1}{2} \in S$, the desired absurdity.

We may now state the main result of this note.
Theorem 2.3. Suppose that R is a PVD, but not a valuation domain. Then:
(a) The following four conditions are equivalent:
(1) $M=M^{2}$;
(2) M is R-flat;
(3) Each prime ideal of R is R-flat;
(4) w.gl.dim $(R)=2$.
(b) The following three conditions are equivalent:
(i) $M \neq M^{2}$;
(ii) w.d. ${ }_{R}(M)=\infty$;
(iii) w.gl.dim $(R)=\infty$.

The proof of Theorem 2.3 will be obtained in the next section after some preliminaries.
3. Proofs. The statements of the next two lemmas are suggested by the results of [1] and [3]. Indeed, Lemma 3.1 explores a technique studied in [2, Proposition 4.5], [1, Theorem 3] and [3, Proposition 3.1]. The ancestry of Lemma 3.2 includes [1, Theorem 7 and Remark 9] and [3, Propositions 2.3 and 3.1].

As usual, $E^{(n)}$ will denote the direct sum of n copies of an R-module E.
Lemma 3.1. Let R be a PVD, let A be a nonzero ideal of R, and let $n=m+1$ be the cardinality of a minimal R-generating set of A. Then there is a short exact sequence of R-modules

$$
0 \rightarrow M^{(m)} \rightarrow R^{(n)} \rightarrow A \rightarrow 0 .
$$

Proof. Let $S=\left\{x_{i}\right\}$ be a minimal R-generating set of A. Well-order S; let x_{1} be its first element, x_{2} its second element, etc. Consider the R-module epimorphism $f: R^{(n)} \rightarrow A$ which sends the i-th basis element, e_{i}, of $R^{(n)}$ to x_{i}. By minimality of S, we have $\operatorname{ker}(f) \subset M R^{(n)}$. It suffices to prove that the R-module homomorphism $g: \operatorname{ker}(f) \rightarrow M^{(m)}$, given by $g\left(\sum m_{i} e_{i}\right)=\left(m_{2}, m_{3}, \ldots\right)$, is an isomorphism. Now, g is a monomorphism: if $\sum m_{i} x_{i}=0$ with $m_{i}=0$ for each $i>1$, then $m_{1} x_{1}=0$, whence cancellation of $x_{1}(\neq 0)$ gives $m_{1}=0$. The proof that g is surjective depends upon condition (b) in Proposition 2.1. Indeed, given a finite set $\left\{m_{2}, \cdots, m_{k}\right\} \subset M$ with $k \leq n$, produce m_{1} in M such that $m_{1} x_{1}+\cdots+m_{k} x_{k}=0$ as follows. Consider the ideals $I=R x_{1}$ and $J=$ $R x_{2}+\cdots+R x_{k}$. By minimality of S, note $I \not \subset J$. If R is a valuation domain then $J \subset I$; if R isn't valuation, (b) yields that $M J \subset M I$. In either case, $m_{2} x_{2}+\cdots+m_{k} x_{k} \in M x_{1}$, to complete the proof.

Lemma 3.1 will be used to treat finitely generated ideals A , as any such has a minimal generating set. For the ideal M, which need not be finitely generated, it will be convenient to record the following companion result.

Lemma 3.1. (bis). Let R be a PVD which is not a valuation domain.. Let V be its valuation overring described in Proposition 2.1(c). Let $n=m+1$ be the dimension of V / M as an R / M-vector space. If $M \neq M^{2}$, then there is a short exact sequence of R-modules

$$
0 \rightarrow M^{(m)} \rightarrow R^{(n)} \rightarrow M \rightarrow 0 .
$$

Proof (sketch). Note that $M=V u$, for any u in $M \backslash M^{2}$. Consider $\left\{v_{i}+M\right\}$, a well-ordered R / M-basis of V / M, with $v_{1}=1$. The R-module homomorphism $f: R^{(n)} \rightarrow M$, given by $f\left(e_{i}\right)=v_{i} u$, is surjective since its image contains $\sum R v_{i} u+$ $M v_{1} u=\left(\Sigma R v_{i}+M\right) u=V u$. As before, one constructs an isomorphism $g: \operatorname{ker}(f) \rightarrow \boldsymbol{M}^{(m)}$. (Show that $\left(m_{2}, \ldots, m_{k}, 0,0, \ldots\right)$ is in the image of g with the aid of $I=R v_{1} u=R u$ and $J=R v_{2} u+\cdots+R v_{k} u$.) Details may safely be omitted.

Lemma 3.2. Let R be a PVD which is not a valuation domain. Then:
(a) Let P be an ideal of R. If $P=M P$, then P is R-flat. If P is prime and R-flat, then $P=M P$.
(b) If $M \neq M^{2}$, then w.d. ${ }_{R}(M)=\infty$.

Proof. (a) Suppose that $P=M P$. To establish R-flatness of P, we show that any relation $\sum_{i} r_{i} p_{i}=0$ (with r_{i} in R, p_{i} in P) arises from elements v_{j} in $P, r_{i j}$ in R and equations $p_{i}=\sum_{j} r_{i j} v_{j}$ (for each i) and $\sum_{i} r_{i} r_{i j}=0$ (for each j).

Let $V=M^{-1}$ be the valuation overring of R described in Proposition 2.1(c). As $P V$ is V-flat (any ideal of a valuation domain is flat), the given relation yields elements n_{j} in $P V$ and $v_{i j}$ in V such that $p_{i}=\sum_{j} v_{i j} n_{j}$ and $\sum_{i} r_{i} v_{i j}=0$. Since V is a valuation domain, we may write $n_{j}=x w_{j}$, with x in P and w_{j} in V. Use
the fact that V is valuation, this time in tandem with the hypothesis that $P=M P$, to write $x=y z$, with y in M and z in P. A computation verifies that setting $v_{j}=z$ and $r_{i j}=v_{i j} w_{j} y$ produces the required equations. (To show $p_{i}=$ $\sum_{j} r_{i j} v_{j}$, first note that $v_{i j} n_{j}=r_{i j} z$.) Thus, P is R-flat, as required.

Conversely, we show that if a prime ideal P is R-flat, then $P=M P$. Without loss of generality, $P \neq 0$. By [8, Lemma 2.1], it suffices to eliminate the possibility that P is a principal ideal. Since R is not a valuation domain, this is accomplished by an appeal to [7, Corollary 2.9].
(b) Assume that $M \neq M^{2}$. By part (a), M is not R-flat. Then, if $m+1$ is the cardinality of an R / M-basis of V / M, Lemma 3.1 (bis) implies that w.d. $\cdot_{R}(M)=$

Corollary 3.3. If R is a PVD and P is a nonmaximal prime ideal of R, then P is R-flat.

Proof. Of course, R may be assumed nonvaluation. As noted in [5], it follows readily that any PVD is divided, in the sense of [4]; i.e., any prime ideal of R is comparable to any principal ideal of R under inclusion. In particular, if b is in $M \backslash P$, then $P \subset R b$, whence $P=P b \subset P M$, and so R-flatness of P follows from Lemma 3.2(a).

Proof of Theorem 2.3. Note that w.gl. $\operatorname{dim}(R) \geq 2$ since R is not a valuation domain. Moreover, for each finitely generated ideal A of R, the exact sequence guaranteed by Lemma 3.1 yields, as in the proof of Lemma 3.2(b), that w.d. $_{R}(A) \leq 1+$ w.d. $_{R}(M)$. Thus, w.gl. $\operatorname{dim}(R) \leq 1+\sup _{\mathrm{A}}$ w.d. ${ }_{R}(A) \leq 2+$ w.d. $_{R}(M)$. In particular, (2) $\Rightarrow(4)$. By Lemma 3.2, we have (1) $\Leftrightarrow(2)$ and (i) \Rightarrow (ii); Corollary 3.3 yields (2) $\Rightarrow(3)$; and the implications (3) $\Rightarrow(2)$ and (ii) \Rightarrow (iii) are trivial. Since exactly one of the conditions " $M=M^{2}$ " and " $M \neq M^{2}$ " holds, the implications $(1) \Rightarrow(4)$ and (i) \Rightarrow (iii), which have already been established, now yield $(4) \Rightarrow(1)$ and (iii) \Rightarrow (i), to complete the proof.

It was noted in the proof of Corollary 3.3 that, if R is a PVD, then R is divided and, hence by [4, Proposition 2.1], R is a going-down ring. If, in addition, R is coherent but not valuation, [2, Proposition 2.5] shows that R has infinite global dimension. The next result strengthens the conclusion in this case to w.gl. $\operatorname{dim}(R)=\infty$.

Corollary 3.4. If R is a coherent PVD, then the only possible values of $w . g \operatorname{ldim}(R)$ are 0,1 and ∞.

Proof. According to Theorem 2.3, it suffices to rule out the possibility that w.gl. $\operatorname{dim}(R)=2$. However, in that case, M is R-flat (thanks to Theorem 2.3), and coherence then entails that R is a valuation domain [9, Lemma 3.9], so that w.gl.dim $(R) \leq 1$, the desired contradiction.

We close by showing how the methods of [1] serve to generalize some results
in [5]. Corollary 3.6 and the equivalence of (a), (b), and (c) in Proposition 3.5 were obtained in [5, Corollary 4.7] and [5, Lemma 4.5(ii) and Remark 4.8(b)], respectively, under the additional hypothesis that R has finite Krull dimension.

Proposition 3.5. Let R be a PVD which is not a valuation domain. Let V be its valuation overring described in Proposition 2.1(c). The following conditions are equivalent:
(a) R is coherent;
(b) R is finite-conductor; i.e., the intersection of any two principal ideals of R is finitely generated as an ideal of R;
(c) M is a finitely generated ideal of R;
(d) V is a finitely generated R-module and $M \neq M^{2}$.

Proof. (a) \Rightarrow (b) trivially, while (b) \Rightarrow (c) was established in [5, Lemma 4.5(ii)].

To prove that (c) \Rightarrow (d), assume (c). As $M \neq 0$, Nakayama's lemma guarantees $\boldsymbol{M} \neq \boldsymbol{M}^{2}$. To show that V is a finitely-generated R-module, we ape the proof of [1, Lemma 1]. Observe that M / M^{2} is both a finite-dimensional R / M-vector space and (since M is a principal ideal of V) also a cyclic V / M-space. Then, $V / M \cong M / M^{2}$, whence there exists a finite R / M-basis $\left\{v_{1}+M, \ldots, v_{n}+M\right\}$ of V / M, thus forcing $V=M+\Sigma R v_{i}$, a sum of two finitely-generated R submodules.

Finally, to establish (d) \Rightarrow (a), assume (d). With the aid of Ferrand's desent result as in the proof of [1, Theorem 3], our task is reduced to showing that V is a finitely presented R-module. To this end, write $M=V m$ and $V=\Sigma R v_{i}$ (with m in $M \backslash M^{2} ; v_{1}, \ldots, v_{n}$ in V), so that $M=\Sigma R\left(v_{i} m\right)$ is finitely generated over R. Now, Lemma 3.1 supplies an exact sequence

$$
0 \rightarrow M^{(t-1)} \rightarrow R^{(t)} \rightarrow M \rightarrow 0
$$

where t is the cardinality of a minimal R-generating set of M; thus, M is finitely presented over R. As $V \cong V m=M$, the proof is complete.

Corollary 3.6 If R is a coherent PVD, then each overring of R is coherent.
Proof. As overrings of valuation domains are valuations domains (and, hence, coherent), we may suppose that R is not a valuation domain. By [5, Proposition 4.2], the integral closure of R is a valuation domain which, as explained in [5, Remark 4.8(a)], must coincide with the overring $V=\boldsymbol{M}^{-1}$ described in Proposition 2.1(c). It now follows readily (as, e.g., in [6, Proposition 8]) that each overring of R compares with V under inclusion. It remains only to prove that each integral overring $T(\neq V)$ of R is coherent. Now, any such T is a PVD (by [5, Proposition 4.2]) with maximal ideal M. Coherence of R assures that M is finitely generated over R (by Proposition 3.5) and, a
fortiori, finitely generated over T, whence another application of Proposition 3.5 establishes coherence of T.

Remark 3.7. (a) By virtue of Lemma 3.2(a), the appeal to [9] in the proof of Corollary 3.4 may be replaced by an appeal to the equivalence $(a) \Leftrightarrow(d)$ in Proposition 3.5.
(b) In view of Corollary 3.4, it is of interest to note that a PVD of infinite weak global dimension need not be coherent. For an example, let $L \subset F$ be an infinite-dimensional algebraic extension of fields, let $F+N$ be a valuation domain with maximal ideal $N \neq N^{2}$, and set $S=L+N$. Then S is a PVD (by [7, Example 2.1] or [5, Proposition 4.9(i)]), has maximal ideal N with infinite weak dimension (by Theorem 2.3), and is not coherent (since S does not satisfy condition (d) of Proposition 3.5). Observe finally that, despite the noncoherence of S, each overring of S is a PVD.

References

1. D. E. Dobbs and I. J. Papick, When is $D+M$ coherent?, Proc. Amer. Math. Soc. 56 (1976), 51-54.
2. D. E. Dobbs, On going-down for simple overrings, II, Comm. in Algebra 1 (1974), 439-458.
3. - On the global dimensions of $D+M$, Canad. Math. Bull. 18 (1975), 657-660.
4. --, Divided rings and going-down, Pac. J. Math. 67 (1976), 353-363.
5. -, Coherence, ascent of going-down and pseudo-valuation domains, submitted for publication.
6. R. Gilmer and J. A. Huckuba, Δ-rings, J. Algebra 28 (1974), 414-432.
7. J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, Pac. J. Math., to appear.
8. J. D. Sally and W. V. Vasconcelos, Flat ideals, I, Comm. in Algebra 3 (1975), 531-543.
9. W. V. Vasconcelos, Divisor theory in module categories, North-Holland, Amsterdam, 1974.
10. -, The rings of dimension two, Dekker, New York, 1976.

University of Tennessee
Knoxville, Tennessee 37916
U.S.A.

