PROOF OF A CONJECTURE OF CHOWLA AND ZASSENHAUS ON PERMUTATION POLYNOMIALS

ΒY

STEPHEN D. COHEN

ABSTRACT. The following conjecture of Chowla and Zassenhaus (1968) is proved. If f(x) is an integral polynomial of degree ≥ 2 and p is a sufficiently large prime for which f (considered modulo p) is a permutation polynomial of the finite prime field F_p , then for no integer c with $1 \le c < p$ is f(x) + cx a permutation polynomial of F_p .

1. Introduction. A *permutation polynomial* (PP) of the finite field F_p of prime order p is one which, regarded as a mapping, permutes the elements of F_p . The conjecture of Chowla and Zassenhaus ennunciated in the abstract featured recently as Problem P8 in a list of open problems on PP by Lidl and Mullen [3]. We prove it here in the following more precise form.

THEOREM 1. Let f(x) be a polynomial with integral coefficients and degree $n \ge 2$. Then, for any prime $p > (n^2 - 3n + 4)^2$ for which f (considered modulo p) is a PP of degree n of F_p , there is no integer c with $1 \le c < p$ for which f(x) + cx is also a PP of F_p .

A complete mapping polynomial (CMP) f(x) of F_p is one for which both f(x) and f(x) + x are PPs of F_p . In terms of CMPs, Theorem 1 can clearly be expressed in the following equivalent form.

THEOREM 2. If $n \ge 2$ and $p > (n^2 - 3n + 4)^2$, then there is no CMP of degree n over F_p .

Partial results along the lines of Theorems 1 and 2 are known; usually these extend to PPs over general finite fields (not necessarily of prime order). For example, Niederreiter and Robinson [6, Theorem 9] proved that, if $p > (n^2 - 4n + 6)^2$, then $ax^n + bx$ ($n \ge 2$, $a \ne 0$) cannot be a CMP of F_p . According to Mullen and Niederreiter [5], a similar conclusion applies, provided $p > (9n^2 - 27n + 22)^2$, to any polynomial $bD_n(a, x) + cx$ ($n \ge 2$, $ab \ne 0$), where $D_n(a, x)$ is the Dickson polynomial defined by

(1)
$$D_n(a,x) = \sum_{j=0}^{[n/2]} \frac{n}{(n-j)} \binom{n-j}{j} (-a)^j x^{n-2j}.$$

Received by the editors October 24, 1988 and, in revised form, May 9, 1989.

AMS 1980 Subject Classification: 12C05. © Canadian Mathematical Society 1988.

These results required the Lang-Weil theorem (equivalent to the Riemann hypothesis for function fields). By contrast, through an elementary discussion strictly applicable to F_p , Wan Daqing [8, Theorem 1.3] proved that $ax^n + bx$ $(n \ge 2, a \ne 0)$ is not a CMP of F_p whenever $p > (n-1)^2$.

In our proof, we not only rely on the Lang-Weil theorem, but appeal to a deep theorem of Fried [2, Theorem 1] used in his proof of the "Schur conjecture". Actually, in order to work solely with *monic* polynomials, we prove the following minor variant of Theorem 2.

THEOREM 2'. If $n \ge 2$ and $p > (n^2 - 3n + 4)^2$, then there is no monic PP of F_p of degree n for which f(x) + cx is also a PP of F_p for some $c \ne 0$ in F_p .

We note that, whenever p > n, given a PP or CMP of F_p of degree n, by performing a suitable linear translation $x \mapsto x + c$ ($c \in F_p$), we obtain another whose coefficient of x^{n-1} is zero. A polynomial with this last property is called *normalised*. We assume throughout that f is a monic, normalised polynomial of degree $n \ge 2$ and, where relevant, p > n. As regards references to the literature, instead of offering an extensive list of original sources, where possible we quote the relevant section of [4].

2. Classification of PPs of F_p . Given f, define

(2)
$$f^*(x,y) = \frac{f(x) - f(y)}{x - y}$$

f is said to be *exceptional* over F_p if no factor of $f^*(x, y)$ in $F_p[x, y]$ is absolutely irreducible. It is well-known that there is a strong connection between PPs and exceptional polynomials over F_p [4, Section 7.4]. We summarise the relevant facts.

LEMMA 3. If f is exceptional over F_p , then n is odd and f is a PP of F_p . Conversely, if $p > (n^2 - 3n + 4)^2$ and f is a PP of F_p , then f is exceptional (and consequently n is odd).

PROOF. For the first implication see [4, Theorem 7.27 (and note on p. 385), Corollary 7.32]. The converse comes from [4, Theorem 7.29 and the proof of Lemma 7.28 with $c(d) = d^2$ (p. 331)]. This yields the result provided $p > (n-1)(n-2)p^{1/2}+n^2+n$, i.e.

$$p^{1/2} > \{(n^2 - 3n + 2) + (n^4 - 6n^3 + 17n^2 - 8n + 4)^{1/2}\}/2.$$

However, this is implied by the condition

$$p^{1/2} > (n^2 - 3n + 4) = \{(n^2 - 3n + 2) + (n^4 - 6n^3 + 21n^2 - 36n + 36)^{1/2}\}/2$$

whenever n > 5. Special considerations could be applied when $n \le 5$ but in any case all PPs of degree ≤ 5 are known [4, Table 7.1] and none invalidate the lemma.

Fried [2, Theorem 1] showed, in essence, that exceptional polynomials which are (functionally) indecomposable over F_p are either cyclic polynomials x^n or Dickson

S. D. COHEN

polynomials having the form (1): by way of explanation here, we recall that f is *decomposable* if there are polynomials f_1 and f_2 of F_p of degree exceeding 1 such that $f = f_2(f_1)$. To assist our statement of this result, we precede it by a simple lemma that applies to decompositions (as above) even when one of f_1 and f_2 is linear.

LEMMA 4. Suppose that f is a monic, normalised polynomial over F_p of degree n, where $p > n \ge 2$ and that f decomposes as $f = f_2(f_1)$ over F_p , where, for i = 1, 2, $n_i = \deg f_i$ and $n = n_1 n_2$. Then f_1 and f_2 can also be regarded as monic, normalised polynomials over F_p ; if so and if $f_1(x) = x^{n_1} + \alpha x^{n_1-t} + \dots$, then $f(x) = x^n + n_2 \alpha x^{n-t} + \dots$.

PROOF. Suppose, in fact that $\beta \neq 0$ is the leading coefficient of f_1 . Replacing $f_1(x)$ and $f_2(x)$ by $\beta^{-1}f_1(x)$ and $f_2(\beta x)$, respectively, yields f_1 monic and hence f_2 monic (because f is). Denoting the coefficient of x^{n_2-1} in f_2 by γ , we substitute $f_1(x)$ for $f_1(x) + n_2^{-1}\gamma$ and $f_2(x)$ for $f_2(x - n_2^{-1}\gamma)$ and find that f_2 is normalised. This being so, the final assertion of the lemma is an elementary calculation; in particular, certainly f_1 must be a normalised polynomial.

A version of Fried's theorem follows: the reader should consult [7, Section 3] for a discussion which resolves some ambiguities in [2].

LEMMA 5. Suppose that f is a monic, normalised, indecomposable polynomial of degree n over F_p , where $p > n \ge 2$. Then, either

- (i) $f(x) = x^n + \alpha, \ \alpha \in F_p$,
- (ii) $f(x) = D_n(a, x) + \alpha$, $a \neq 0$, $\alpha \in F_p$, or
- (iii) $f^*(x, y)$ (defined by (2)) is absolutely irreducible over $F_p[x, y]$.

PROOF. This is immediate from [2, Theorem 1] using Lemma 4 to ensure normalisation and to cope with linear composition factors; note that the monic polynomial $b^{-n}D_n(a, bx)$, $ab \neq 0$, is the same as $D_n(ab^{-2}, x)$.

COROLLARY 6. Suppose that f is a monic, normalised PP of F_p of (odd) degree $n \ge 3$ and $p > (n^2 - 3n + 4)^2$. Then $f = f_2(f_1)$ where, for i = 1, 2, f_i is a monic normalised polynomial of degree n_i , $n = n_1 n_2$ and, for some integers m_1, m_2 with $m_1 m_2 = n_1 \ge 3$,

(3)
$$f_1(x) = D_{m_1}(a, x^{m_2}) + \alpha, \quad a \neq 0, \quad \alpha \in F_p.$$

Moreover, in (3), if $m_1 = 1$ (whence $f_1(x) = x^{n_1} + \alpha$) we can assume $\alpha \neq 0$ unless $f(x) = x^n$.

PROOF. Decompose f as $f = \hat{f}_r \circ \ldots \circ \hat{f}_1$, where each \hat{f}_i $(i \leq r)$ is a monic normalised indecomposable polynomial of degree > 1. (No question of uniqueness matters here.) Each \hat{f}_i is evidently a PP and consequently is exceptional by Lemma 3. Hence \hat{f}_i has the form governed by Lemma 5. In particular, the result claimed is obtained by setting $f_1 = \hat{f}_s \circ \ldots \circ \hat{f}_1$ for some $s \leq r$. PERMUTATION POLYNOMIALS

3. **Proof of theorems.** Suppose, contrary to Theorem 2', f is a monic, normalised PP of F_p of odd degree $n (\ge 3)$, where $p > (n^2 - 3n + 4)^2$ and g(x) = f(x) + cx, $c \ne 0 \in F_p$, is also a PP of F_p . By means of Corollary 6, write $f = f_2(f_1)$, $g = g_2(g_1)$, where f_2 and g_2 are normalised and

(4)
$$\begin{aligned} f_1(x) &= D_{k_1}(a, x^{k_2}) + \alpha, \quad a \neq 0, \alpha \in F_p, \quad k = k_1 k_2 \geq 3, \\ g_1(x) &= D_{m_1}(b, x^{m_2}) + \beta, \quad b \neq 0, \beta \in F_p, \quad m = m_1 m_2 \geq 3. \end{aligned}$$

Indeed, in (4) if $k_1 = 1$, then $\alpha \neq 0$ unless $f(x) = x^n$ and there is a similar proviso for g. We consider three cases.

CASE (i). $k_1 = m_1 = 1$. Then, identically,

(5)
$$cx = g_2(x^m + \beta) - f_2(x^k + \alpha).$$

We derive from the fact that the coefficient of x on the right side of (5) is non-zero the conclusion that either m = 1 or k = 1, contrary to (4).

CASE (ii). $m_1 > 1$, $k_1 = 1$. Lemma 4 yields

(6)
$$cx = g_2(x^m - m_1 bx^{m-2m_2} + \ldots + \beta) - f_2(x^k + \alpha)$$
$$= -nm_2^{-1}bx^{n-2m_2} + \ldots - nk^{-1}\alpha x^{n-k} - \ldots$$

Because $n - 2m_2$ is odd and n - k is even, when $\alpha \neq 0$, (6) implies that $n - 2m_2 = 1$ and n - k = 0. Further, by assumption, when $\alpha = 0$, k = n and again it must be that $n - 2m_2 = 1$. Thus m_2 (a divisor of n) equals 1 and hence $n = 3 = m_1$. This contradicts the truth that $D_3(b, x)$, $b \neq 0$, cannot be a PP [4, Theorem 7.16].

CASE (iii). $m_1 > 1$, $k_1 > 1$. Now we derive from Lemma 4,

(7)
$$cx = g_2(x^m - m_1 bx^{m-2m_2} + ...) - f_2(x^k - k_1 ax^{k-2k_2} + ...)$$
$$= G(x^{m_2}) - F(x^{k_2}), \quad \text{say,}$$
$$= (-nm_2^{-1}bx^{n-2m_2} + ...) + (nk_2^{-1}ax^{n-2k_2} - ...).$$

Let d be the highest common factor of k_2 and m_2 . By (7), x is a polynomial function of x^d ; hence d = 1. On the other hand, since as in case (ii), neither $n - 2m_2 = 1$ nor $n - 2k_2 = 1$, (8) implies that $n - 2m_2 = n - 2k_2 > 1$. Thus $k_2 = m_2$ and so $k_2 = m_2 = 1$. Hence $k = k_1$, $m = m_1$ and, crucially, by (8), a = b. Applying the identity

$$D_k\left(a,x+\frac{a}{x}\right) = x^k + \frac{a^k}{x^k}$$

[4, formula (7.8)] we deduce that

(9)
$$cx^{n-1}(x^{2}+a) = x^{n}g\left(x+\frac{a}{x}\right) - x^{n}f\left(x+\frac{a}{x}\right)$$
$$= x^{n}g_{2}\left(x^{m}+\frac{a^{m}}{x^{m}}+\beta\right) - x^{n}f_{2}\left(x^{k}+\frac{a^{k}}{x^{k}}+\alpha\right)$$
$$= G(x^{m}) - F(x^{k})$$

1990]

for some polynomials F, G. Because the right side of (9) must contain the non-zero term cx^{n+1} , either k or m must divide n + 1. Yet each of these is also a divisor of n. Thus either k or m = 1, contradicting (4). This proves Theorem 2' and Theorems 1 and 2 follow.

Finally we remark that it would be possible to extend our theorems to include "tame" PPs over general finite fields.

References

1. S. Chowla and H. Zassenhaus, *Some conjectures concerning finite fields*, Norske Vid. Selsk. Forh. (Trondheim), **41** (1968), 34–35.

2. M. Fried, On a conjecture of Schur, Michigan Math. J., 17 (1970), 41-55.

3. R. Lidl and G. L. Mullen, When does a polynomial over a finite field permute the elements of the field?, Amer. Math. Monthly, 95 (1988), 243–246.

4. R. Lidl and H. Niederreiter, *Finite fields*, Encyclopaedia of Math. and its Appl., vol. 20, Addison-Wesley, Reading, Mass., 1983.

5. G. L. Mullen and H. Niederreiter, Dickson polynomials over finite fields and complete mappings, Canad. Math. Bull., **30** (1987), 19–27.

6. H. Niederreiter and K. H. Robinson, *Complete mappings of finite fields*, J. Austral. Math. Soc., Ser. A, **33** (1982), 197–212.

7. G. Turnwald, On a problem concerning permutation polynomials, Trans. Amer. Math. Soc., 302 (1987), 251–267.

8. Wan Daqing, *Permutation polynomials over finite fields*, Acta. Math. Sinica, New Series, **3** (1987), 1–5.

Department of Mathematics University of Glasgow Glasgow G12 8QW Scotland

234