PROOF OF A CONJECTURE OF CHOWLA AND ZASSENHAUS ON PERMUTATION POLYNOMIALS

BY
STEPHEN D. COHEN

Abstract

The following conjecture of Chowla and Zassenhaus (1968) is proved. If $f(x)$ is an integral polynomial of degree $\geqq 2$ and p is a sufficiently large prime for which f (considered modulo p) is a permutation polynomial of the finite prime field F_{p}, then for no integer c with $1 \leqq c<p$ is $f(x)+c x$ a permutation polynomial of F_{p}.

1. Introduction. A permutation polynomial (PP) of the finite field F_{p} of prime order p is one which, regarded as a mapping, permutes the elements of F_{p}. The conjecture of Chowla and Zassenhaus ennunciated in the abstract featured recently as Problem P8 in a list of open problems on PP by Lidl and Mullen [3]. We prove it here in the following more precise form.

Theorem 1. Let $f(x)$ be a polynomial with integral coefficients and degree $n \geqq 2$. Then, for any prime $p>\left(n^{2}-3 n+4\right)^{2}$ for which f (considered modulo p) is a PP of degree n of F_{p}, there is no integer c with $1 \leqq c<p$ for which $f(x)+c x$ is also a $P P$ of F_{p}.

A complete mapping polynomial (CMP) $f(x)$ of F_{p} is one for which both $f(x)$ and $f(x)+x$ are PPs of F_{p}. In terms of CMPs, Theorem 1 can clearly be expressed in the following equivalent form.

Theorem 2. If $n \geqq 2$ and $p>\left(n^{2}-3 n+4\right)^{2}$, then there is no CMP of degree n over F_{p}.

Partial results along the lines of Theorems 1 and 2 are known; usually these extend to PPs over general finite fields (not necessarily of prime order). For example, Niederreiter and Robinson [6, Theorem 9] proved that, if $p>\left(n^{2}-4 n+6\right)^{2}$, then $a x^{n}+b x(n \geqq 2, a \neq 0)$ cannot be a CMP of F_{p}. According to Mullen and Niederreiter [5], a similar conclusion applies, provided $p>\left(9 n^{2}-27 n+22\right)^{2}$, to any polynomial $b D_{n}(a, x)+c x(n \geqq 2, a b \neq 0)$, where $D_{n}(a, x)$ is the Dickson polynomial defined by

$$
\begin{equation*}
D_{n}(a, x)=\sum_{j=0}^{[n / 2]} \frac{n}{(n-j)}\binom{n-j}{j}(-a)^{j} x^{n-2 j} . \tag{1}
\end{equation*}
$$

[^0]These results required the Lang-Weil theorem (equivalent to the Riemann hypothesis for function fields). By contrast, through an elementary discussion strictly applicable to F_{p}, Wan Daqing [8, Theorem 1.3] proved that $a x^{n}+b x(n \geqq 2, a \neq 0)$ is not a CMP of F_{p} whenever $p>(n-1)^{2}$.

In our proof, we not only rely on the Lang-Weil theorem, but appeal to a deep theorem of Fried [2, Theorem 1] used in his proof of the "Schur conjecture". Actually, in order to work solely with monic polynomials, we prove the following minor variant of Theorem 2.

Theorem 2^{\prime}. If $n \geqq 2$ and $p>\left(n^{2}-3 n+4\right)^{2}$, then there is no monic $P P$ of F_{p} of. degree n for which $f(x)+c x$ is also a PP of F_{p} for some $c(\neq 0)$ in F_{p}.

We note that, whenever $p>n$, given a PP or CMP of F_{p} of degree n, by performing a suitable linear translation $x \mapsto x+c\left(c \in F_{p}\right)$, we obtain another whose coefficient of x^{n-1} is zero. A polynomial with this last property is called normalised. We assume throughout that f is a monic, normalised polynomial of degree $n \geqq 2$ and, where relevant, $p>n$. As regards references to the literature, instead of offering an extensive list of original sources, where possible we quote the relevant section of [4].
2. Classification of PPs of F_{p}. Given f, define

$$
\begin{equation*}
f^{*}(x, y)=\frac{f(x)-f(y)}{x-y} . \tag{2}
\end{equation*}
$$

f is said to be exceptional over F_{p} if no factor of $f^{*}(x, y)$ in $F_{p}[x, y]$ is absolutely irreducible. It is well-known that there is a strong connection between PPs and exceptional polynomials over F_{p} [4, Section 7.4]. We summarise the relevant facts.

Lemma 3. If f is exceptional over F_{p}, then n is odd and f is a PP of F_{p}. Conversely, if $p>\left(n^{2}-3 n+4\right)^{2}$ and f is a PP of F_{p}, then f is exceptional (and consequently n is odd).

Proof. For the first implication see [4, Theorem 7.27 (and note on p. 385), Corollary 7.32]. The converse comes from [4, Theorem 7.29 and the proof of Lemma 7.28 with $c(d)=d^{2}($ p. 331 $\left.)\right]$. This yields the result provided $p>(n-1)(n-2) p^{1 / 2}+n^{2}+n$, i.e.

$$
p^{1 / 2}>\left\{\left(n^{2}-3 n+2\right)+\left(n^{4}-6 n^{3}+17 n^{2}-8 n+4\right)^{1 / 2}\right\} / 2
$$

However, this is implied by the condition

$$
p^{1 / 2}>\left(n^{2}-3 n+4\right)=\left\{\left(n^{2}-3 n+2\right)+\left(n^{4}-6 n^{3}+21 n^{2}-36 n+36\right)^{1 / 2}\right\} / 2
$$

whenever $n>5$. Special considerations could be applied when $n \leqq 5$ but in any case all PPs of degree $\leqq 5$ are known [4, Table 7.1] and none invalidate the lemma.

Fried [2, Theorem 1] showed, in essence, that exceptional polynomials which are (functionally) indecomposable over F_{p} are either cyclic polynomials x^{n} or Dickson
polynomials having the form (1): by way of explanation here, we recall that f is decomposable if there are polynomials f_{1} and f_{2} of F_{p} of degree exceeding 1 such that $f=f_{2}\left(f_{1}\right)$. To assist our statement of this result, we precede it by a simple lemma that applies to decompositions (as above) even when one of f_{1} and f_{2} is linear.

Lemma 4. Suppose that f is a monic, normalised polynomial over F_{p} of degree n, where $p>n \geqq 2$ and that f decomposes as $f=f_{2}\left(f_{1}\right)$ over F_{p}, where, for $i=1,2$, $n_{i}=\operatorname{deg} f_{i}$ and $n=n_{1} n_{2}$. Then f_{1} and f_{2} can also be regarded as monic, normalised polynomials over F_{p}; if so and if $f_{1}(x)=x^{n_{1}}+\alpha x^{n_{1}-t}+\ldots$, then $f(x)=x^{n}+$ $n_{2} \alpha x^{n-t}+\ldots$.

Proof. Suppose, in fact that $\beta(\neq 0)$ is the leading coefficient of f_{1}. Replacing $f_{1}(x)$ and $f_{2}(x)$ by $\beta^{-1} f_{1}(x)$ and $f_{2}(\beta x)$, respectively, yields f_{1} monic and hence f_{2} monic (because f is). Denoting the coefficient of $x^{n_{2}-1}$ in f_{2} by γ, we substitute $f_{1}(x)$ for $f_{1}(x)+n_{2}^{-1} \gamma$ and $f_{2}(x)$ for $f_{2}\left(x-n_{2}^{-1} \gamma\right)$ and find that f_{2} is normalised. This being so, the final assertion of the lemma is an elementary calculation; in particular, certainly f_{1} must be a normalised polynomial.

A version of Fried's theorem follows: the reader should consult [7, Section 3] for a discussion which resolves some ambiguities in [2].

Lemma 5. Suppose that f is a monic, normalised, indecomposable polynomial of degree n over F_{p}, where $p>n \geqq 2$. Then, either
(i) $f(x)=x^{n}+\alpha, \alpha \in F_{p}$,
(ii) $f(x)=D_{n}(a, x)+\alpha, a(\neq 0), \alpha \in F_{p}$, or
(iii) $f^{*}(x, y)$ (defined by (2)) is absolutely irreducible over $F_{p}[x, y]$.

Proof. This is immediate from [2, Theorem 1] using Lemma 4 to ensure normalisation and to cope with linear composition factors; note that the monic polynomial $b^{-n} D_{n}(a, b x), a b \neq 0$, is the same as $D_{n}\left(a b^{-2}, x\right)$.

Corollary 6. Suppose that f is a monic, normalised PP of F_{p} of (odd) degree $n \geqq 3$ and $p>\left(n^{2}-3 n+4\right)^{2}$. Then $f=f_{2}\left(f_{1}\right)$ where, for $i=1,2, f_{i}$ is a monic normalised polynomial of degree $n_{i}, n=n_{1} n_{2}$ and, for some integers m_{1}, m_{2} with $m_{1} m_{2}=n_{1} \geqq 3$,

$$
\begin{equation*}
f_{1}(x)=D_{m_{1}}\left(a, x^{m_{2}}\right)+\alpha, \quad a(\neq 0), \quad \alpha \in F_{p} . \tag{3}
\end{equation*}
$$

Moreover, in (3), if $m_{1}=1$ (whence $f_{1}(x)=x^{n_{1}}+\alpha$) we can assume $\alpha \neq 0$ unless $f(x)=x^{n}$.

Proof. Decompose f as $f=\hat{f}_{r} \circ \ldots \circ \hat{f}_{1}$, where each $\hat{f}_{i}(i \leqq r)$ is a monic normalised indecomposable polynomial of degree >1. (No question of uniqueness matters here.) Each \hat{f}_{i} is evidently a PP and consequently is exceptional by Lemma 3. Hence \hat{f}_{i} has the form governed by Lemma 5. In particular, the result claimed is obtained by setting $f_{1}=\hat{f}_{s} \circ \ldots \circ \hat{f}_{1}$ for some $s \leqq r$.
3. Proof of theorems. Suppose, contrary to Theorem $2^{\prime}, f$ is a monic, normalised PP of F_{p} of odd degree $n(\geqq 3)$, where $p>\left(n^{2}-3 n+4\right)^{2}$ and $g(x)=f(x)+c x, c$ $(\neq 0) \in F_{p}$, is also a PP of F_{p}. By means of Corollary 6, write $f=f_{2}\left(f_{1}\right), g=g_{2}\left(g_{1}\right)$, where f_{2} and g_{2} are normalised and

$$
\left.\begin{array}{rl}
f_{1}(x)=D_{k_{1}}\left(a, x^{k_{2}}\right)+\alpha, & a(\neq 0), \alpha \in F_{p},
\end{array} \quad k\left(=k_{1} k_{2}\right) \geqq 3, ~ 子, ~(\neq 0), \beta \in F_{p}, \quad m\left(=m_{1} m_{2}\right) \geqq 3 . ~\right\}
$$

Indeed, in (4) if $k_{1}=1$, then $\alpha \neq 0$ unless $f(x)=x^{n}$ and there is a similar proviso for g. We consider three cases.

CASE (i). $k_{1}=m_{1}=1$. Then, identically,

$$
\begin{equation*}
c x=g_{2}\left(x^{m}+\beta\right)-f_{2}\left(x^{k}+\alpha\right) . \tag{5}
\end{equation*}
$$

We derive from the fact that the coefficient of x on the right side of (5) is non-zero the conclusion that either $m=1$ or $k=1$, contrary to (4).

CASE (ii). $m_{1}>1, k_{1}=1$. Lemma 4 yields

$$
\begin{align*}
c x & =g_{2}\left(x^{m}-m_{1} b x^{m-2 m_{2}}+\ldots+\beta\right)-f_{2}\left(x^{k}+\alpha\right) \tag{6}\\
& =-n m_{2}^{-1} b x^{n-2 m_{2}}+\ldots-n k^{-1} \alpha x^{n-k}-\ldots .
\end{align*}
$$

Because $n-2 m_{2}$ is odd and $n-k$ is even, when $\alpha \neq 0$, (6) implies that $n-2 m_{2}=1$ and $n-k=0$. Further, by assumption, when $\alpha=0, k=n$ and again it must be that $n-2 m_{2}=1$. Thus m_{2} (a divisor of n) equals 1 and hence $n=3=m_{1}$. This contradicts the truth that $D_{3}(b, x), b \neq 0$, cannot be a PP [4, Theorem 7.16].

CASE (iii). $m_{1}>1, k_{1}>1$. Now we derive from Lemma 4,

$$
\begin{align*}
c x & =g_{2}\left(x^{m}-m_{1} b x^{m-2 m_{2}}+\ldots\right)-f_{2}\left(x^{k}-k_{1} a x^{k-2 k_{2}}+\ldots\right) \tag{7}\\
& =G\left(x^{m_{2}}\right)-F\left(x^{k_{2}}\right), \quad \text { say }, \\
& =\left(-n m_{2}^{-1} b x^{n-2 m_{2}}+\ldots\right)+\left(n k_{2}^{-1} a x^{n-2 k_{2}}-\ldots\right) . \tag{8}
\end{align*}
$$

Let d be the highest common factor of k_{2} and m_{2}. By (7), x is a polynomial function of x^{d}; hence $d=1$. On the other hand, since as in case (ii), neither $n-2 m_{2}=1$ nor $n-2 k_{2}=1$, (8) implies that $n-2 m_{2}=n-2 k_{2}>1$. Thus $k_{2}=m_{2}$ and so $k_{2}=m_{2}=1$. Hence $k=k_{1}, m=m_{1}$ and, crucially, by (8), $a=b$. Applying the identity

$$
D_{k}\left(a, x+\frac{a}{x}\right)=x^{k}+\frac{a^{k}}{x^{k}}
$$

[4, formula (7.8)] we deduce that

$$
\begin{align*}
c x^{n-1}\left(x^{2}+a\right) & =x^{n} g\left(x+\frac{a}{x}\right)-x^{n} f\left(x+\frac{a}{x}\right) \tag{9}\\
& =x^{n} g_{2}\left(x^{m}+\frac{a^{m}}{x^{m}}+\beta\right)-x^{n} f_{2}\left(x^{k}+\frac{a^{k}}{x^{k}}+\alpha\right) \\
& =G\left(x^{m}\right)-F\left(x^{k}\right)
\end{align*}
$$

for some polynomials F, G. Because the right side of (9) must contain the non-zero term $c x^{n+1}$, either k or m must divide $n+1$. Yet each of these is also a divisor of n. Thus either k or $m=1$, contradicting (4). This proves Theorem 2^{\prime} and Theorems 1 and 2 follow.

Finally we remark that it would be possible to extend our theorems to include "tame" PPs over general finite fields.

References

1. S. Chowla and H. Zassenhaus, Some conjectures concerning finite fields, Norske Vid. Selsk. Forh. (Trondheim), 41 (1968), 34-35.
2. M. Fried, On a conjecture of Schur, Michigan Math. J., 17 (1970), 41-55.
3. R. Lidl and G. L. Mullen, When does a polynomial over a finite field permute the elements of the field?, Amer. Math. Monthly, 95 (1988), 243-246.
4. R. Lidl and H. Niederreiter, Finite fields, Encyclopaedia of Math. and its Appl., vol. 20, AddisonWesley, Reading, Mass., 1983.
5. G. L. Mullen and H. Niederreiter, Dickson polynomials over finite fields and complete mappings, Canad. Math. Bull., 30 (1987), 19-27.
6. H. Niederreiter and K. H. Robinson, Complete mappings of finite fields, J. Austral. Math. Soc., Ser. A, 33 (1982), 197-212.
7. G. Turnwald, On a problem concerning permutation polynomials, Trans. Amer. Math. Soc., 302 (1987), 251-267.
8. Wan Daqing, Permutation polynomials over finite fields, Acta. Math. Sinica, New Series, 3 (1987), 1-5.

Department of Mathematics

University of Glasgow
Glasgow GI2 8QW
Scotland

[^0]: Received by the editors October 24, 1988 and, in revised form, May 9, 1989.
 AMS 1980 Subject Classification: 12C05.
 © Canadian Mathematical Society 1988.

