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SUMMARY

Three conventional regression models were compared using the time-series data of the occurrence

of haemorrhagic fever with renal syndrome (HFRS) and several key climatic and occupational

variables collected in low-lying land, Anhui Province, China. Model I was a linear time series

with normally distributed residuals ; model II was a generalized linear model with Poisson-

distributed residuals and a log link; and model III was a generalized additive model with the

same distributional features as model II. Model I was fitted using least squares whereas models II

and III were fitted using maximum likelihood. The results show that the correlations between the

HFRS incidence and the independent variables measured (i.e. difference in water level, autumn

crop production and density of Apodemus agrarius) ranged from x0.40 to 0.89. The HFRS

incidence was positively associated with density of A. agrarius and crop production, but was

inversely associated with difference in water level. The residual analyses and the examination of

the accuracy of the models indicate that model III may be the most suitable in the assessment

of the relationship between the incidence of HFRS and the independent variables.

INTRODUCTION

Haemorrhagic fever with renal syndrome (HFRS),

with characteristics of fever, haemorrhage, kidney

damage and hypotension, is a zoonosis caused by

Hantaan or Hantaan-related virus, which comprises

a group of serious infectious diseases that have been

endemic in many countries of the world [1].

Approximately 150 000–200 000 cases of HFRS

involving hospitalization are reported each year

throughout the world, with more than half in China

[2]. The epidemic situation of HFRS is serious in

China: it is prevalent in 28 out of 31 provinces ; the

total number of cases during 1950–1995 was 1 169 570

with 43 458 deaths (case-fatality ratio 3.7%), and

about 50 000–100 000 cases have been notified

annually over recent years [2]. Around 90% of the

HFRS epidemic foci in China are in low-lying regions

with moist or semi-moist soils [1].

Anhui is one of the provinces with a high incidence

of HFRS in China [2]. Most of the cases in Anhui

Province occurred in the low-lying land along the

Huai River [3]. The incidence of HFRS seems to be

associated with year-to-year variations in seasonal

conditions in Anhui Province. Furthermore, over

time, changes in natural and occupational conditions

have affected the occurrence of the disease. Rodents,

mostly mice, are the reservoir of the disease and the

source of infection. People become infected through

contact with excreta (e.g. debris or faeces) from
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infected rodents [3]. It is important to study risk

factors of this disease and to look for possible models

to predict their occurrence, because the pattern of

the disease may change as environmental conditions

change.

In epidemiological research, time-series data may

be analysed using Normal or Poisson assumptions,

through a generalized linear model (GLM) or gen-

eralized additive model (GAM) [4–11], incorporating

specific terms to control first-order autocorrelation.

The relative merits and suitability of these different

models must be judged in light of the aim of the

modelling exercise [12]. These different models

have been used for analysing time-series data but few

studies have verified the assumptions of their models,

and limited data are available on the comparison

of different statistical models in the analysis of time-

series data. Therefore, it remains unknown whether

all these models are suitable, or one is better than

the others for a certain time-series dataset.

Our previous study assessed the potential predictors

of HFRS outbreaks in Wanggang Community,

Yingshang County, China indicating the density of

mice, crop production and water level difference in

the Huai River made a contribution to disease

transmission [3]. However, two issues remain to be

resolved. First, enormous changes have occurred in

China over the past two decades, and it remains

unclear whether the risk factors of HFRS observed

earlier are still playing important roles in current

HFRS transmission cycle. Second, it will be

helpful to examine whether different modelling

approaches (a linear regression model was used in the

previous study [3, 13]) will have any impact on overall

findings.

This paper aims to compare the key outputs of

different regression models in the assessment of risk

factors of the disease transmission between 1983 and

1995 in Yingshang County, China, and to determine

the applications of these models in time-series data

analysis.

MATERIALS AND METHODS

Data collection

Yingshang County, located in the low-lying land

along the Huai River, north of Anhui Province, is one

of the areas with highest incidences of HFRS in China

[3]. Information on the annual incidence of HFRS

between 1983 and 1995 and the density of Apodemus

agrarius was collected from the County’s Anti-

epidemic Station. The station conducted density-

of-mice surveys in fields four times annually. They

chose four fields, in the east, west, south and north of

the county for each survey. At least 300 traps were

placed at each trapping site each night, and the

survey was conducted over three consecutive nights.

The number of captured mice divided by the number

of traps placed at a certain trapping site is defined

as the density of mice in that field. A. agrarius is

the predominant species in Yingshang County and the

main source of infection.

The main epidemic peak of HFRS occurred

during autumn and winter in the county, and agri-

cultural activities such as working on the farmland,

irrigation, and sleeping in the fields during the

autumn harvest season might have played a signifi-

cant role in the occurrence of HFRS. However, it

was difficult to collect such detailed data, so it was

appropriate to choose crop production during the

autumn harvest season as a surrogate index to reflect

the farmer’s agricultural activities and contact degree

with mice. Crop production data between 1983 and

1995 were provided by the County’s Department of

Agriculture. The autumn crop productions were

ranked as ‘1’ for <0.5 million kg, ‘2 ’ for 0.5 to

<0.7 million kg, ‘3 ’ for 0.7 to <0.9 million kg,

‘4’ for 0.9 to <1.1 million kg, ‘5 ’ for <1.1 to

<1.3 million kg, ‘6’ for 1.3 to <1.5 million kg, ‘7’

for >1.5 million kg.

The Huai River is the third largest river in China

and its water level, especially during the flood period

of summer will affect the density of mice and people’s

behaviour in Yingshang County, e.g. harvesting,

and thus degree of contact with mice. Therefore, data

on precipitation and differences in water levels of

the Huai River between July and September in

relevant years were also collected from the County’s

Meteorological and Hydrologic stations.

Statistical analysis

Spearman correlation analyses were conducted to

assess the bivariate associations between the incidence

counts of HFRS and density of A. agrarius (x1), dif-

ference in water level (x2) and crop production (x3).

Three regression models were compared to assess the

impacts of these independent variables on the HFRS

incidence. Model I was a least-squares linear, time-

series model with normally distributed residuals ;

model II was a GLM with a Poisson link time-series
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model ; and model III was a GAM with Poisson link

time-series spline model. We used more stringent

convergence parameters [epsilon (convergence thre-

shold for local scoring iterations)=1r10x7, maxit

(maximum number of local scoring iterations)=30,

bf.epsilon (convergence threshold for backfitting

iterations)=1r10x7, bf.maxit=30] for dealing with

the convergence problem in the GAMmodel [10]. The

construction of these three models is described in

more detail in the Appendix.

The assessment of the ‘suitability ’ of the models

was undertaken in four stages. First, the associations

between HFRS and the potential explanatory vari-

ables were assessed. Second, a Shapiro–Wilk test

was used to examine the normality of residuals [14].

Third, the autocorrelations of the residuals were

assessed visually to ascertain the impact of the auto-

regressive terms. The goodness of fit for the models

was assessed using the Box–Ljung test [15]. The

validity of the models was evaluated using the root

mean square (r.m.s.) error percentage error criterion

(r.m.s. error=[gt=1
N (ŶtxYt)

2/N]½, where Ŷt is the

predicted value and Yt is the observed value for

month t, N is the number of observations) [16]. The

smaller the r.m.s. error, the better the model in terms

of the ability of forecast. Finally, predictive ability

was assessed by the application of the model to the

1995 dataset – i.e. all three regression models were

built up based on the first 12 years’ data (1983–1994),

and the 13th year (1995) incidence of HFRS was

predicted with these regression models. Then the

accuracy of the predictive values was examined by

the actual observations. The analyses with the de-

rived regression models were performed using S-plus

6.0 statistical software [17] and Statistical Analysis

System 9.1 software for Windows [18].

RESULTS

Exploratory data analysis

The histograms of the incidence of HFRS, indicate

that the response variable, should be subjected to a

logarithmic transformation for those models that

require normality. The pairwise scatter plot depicts

the relationships between all the variables (Fig. 1).

Incidence of HFRS was linearly associated with the

crop production variable, but appeared to be not

related or be nonlinearly related to the density of

A. agrarius and water level. There were no striking

relationships between the explanatory variables them-

selves.

Bivariate analysis

Table 1 shows the associations of the incidence of

HFRS with density of A. agrarius, difference in water

level and crop production in Yingshang County

during 1983–1994. It also summarizes the bivariate
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Fig. 1. Pairwise scatter plot of HFRS and explanatory variables.
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relationships between all the independent variables.

As suggested by Figure 1, the incidence of HFRS was

most strongly and linearly associated with the crop

production variable (P<0.01).However, partial corre-

lation coefficients controlling for the crop production

show that HFRS incidence was also positively associ-

ated with density of A. agrarius, but was inversely

associated with difference in water level (Table 2).

Autocorrelations

The autocorrelations, by a lag of year 1, 2, …, 10,

were respectively 0.60, 0.09, x0.39, x0.49, x0.46,

x0.18, 0.00, 0.18, 0.13, and 0.06 for annual HFRS

counts (Fig. 2). The high positive correlations at a lag

of year 1 and the high negative correlations at lags of

years 4 and 5 reflect the strong quadratic form of the

response. Similar patterns were also observed from

the plots of the partial autocorrelations.

Model building

The results of the linear autoregression time-series

model (model I) showed that the log incidence rates

of HFRS was statistically significantly associated

with crop production (P<0.01), and was marginally

positively associated with the density of A. agrarius

(P=0.09) and negatively (but not statistically signifi-

cantly) associated with difference in water level

(P=0.14). No significant lag effect was found in this

model and the analysis of variance (ANOVA) shows

that the model provided a reasonable fit to the data

(F=61.87, P<0.01). The R2 was 98% (Table 3).

The parameter estimates of the Poisson auto-

regression model (model II) indicate that there were

statistically significant associations between annual

counts of HFRS and three predictors after adjustment

for the size of the population (Table 3). It appears that

the HFRS counts were positively associated with

density of A. agrarius and crop production, but were

inversely associated with difference in water level

(P<0.01). No significant lag effect was found in this

model. The deviance of residuals was 28 (Fig. 3).

The analysis of the Poisson autoregression GAM

using Poisson link (model III) shows that adding

a spline smoother (see Appendix) to both density of

Table 1. Spearman correlation coefficients (95% confidence interval)

between variables

y x1 x2

x1 x0.329

(x0.791 to 0.229)

x2 x0.000
(x0.613 to 0.532)

x0.622*
(x0.836 to 0.098)

x3 0.939**
(0.651 to 0.970)

x0.589*
(x0.869 to 0.024)

0.294
(x0.332 to 0.745)

y, annual incidence of HFRS; x1, density of Apodemus agrarius ; x2, difference in

water level ; x3, crop production.
* P<0.05, ** P<0.01.

Table 2. Partial correlation coefficients (95%

confidence interval) between variables controlling

for x3

y x1

x1 0.356
(x0.466 to 0.848)

x2 x0.757*
(x0.951 to x0.111)

x0.429
(x0.871 to 0.395)

y, annual incidence of HFRS; x1, density of Apodemus

agrarius ; x2, difference in water level ; x3, crop production.
* P<0.01.
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Fig. 2. Autocorrelation coefficients of HFRS.
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Table 3. Regression coefficients of three models

Model I Model II Model III*

b 95% CI P b 95% CI P b 95% CI P

Intercept x0.8860 x2.3506 to 0.5787 0.189 1.7864 1.4126 to 2.1603 0.000 1.7247 1.3497 to 2.0996 0.012

x1 0.0197 x0.0046 to 0.0441 0.095 0.0116 0.0032 to 0.0199 0.006 0.0169 0.0085 to 0.0252 0.083
x2 x0.0939 x0.2280 to 0.0402 0.137 x0.1050 x0.1453 to x0.0646 0.000 x0.0638 x0.0232 to x0.1044 0.002
x3 0.7511 0.5651 to 0.9372 0.000 0.7664 0.7104 to 0.8225 0.000 0.7369 0.6805 to 0.7932 0.091
Lag 0.0465 x0.3367 to 0.4298 0.776 0.0001 x0.0000 to x0.0003 0.098 0.0002 x0.0001 to 0.0003 0.058

R2=98% Deviance=28 Deviance=19

CI, confidence interval.
* Indicates the linear trends for x1, x2. The x

2 of the spline (x2) was 6.45, P=0.039.
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distributed (P>0.05). There was no significant

autocorrelation between residuals in any of the three

models in the Box–Ljung test (P>0.05) (Fig. 3). The

validation analyses indicate that the model III had

high accuracy over the predictive period (model I :

r.m.s. error 16.09; model II : r.m.s. error 5.45;

model III : r.m.s. error 3.97).

Estimation and prediction

Figure 4 depicts the adequacy of estimation through

the closeness of the fitted and observed values for

years 1984–1994. It also provides a comparison of

the predictive ability of the models for 1995.

Model III appeared to be the best for both esti-

mation and prediction (predicted value for 1995:

model I, 274; model II, 255; model III, 241; actual

value, 218).

Model comparison

The three regression models appeared to have similar

outputs. In general, the HFRS incidence was posi-

tively associated with density of A. agrarius and crop

production and inversely associated with the water

level in Huai River. However, the Poisson auto-

regression spline model (i.e. model III) appeared to

have the best goodness-of-fit and short-term predic-

tive ability (Table 3, Fig. 4).

DISCUSSION

Using different modelling approaches, we confirmed

our previous findings that the transmission of HFRS

was associated with climatic and occupational factors

[3, 13]. We also found that a Poisson GAM time-series

spline model appeared to be the most suitable in the

assessment of the relationship between the trans-

mission of HFRS and the three independent vari-

ables, although a log-transformed linear regression

model with normal errors and a Poisson GLM also

seemed to perform reasonably well.

Logarithmically transformed linear regression

models have been commonly used in the assessment

of determinants of ‘high’ frequency rates [19, 20]. In

the development of a linear regression model, the

most common approach for modelling is through

least squares, due to its computational tractability,

its minimal (but strong) assumptions for hypothesis

testing and its applicability for a wide class of prob-

lems [4]. This applicability is enhanced when the

problem allows for transformations of the data,

as in the development of model I. The traditional

method of dealing with typically skewed data is to

apply a transformation, such as the log transform-

ation of the dependent values, in order to improve

both symmetry and homogeneity of variance in

the residuals. However, there is a fundamental

flaw with this approach: If the original relationship is
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Fig. 4. Model fitting and calibration with the time-series data of HFRS.
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linear, it is no longer linear after the transformation.

If we fit a straight line and then transform back

to the original scale, the fit is no longer linear.

Moreover, independence between the mean and

variance is not always satisfactorily achieved in the

transformation.

There is a difference between the Poisson regression

and log-transformed linear model. The former entails

the assumption of a Poisson likelihood whereas the

latter assumes a normal distribution for the residuals.

Poisson regression models have gained popularity

for the analysis of time-series data in medical and

public health research, because many biological

phenomena are well described by Poisson distri-

bution [19].

GLM extended normal regression models to ac-

commodate both non-normal response distributions

and transformations to linearity [21]. Furthermore,

GAM extended the GLM by fitting non-parametric

functions to estimate the relation between the

response and the predictors [22]. GAMs assume that

the mean of the dependent variable depends on an

additive predictor through a nonlinear link function

(as opposed to a linear link function under a GLM).

Both GAMs and GLMs permit the response prob-

ability distribution to be any member of the expo-

nential family of distributions [17].

In this study, we found that the transmission of

HFRS incidence was positively associated with the

density of A. agrarius and crop production, but was

inversely associated with difference in water level.

Although model I performed reasonably well, models

II and III provide a much more straightforward

interpretation of the influence of the explanatory

variables (especially difference in water levels) on

HFRS incidence. Under model I, difference in water

level was not statistically significant, but became

statistically significant after controlling for crop

production. Although this was not unexpected in

light of the high correlations between the three

explanatory variables, the resultant inferences about

the role of these three variables in estimating and

predicting HFRS incidence become more compli-

cated. Under model II and more obviously under

model III, this difficulty disappears because the

increased flexibility of the model allows a clearer

expression of the contribution of each variable.

Model III may be more appropriate as demonstrated

by goodness-of-fit and model diagnosis outcomes.

Importantly, under model III all variables were stat-

istically significant at the 5% level and the predicted

HFRS incidence was demonstrably closer to the

observed incidence for the year 1995.

This study may have three major implications.

First, our data demonstrate that climatic and occu-

pational variables are key determinants of HFRS

transmission, particularly in low-lying areas. These

results were confirmed by different modelling ap-

proaches, and therefore, should be incorporated in

the public health risk-management planning for

HFRS. Second, the findings of this study may assist

local public health authorities to utilize the model

developed in this study to identify the communities

that require particular attention, and to mobilize

limited resources to effectively control and prevent

outbreaks of HFRS during epidemic seasons. Finally,

this modelling approach may also be applicable to

a wider scientific community, particular those who

are interested in the assessment of risk factors of

disease transmission.

Some limitations of this study should be acknowl-

edged. First, our analyses were confined to a small

number of covariates, measured at a relatively large

timescale (i.e. annually). A more refined analysis

could use more frequent time-dependent covariates

(e.g. weekly and monthly) to incorporate information

on changes that occurred over the different time

intervals at the expense of smaller (possibly zero)

responses per unit of time. Second, the occurrence

of HFRS is complex. Many factors could affect the

incidence of HFRS, such as disease control pro-

grammes, the virus carrier rate among rodents,

population movement and nutritional status. It may

add some value to include other explanatory variables

in the model. Third, explanatory variables may inter-

act with each other in the occurrence of HFRS. For

example, regular periods of low rainfall may benefit

crops and vectors, while other crops may also pro-

mote the population of A. agrarius. Both of these

factors may, therefore, contribute to the increased

incidence of HFRS. However, high rainfall may have

an opposite effect, especially in low-lying areas. The

interactive effects of explanatory variables were not

assessed due to the limited availability of the data.

Finally, the study only focused on a low-lying area in

Anhui, China. The results must be interpreted with

caution as the situation in other areas may differ

substantially.

In conclusion, similar results were obtained by

using different modelling approaches. However, a

GAM model appears to be the best fit with the

time-series data in this study, and it may also have
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wider applications in the research of disease trans-

mission.

APPENDIX

Least-squares linear, time-series model (model I)

The standard linear regression time-series model

assumes the expected value of Y has a linear form

ŶY(t)=wY(tx1)+b0+b1X1+ � � �+bpXp,

the constant term is denoted by b0, the autoregressive

coefficient by w and the regression coefficient by b.

Estimation is typically by least-squares or maximum-

likelihood methods.

GLM with a Poisson link time-series model

(model II)

GLMs extend linear models by allowing for a link

between f(X) and the expected value of Y. GLM is

composed of a likelihood [here YyPoisson (m)] which

is a member of the exponential family by a linear

function of the explanatory variables (Ŷ(t)=wY(tx1)+
b0+b1X1+…+bpXp) and a link between these two

components [log(m)=f(x)]. Estimation is typically

calculated by maximum-likelihood methods.

GAM with Poisson link time-series spline model

(model III)

GAMs extend the GLM by allowing for (smooth)

nonlinear functions in f(X), so that Ŷ(t)=wY(tx1)

+s0+s1(X1)+...+sp(Xp), where s0(.), …, sp(.) are

smooth functions. These functions are estimated in

a non-parametric fashion. In model III cubic splines

are used to define si(X ), i=1, …, p.
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