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INVOLUTIONS IN CONWAY’S LARGEST SIMPLE GROUP
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Abstract

In this paper, the authors determine the suborbits of Conway’s largest
simple group in its conjugation action on each of its three conjugacy
classes of involutions. Matrix representatives of these suborbits are
also provided in an accompanying computer file.

1. Introduction

The tentacles of Conway’s largest simple group, Co1, reach out in a number of different
directions. Through its connections with the Leech lattice, �, it interacts with sphere pack-
ings and related combinatorial matters (see [8]). Via the rich structure inherent in the Leech
lattice, we also see many of the fellow sporadic simple groups of Co1 as subgroups; see,
for example, [6, Table 5] and the Atlas [7] for the stabilizers of various sets of vectors in �.
This group may also be viewed as a ‘stepping stone’ en route to the Monster simple group;
consult [5] and [12] for more on this. The subgroup structure of Co1 has received much
attention. Wilson [15] has completed the enumeration of its maximal subgroups, following
on from earlier work of Curtis in [9] and [10]. Yet there is still much more to be discovered
about this group. As one example, we mention the speculative investigations of Harada and
Lang [13], which may be pointing to new horizons.

From now on, we shall let G denote Co1, and we let t denote a fixed involution of G.
There are three G-conjugacy classes of involutions, namely 2A, 2B and 2C (we use the
class names as given in the Atlas [7]). In this paper, we determine the suborbits of G in
its (conjugation) action on tG, together with various other related information. So we are
looking for the CG(t)-orbits of tG. We recall the facts shown in Table 1 (see [7] and [15]).

The permutation ranks may be verified using Gap [14]. (In [4], the permutation
character 1G

CG(t) is given for t in 2A, 2B and 2C.) A study of the commuting involu-
tion graph for Co1, currently being undertaken by Bundy, Perkins, and the authors, has
prompted some of the calculations that we describe here. It is anticipated that the results
presented here will be of use in other investigations.

In Section 2 we give the tabular information concerning the size of suborbits, while
Appendix A contains other data that sometimes allows faster identification of which sub-
orbit an involution is in. Finally, in Appendix B we provide lists of representatives for each

Table 1: Permutation rank.

tG CG(t) Permutation Rank on tG

2A 21+8+ · O+
8 (2) 11

2B (22 × G2(4)) : 2 59

2C 211 : M12 : 2 177
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Involutions in Conway’s largest simple group

of the suborbits (as 24 × 24 matrices over GF(2)) in GAP [14] , Magma [2] and MeatAxe
formats. For further details, see Section 2.4. We note here that for all the computational
work involved in determining the suborbits, we use the 24-dimensional representation over
GF(2) given in [16]. So we start with the standard generators for Co1, a and b, where a

is in class 2B, b is in class 3C, ab has order 40 and ababb has order 6. In the file we also
outline a routine for obtaining any of the given CG(t)-orbit representatives as expressions
in the standard generators a and b.

2. The suborbits of tG

Let t be a fixed involution in G, and set X = tG. Let x ∈ X, and suppose that C is a
G-conjugacy class. The set XC := {x ∈ X : tx ∈ C} clearly breaks up into orbits under
the conjugation action of CG(t); so if we wish to determine all the suborbits of tG, we need
to find the CG(t)-orbits of XC , as C ranges over all those C for which XC is non-empty.

In order to examine the possibilities for C and the cardinality of the corresponding set
XC , we use the method of class structure constants. These describe the number of possible
products of elements from a conjugacy class Cj with elements from a conjugacy class Cl

that give an element in some conjugacy class Ci of G. In the current situation, we have
X = Cj = Cl and C = Ci , in which case the class structure constant is equal to

ξi = |G|
|CG(t)|2

k∑

r=1

χ2
r (t)χ(gi)

χr(1)
,

where gi is a representative of the class Ci , k is the number of conjugacy classes in G, and
the χr are the irreducible complex characters of G (see, for example, [11]). We can thus
calculate these constants directly from the complex character tables of the G, which are
recorded in the Atlas [7], and are available electronically in the standard libraries of the
computer algebra package GAP [14] .

During our computations, we need to identify the conjugacy class of various elements. To
do this, we use class invariants such as order, dimension of the fixed space, and centralizer
size, as well as the various power maps. This information is drawn primarily from the Atlas
[7]. In cases where we need to compute the centralizer of an element, we can sometimes
employ the procedure introduced in [1] to allow for faster identification. We note here that
we use the method described in [3] to generate involution centralizers.

We are often faced with the problem of finding x ∈ X such that z = tx belongs to a
given class C. If |CG(z)| is large, these elements are rare, and so a basic search is unlikely
to yield results. We overcome this problem by searching for elements of a higher order. In
other words, we look for y ∈ X such that (ty)m lies in C, for some m ∈ N. Then t (ty)m ∈ X

is an appropriate element.
Given x, y ∈ X such that tx and ty belong to the same G-conjugacy class, it is computa-

tionally expensive to determine whether or not they are conjugate under CG(t) by using the
standard algorithm implemented in the computer algebra package Magma. This can prove to
be a problem, especially when the orbit sizes are small, and so we try to exploit the structure
of CG(t) in order to identify distinct orbits more efficiently. We shall give specific details of
this for t ∈ 2A, t ∈ 2B and t ∈ 2C in Sections 2.1, 2.2 and 2.3, respectively. An additional
way of trying to determine whether x and y lie in different CG(t)-orbits is to calculate
the dimensions of the subspaces fixed by the subgroups 〈t, x〉 and 〈t, y〉, and to observe
any differences. As a last resort, we do in fact call upon the ‘IsConjugate(CG(t), tx, ty)’
command in Magma.
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In the course of our calculations, we often needed to identify the conjugacy class to which
an element g of Co1 belongs. This was usually achieved by looking at the various powers of
g, and determining dim(CV (g)) (where V is the 24-dimensional GF(2) Co1-module given
by [16]). Since this data may be of value elsewhere, it is given as Appendix A of this paper.

2.1. t ∈ 2A

In this case, the permutation rank of G on X = tG is only 11, and it is relatively easy
to determine the suborbits. We include them here for completeness. Recall that CG(t) ∼=
21+8+ · O+

8 (2) and N = O2(CG(t)) ∼= 21+8+ . There are four CG(t)-conjugacy classes of N ,
two of which are of size one, consisting only of the identity or t . The other two, C1 and C2,
have cardinalities of 270 and 240, respectively. (In fact, C1 is contained in 2A, and
C2 is contained in 4A.) For each representative x ∈ X, we calculate the suborbit invariants
c1 = |CN(x) ∩ C1| and c2 = |CN(x) ∩ C2|. These are listed in Table 2, along with |O| (the
size of each suborbit) and d (the dimension of the subspace fixed by 〈t, x〉).

2.2. t ∈ 2B

Taking t ∈ 2B, in this case we have CG(t) ∼= (22 ×G2(4)) : 2. Let L �� CG(t) be such
that L ∼= G2(4). Then D = LCCG(t)(L) = F × L ∼= 22 × G2(4). Now let x ∈ X = tG,
and suppose that z = tx has even order l, for some l ∈ N. Then 〈t, x〉 is a dihedral group of
order 2l, with centre generated by (tx)l/2. In particular, the involution (tx)l/2 lies in CG(t).
As a way of trying to distinguish such x from other suborbits, we can determine whether
(tx)l/2 can be found in F , in L or as a diagonal element in D, or whether it lies outside of D.
This information is listed in Table 3, in the last column, which is labelled L (for location);
we use, L, F , D and O to mean that (tx)l/2 is in, respectively, L, F , D \ (L ∪ F) and
CG(t) \ D. Also, in the column labelled (tx)l/2, we give the class of (tx)l/2. As usual, for
every orbit representative x, we calculate d , the dimension of the subspace fixed by 〈t, x〉,
and we sometimes use it as a tool for distinguishing orbits.

We note that the L data sometimes puts daylight between otherwise similar CG(t)-orbits
when tx ∈ 4E ∪ 12L.

Table 2: t ∈ 2A.

C |O| d c1 c2

2A 12600 12 78 48

270 12 142 112

2C 60480 10 30 0

3B 573440 10 0 0

3D 491520 8 0 0

4A 34560 8 1 0

4C 4838400 9 3 0

4D 2419200 8 1 0

5B 12386304 8 0 0

6E 25804800 8 0 0
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Table 3: t ∈ 2B.

C |O| d (tx)l/2 L

2A 4095 8 2A L

2B 41600 6 2B O

8190 8 2B D

2 12 2B F

2C 65520 6 2C D

3A 1664 0 - -

3B 166400 6 - -

3D 4193280 4 - -

4A 81900 4 2A L

16380 4 2A L

4B 327600 4 2A L

163800 4 2A L

4D 2620800 4 2A L

655200 4 2A L

4E 5241600 4 2B O

5241600 4 2B D

83200 6 2B F

83200 6 2B O

5A 1048320 0 - -

3328 0 - -

5B 8386560 4 - -

6A 524160 0 2A L

6B 2995200 0 2B O

6E 10483200 4 2A L

6H 83865600 2 2B O

8386560 4 2B D

6I 62899200 2 2C D

7A 16773120 0 - -

C |O| d (tx)l/2 L

8A 2620800 2 2A L

2620800 2 2A L

8B 7862400 2 2A L

7862400 2 2A L

8C 10483200 2 2A L

5241600 2 2A L

5241600 2 2A L

8F 20966400 2 2A L

20966400 2 2A L

10A 10483200 0 2A L

1048320 0 2A L

1048320 0 2A L

10C 8386560 4 2B D

8386560 4 2B D

10F 125798400 2 2C D

11A 335462400 2 - -

12A 5241600 0 2A L

1048320 0 2A L

12C 20966400 0 2A L

12E 41932800 2 2A L

12L 167731200 2 2B O

167731200 2 2B D

13A 167731200 0 - -

14A 167731200 0 2B O

15B 33546240 0 - -

15C 167731200 0 - -

20A 83865600 0 2A L

21A 167731200 0 - -

24A 41932800 0 2A L

41932800 0 2A L
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2.3. t ∈ 2C

When t ∈ 2C, the permutation rank of G on X = tG is 177, and there are 87 non-zero
structure constants, so determining the suborbits requires a substantial amount of work. Put
N = O2(CG(t)). In N there are six CG(t)-conjugacy classes, two of which have size one,
just as in Section 2.1. We denote the four classes of size greater than one by C1, C2, C3 and
C4, and we remark that C1 and C2 are contained in 2C, while C3 and C4 are contained in
2A. For x ∈ X and i ∈ {1, . . . 4}, we calculate the suborbit invariants ci = |CN(x) ∩ Ci |.
As usual, these often provide a useful way of identifying distinct suborbits without having
to resort to more computationally intensive methods. These are listed in Table 4, along with
the dimension of the subspace fixed by 〈t, x〉 and the size |O| of each suborbit.

As we observe in Table 4, the ci data may in some instances serve to distinguish between
CG(t)-orbits that have the same |O|, d and C.

Table 4: t ∈ 2C.

C |O| d c1 c2 c3 c4

2A 7920 8 24 31 31 40

495 10 792 495 495 264

2B 25344 6 32 15 15 0

2C 47520 6 24 31 31 40

12672 8 32 15 15 0

792 10 792 495 495 264

3A 2048 0 0 0 0 0

3B 270336 6 0 0 0 1

112640 6 0 0 9 6

3C 901120 3 0 0 0 0

3D 2027520 4 0 0 0 0

4A 126720 4 0 0 7 0

15840 6 48 8 63 8

4B 1520640 4 0 0 3 0

380160 4 0 0 7 0

190080 6 24 24 15 0

95040 6 32 16 7 8

95040 6 48 8 63 8

4C 1520640 5 0 0 3 4

760320 6 0 0 3 0

380160 6 32 24 47 24

380160 6 0 0 7 8

190080 6 36 20 43 28

4D 1520640 4 0 0 3 4

253440 6 0 0 7 8

253440 6 36 20 43 28

Continued on the next page
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Table 4: t ∈ 2C, continued from the previous page.

C |O| d c1 c2 c3 c4

190080 6 32 16 7 8

190080 6 32 24 47 24

95040 6 32 24 47 24

4F 3041280 4 0 0 1 2

3041280 4 0 0 3 0

506880 6 30 18 9 6

506880 6 0 0 15 0

5A 1622016 0 0 0 0 0

5B 12165120 4 0 0 0 0

3244032 4 0 0 0 1

5C 19464192 2 0 0 0 0

6A 1013760 0 0 0 0 0

6B 1622016 0 0 0 0 0

6C 4055040 3 0 0 0 1

4055040 3 0 0 3 4

6D 8110080 3 0 0 0 0

6E 12165120 4 0 0 0 1

4055040 4 0 0 0 1

4055040 4 0 0 1 2

4055040 4 0 0 0 1

1013760 6 0 0 9 6

6F 32440320 2 0 0 0 0

6G 12165120 3 0 0 3 4

12165120 3 0 0 0 1

6H 24330240 2 0 0 0 0

6I 12165120 2 0 0 0 0

12165120 4 0 0 0 0

7A 16220160 0 0 0 0 0

7B 64880640 3 0 0 0 0

8A 1013760 3 0 0 7 0

1013760 3 0 0 0 0

8B 6082560 3 0 0 3 4

6082560 3 0 0 0 0

8C 24330240 2 0 0 1 0

6082560 3 0 0 0 0

6082560 3 0 0 7 0

8D 24330240 2 0 0 1 0

6082560 4 0 0 3 0

Continued on the next page
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Table 4: t ∈ 2C, continued from the previous page.

C |O| d c1 c2 c3 c4

6082560 3 0 0 0 0

6082560 3 0 0 0 0

6082560 3 0 0 7 0

6082560 3 0 0 7 0

8E 24330240 4 0 0 0 0

24330240 4 0 0 1 0

12165120 3 0 0 1 0

12165120 3 0 0 3 4

6082560 4 0 0 1 0

6082560 4 0 0 1 2

9A 64880640 0 0 0 0 0

9B 64880640 1 0 0 0 0

64880640 1 0 0 0 0

9C 64880640 2 0 0 0 0

64880640 2 0 0 0 0

10A 24330240 0 0 0 0 0

10B 24330240 0 0 0 0 0

24330240 0 0 0 0 0

1622016 0 0 0 0 0

1622016 0 0 0 0 0

10C 24330240 2 0 0 0 0

24330240 2 0 0 0 0

10D 48660480 2 0 0 0 0

48660480 2 0 0 0 1

10E 97320960 2 0 0 0 0

10F 48660480 2 0 0 0 1

24330240 4 0 0 0 0

12165120 2 0 0 0 0

12165120 2 0 0 0 0

11A 194641920 2 0 0 0 0

12A 6082560 0 0 0 0 0

1013760 0 0 0 0 0

1013760 0 0 0 0 0

12B 24330240 0 0 0 0 0

12C 24330240 0 0 0 0 0

12D 32440320 1 0 0 0 0

32440320 1 0 0 0 0

12E 48660480 2 0 0 0 0

Continued on the next page
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Table 4: t ∈ 2C, continued from the previous page.

C |O| d c1 c2 c3 c4

16220160 2 0 0 1 0

8110080 4 0 0 3 0

12G 24330240 2 0 0 0 0

24330240 2 0 0 1 0

24330240 2 0 0 1 0

24330240 2 0 0 0 0

12H 97320960 2 0 0 0 0

48660480 3 0 0 0 0

12I 48660480 2 0 0 0 1

48660480 2 0 0 1 0

24330240 3 0 0 0 0

24330240 3 0 0 5 2

12J 48660480 2 0 0 0 0

48660480 2 0 0 0 1

8110080 4 0 0 1 0

8110080 4 0 0 1 2

12K 97320960 1 0 0 0 0

97320960 1 0 0 0 0

12M 48660480 2 0 0 0 0

48660480 2 0 0 0 0

13A 97320960 0 0 0 0 0

14A 97320960 0 0 0 0 0

14B 194641920 2 0 0 0 0

15A 38928384 0 0 0 0 0

15B 97320960 0 0 0 0 0

15C 97320960 0 0 0 0 0

15D 194641920 2 0 0 0 0

64880640 2 0 0 0 0

15E 194641920 1 0 0 0 0

194641920 1 0 0 0 0

16B 97320960 2 0 1 0 0

97320960 2 0 0 0 0

18A 194641920 0 0 0 0 0

18B 194641920 1 0 0 0 0

194641920 1 0 0 0 0

18C 194641920 1 0 0 0 0

194641920 1 0 0 0 0

20A 97320960 0 0 0 0 0

Continued on the next page
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Table 4: t ∈ 2C, continued from the previous page.

C |O| d c1 c2 c3 c4

20B 97320960 2 0 0 0 0

97320960 2 0 0 0 0

20C 194641920 1 0 0 0 0

194641920 1 0 0 0 0

21A 97320960 0 0 0 0 0

21B 129761280 0 0 0 0 0

21C 389283840 1 0 0 0 0

24B 97320960 0 0 0 0 0

97320960 0 0 0 0 0

24C 32440320 2 0 0 1 0

32440320 2 0 0 0 0

24E 97320960 2 0 0 0 0

97320960 2 0 0 1 0

24F 194641920 2 0 0 0 0

194641920 2 0 0 0 0

26A 97320960 0 0 0 0 0

97320960 0 0 0 0 0

28A 194641920 1 0 0 0 0

194641920 1 0 0 0 0

30A 194641920 0 0 0 0 0

30B 97320960 0 0 0 0 0

97320960 0 0 0 0 0

30C 97320960 0 0 0 0 0

97320960 0 0 0 0 0

30D 194641920 1 0 0 0 0

194641920 1 0 0 0 0

30E 194641920 1 0 0 0 0

194641920 1 0 0 0 0

33A 389283840 0 0 0 0 0

35A 389283840 0 0 0 0 0

36A 194641920 0 0 0 0 0

194641920 0 0 0 0 0

42A 97320960 0 0 0 0 0

97320960 0 0 0 0 0

60A 194641920 0 0 0 0 0

194641920 0 0 0 0 0
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2.4. Suborbit matrix representatives

In Appendix B, we give matrix representatives for each suborbit. There are three main
folders in the file, each labelled ‘Co1_X_reps’ for X in {2A, 2B, 2C}, and corresponding
to suborbit representatives for the appropriate class. In each case, the representatives are
dimension-24 matrices over the Galois field GF(2), and are provided in three formats:
GAP [14] , Magma [2] and MeatAxe (see [16] for more information on these formats).
More-detailed information about the structure of the folders and the presentation of the data
can be found in the ‘README’ file in the top-level directory of the folder.

In both the GAP and Magma cases, all the representatives for a given class are contained
in one file, and then systematically labelled in accordance with the tables given in Section 2.
Indeed, we specify a matrix t , and then each representative x has a name of the form ‘xC_i’,
where C is the Atlas [7] name of the G-conjugacy class containing tx, and i indicates that
x is a representative for the ith suborbit, with respect to the appropriate table in Section 2.
For example, after loading the ‘Co1_2C_reps_MAGMA’ file into the computer algebra
package Magma, the element stored as ‘x4B_3’ corresponds to the suborbit representative
x whose product tx is in class 4B, and which lies in a suborbit of size 190080.

For each representative in the MeatAxe case, there is a file ‘Meataxe_X_S’ for each X in
{2A, 2B, 2C} and each corresponding non-zero structure constant S. Within each file, the
ith matrix given corresponds to the ith suborbit with respect to the tables in Section 2. So to
obtain the representative in the example above, one would open the file ‘Meataxe_2C_4B’,
and take the third matrix down as listed.

In each of the cases t ∈ {2A, 2B, 2C}, we also provide generators for the centralizer
CG(t) and some of its subgroups. For t ∈ 2A, we have CG(t) = N ·H ∼= 21+8+ · O+

8 (2),
and we provide generators for both the full centralizer and the extra-special group N . When
t ∈ 2B, we have CG(t) ∼= (22 ×G2(4)) : 2, which has subgroup D = F ×L ∼= 22 ×G2(4),
of index 2. We provide generators for the full centralizer, for D, and for its subgroups F

and L. Finally, if t ∈ 2C, we have CG(t) = N : M ∼= 211 : M12 : 2, and again we give
generators for both the full centralizer and the elementary abelian group N .

Appendix A. Data that may facilitate faster identification of suborbits

g ∈ C dim(CV (g)) dim(CV (gi)) Additional information

used in Section 2

1A 24 - -

2A 16 - -

2B 12 - Generate CG(g) using Bray’s method [3].

Elements of order 13 in CG(g)

indicate that g ∈ 2B.

2C 12 - Generate CG(g) using Bray’s method [3].

Elements of order 11 in CG(g)

indicate that g ∈ 2C.

3A 0 - -

3B 12 - -

Continued on the next page
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Appendix A, continued from the previous page.

g ∈ C dim(CV (g)) dim(CV (gi)) Additional information

used in Section 2

3C 6 - -

3D 8 - -

4A 8 g2 : 16 Generate CG(g2) using Bray’s method [3]

and then calculate CG(g) � CG(g2).

If g ∈ 4A, then |CG(g)| = 217.34.5.7.

4B 8 g2 : 16 Generate CG(g2) using Bray’s method [3]

and then calculate CG(g) � CG(g2).

If g ∈ 4B, then |CG(g)| = 217.32.

4C 10 g2 : 16 -

4D 8 g2 : 16 Generate CG(g2) using Bray’s method [3]

and then calculate CG(g) � CG(g2).

If g ∈ 4D, then |CG(g)| = 215.32.

4E 6 g2 : 12 g2 ∈ 2B

4F 6 g2 : 12 g2 ∈ 2C

5A 0 - -

5B 8 - -

5C 4 - -

6A 0 g3 : 16, g2 : 0 -

6B 0 g3 : 12, g2 : 0 g3 ∈ 2B

6C 6 g3 : 16, g2 : 12 -

6D 6 g3 : 16, g2 : 6 -

6E 8 g3 : 16, g2 : 12 -

6F 4 g3 : 16, g2 : 6 -

6G 6 g3 : 12, g2 : 12 g3 ∈ 2C

6H 4 g3 : 12, g2 : 8 g3 ∈ 2B

6I 4 g3 : 12, g2 : 8 g3 ∈ 2C

7A 0 - -

7B 6 - -

8A 4 g2 : 16 g2 ∈ 4A. Generate CG(g4)

using Bray’s method [3], and then

calculate CG(g) � CG(g4).

If g ∈ 8A, then |CG(g)| = 211.32.5.

8B 4 g2 : 16 g2 ∈ 4A. Generate CG(g4)

using Bray’s method [3], and then

calculate CG(g) � CG(g4).

If g ∈ 8B, then |CG(g)| = 211.3.

Continued on the next page
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Appendix A, continued from the previous page.

g ∈ C dim(CV (g)) dim(CV (gi)) Additional information

used in Section 2

8C 4 g2 : 16 g2 ∈ 4B. Generate CG(g4)

using Bray’s method [3], and then

calculate CG(g) � CG(g4).

If g ∈ 8C, then |CG(g)| = 211.3.

8D 4 g2 : 16 g2 ∈ 4B. Generate CG(g4)

using Bray’s method [3], and then

calculate CG(g) � CG(g4).

If g ∈ 8D, then |CG(g)| = 211.

8E 6 g2 : 16 g2 ∈ 4C

8F 4 g2 : 16 g2 ∈ 4D

9A 0 g3 : 6 -

9B 2 g3 : 6 -

9C 4 g3 : 6 -

10A 0 g5 : 16, g2 : 0 -

10B 0 g5 : 12, g2 : 0 g5 ∈ 2B

10C 4 g5 : 12, g2 : 8 g5 ∈ 2B

10D 4 g5 : 16, g2 : 8 -

10E 4 g5 : 16, g2 : 4 -

10F 4 g5 : 12, g2 : 8 g5 ∈ 2C

11A 4 - -

12A 0 g3 : 8, g2 : 0 g3 ∈ 4A, g2 ∈ 6A

12B 0 g3 : 8, g2 : 0 g3 ∈ 4B, g2 ∈ 6A

12C 0 g3 : 8, g2 : 0 g3 ∈ 4D, g2 ∈ 6A

12D 2 g3 : 8, g2 : 4 g3 ∈ 4A, g2 ∈ 6F

12E 4 g3 : 8, g2 : 8 g3 ∈ 4A, g2 ∈ 6E

12F 0 g3 : 6, g2 : 0 g3 ∈ 4E, g2 ∈ 6B

12G 4 g3 : 8, g2 : 8 g3 ∈ 4B, g2 ∈ 6E

12H 4 g3 : 10, g2 : 6 g3 ∈ 4C, g2 ∈ 6D

12I 4 g3 : 10, g2 : 8 g3 ∈ 4C, g2 ∈ 6E

12J 4 g3 : 8, g2 : 8 g3 ∈ 4D, g2 ∈ 6E

12K 2 g3 : 8, g2 : 4 g3 ∈ 4B, g2 ∈ 6F

12L 2 g3 : 6, g2 : 4 g3 ∈ 4E, g2 ∈ 6H

12M 2 g3 : 6, g2 : 4 g3 ∈ 4F, g2 ∈ 6I

13A 0 - -

14A 0 g7 : 12, g2 : 0 -

14B 4 g7 : 16, g2 : 6 -

Continued on the next page
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Appendix A, continued from the previous page.

g ∈ C dim(CV (g)) dim(CV (gi)) Additional information

used in Section 2

15A 0 g5 : 0, g3 : 0 -

15B 0 g5 : 0, g3 : 8 -

15C 0 g5 : 8, g3 : 0 -

15D 4 g5 : 12, g3 : 8 -

15E 2 g5 : 6, g3 : 4 -

16A 0 g2 : 4 g2 ∈ 8C

16B 0 g2 : 4 g2 ∈ 8D

18A 0 g3 : 4, g2 : 0 -

18B 2 g3 : 4, g2 : 2 -

18C 2 g3 : 4, g2 : 4 -

20A 0 g5 : 8, g2 : 0 -

20B 2 g5 : 6, g2 : 4 -

20C 2 g5 : 10, g2 : 4 -

21A 0 g7 : 0, g3 : 0 -

21B 0 g7 : 12, g3 : 0 -

21C 2 g7 : 8, g3 : 6 -

23A 2 - -

23B ∗ ∗ 2 - -

24A 0 g3 : 4, g2 : 0 g3 ∈ 8A, g2 ∈ 12A

24B 0 g3 : 4, g2 : 0 g3 ∈ 8C, g2 ∈ 12B

24C 2 g3 : 4, g2 : 4 g3 ∈ 8A, g2 ∈ 12E

24D 0 g3 : 4, g2 : 0 g3 ∈ 8F, g2 ∈ 12C

24E 2 g3 : 4, g2 : 4 g3 ∈ 8B, g2 ∈ 12E

24F 2 g3 : 6, g2 : 4 g3 ∈ 8E, g2 ∈ 12H

26A 0 g13 : 12, g2 : 0 -

28A 2 g7 : 8, g2 : 4 -

28B 0 g7 : 6, g2 : 0 -

30A 0 g5 : 0, g3 : 0, -

g2 : 0

30B 0 g5 : 0, g3 : 4, -

g2 : 0

30C 0 g5 : 4, g3 : 0, -

g2 : 0

30D 2 g5 : 6, g3 : 4, -

g2 : 4

Continued on the next page
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Appendix A, continued from the previous page.

g ∈ C dim(CV (g)) dim(CV (gi)) Additional information

used in Section 2

30E 2 g5 : 6 g3 : 4, -

g2 : 2

33A 0 g11 : 0, g3 : 4 -

35A 0 g7 : 0, g5 : 0 -

36A 0 g3 : 2, g2 : 0 -

39A 0 g13 : 0, g3 : 0 -

39B ∗ ∗ 0 g13 : 0, g3 : 0 -

40A 0 g5 : 4, g2 : 0 -

42A 0 g7 : 0, g3 : 0, -

g2 : 0

60A 0 g5 : 0, g3 : 0, -

g2 : 0

Appendix B. Matrix representatives for each suborbit

The files mentioned in Section 2.4 are available at

http://www.lms.ac.uk/jcm/7/lms2003-030/appendix-b.
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