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Background
Research into neural mechanisms underlying cue-induced cig-
arette craving has attracted considerable attention for its sig-
nificant role in treatments. However, there is little understanding
about the effects of exposure to smoking-related cues on elec-
troencephalogram (EEG) microstates of smokers, which can
reflect abnormal brain network activity in several psychiatric
disorders.

Aims
To explore whether abnormal brain network activity in smokers
on exposure to smoking-related cues would be captured by EEG
microstates.

Method
Forty smokers were exposed to smoking and neutral imagery
conditions (cues) during EEG recording. Behavioural data and
parameters for microstate topographies associated with the
auditory (A), visual (B), salience and memory (C) and dorsal
attention networks (D) were compared between conditions.
Correlations between microstate parameters and cigarette
craving as well as nicotine addiction characteristics were also
analysed.

Results
The smoking condition elicited a significant increase in the dur-
ation of microstate classes B and C and in the duration and

contribution of class D compared with the neutral condition. A
significant positive correlation between the increased duration
of class C (smoking minus neutral) and increased craving ratings
was observed, which was fully mediated by increased posterior
alpha power. The increased duration and contribution of class D
were both positively correlated with years of smoking.

Conclusions
Our results indicate that smokers showed abnormal EEG micro-
states when exposed to smoking-related cues compared with
neutral cues. Importantly, microstate class C (duration) might be
a biomarker of cue-induced cigarette craving, and class D (dur-
ation and contribution) might reflect the relationship between
cue-elicited activation of the dorsal attention network and years
of smoking.
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As a psychiatric disorder, nicotine addiction is one of the most
serious public health problems, causing more than 8 million
deaths each year around the world.1 A core feature of nicotine
addiction is smoking cue reactivity, which refers to the specific psy-
chological and physiological responses that occur when smokers are
exposed to smoking-related cues.2,3 Cigarette craving, as one kind of
psychological response, is quickly and strongly triggered on expos-
ure to smoking-related cues.4 The intensity of this cue-induced
craving is thought to be strongly associated with the likelihood of
relapse.5 Improving our understanding of cue-induced craving
has potential clinical benefits for nicotine addiction interventions.6

Previous electroencephalogram (EEG) studies on smoking cue
reactivity have demonstrated that cue-induced craving is related
to posterior alpha power,7,8 P300 event-related potential,9 slow
positive waves10 and low-theta coherence,11 suggesting that its
neural correlates can range from the regional activity level to the
brain network level. However, these traditional EEG analyses
mainly focus on the regional activity level, with the brain network
level being relatively rarely studied. As the brain network level
may provide richer and more complete insights into cue-induced
craving,12 the current study will explore neural correlates at the

brain network level of cue-induced craving in nicotine addiction,
reflected by EEG microstates.

EEGmicrostate analysis is a powerful, inexpensive and clinically
translatable neurophysiological method to assess the function of
brain networks.13–15 It has been shown that EEG topography
remains stable for a short period (80–120 ms), then rapidly transi-
tions to another topography and remains stable again.13,14 These
transient stable EEG topographies are called EEG microstates,
which are thought to reflect basic steps in brain information pro-
cessing.16 Abnormal EEG microstates in psychiatric patients have
been revealed in the resting state and in response to stimuli, suggest-
ing that EEG microstates could reflect abnormal brain network
activity that underlies the pathogenesis of psychiatric disorders
such as schizophrenia, panic disorder, depressive disorder and
addiction.17–21 In particular, in the resting state, smokers were
found to show abnormal EEG microstates compared with healthy
controls.21 However, resting-state studies on nicotine addiction
provide a limited understanding of cue-induced craving, which is
strongly associated with relapse.5 Therefore, it is worth exploring
whether the abnormal brain network activity in smokers on expos-
ure to smoking-related cues would be captured by EEGmicrostates.
In the current study, the guided imagery cue reactivity task was used
to induce cigarette craving.6 Smoking-related imagery scripts were
derived from personalised smoking-related experiences of the par-
ticipants. As the scripts describe smoking-related scenes as well as* Junjie Bu and Xiaochu Zhang contributed equally to this work.

BJPsych Open (2023)
9, e31, 1–8. doi: 10.1192/bjo.2022.641

1
https://doi.org/10.1192/bjo.2022.641 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1192/bjo.2022.641&domain=pdf
https://doi.org/10.1192/bjo.2022.641


actions and feelings personalised to the experience of the individual,
these smoking-related cues are more lifelike and motivationally
powerful for participants compared with image, video and in vivo
cues.22

Previous EEG microstate studies have identified four standard
microstate topographies (labelled classes A, B, C and D), which
are associated with the auditory network, visual network, salience
and memory networks, and dorsal attention network respect-
ively.13–15 Interestingly, in previous functional magnetic resonance
imaging (fMRI) studies, brain networks found to be activated when
substance-dependent individuals were exposed to drug-related cues
compared with neutral cues were the visual network, salience
network, memory network and dorsal attention network.23–26 We
thus hypothesised that compared with neutral cues, smoking-
related cues could significantly increase one or more parameters
(duration, occurrence and contribution) of microstate classes B, C
and D. Furthermore, considering the close association between par-
ticular brain networks, namely the memory network, salience
network and dorsal attention network, and drug craving,12 we
hypothesised that changes in parameters for classes C and D
(smoking condition minus neutral condition) might be associated
with changes in cigarette craving. Finally, we also examined the rela-
tionship between the changes in parameters of the microstates and
nicotine addiction characteristics (e.g. nicotine dependence,
number of cigarettes smoked per day and number of years of
smoking).

Method

Participants

Through online advertisements and fliers, we recruited a total of 40
male smokers. Nicotine dependence was assessed by DSM-5 and the
Fagerström Test for Nicotine Dependence (FTND). Other inclusion
criteria were as follows: age between 18–50 years; smoking at least
10 cigarettes per day for 2 years or more; and right-handedness.
The exclusion criteria were as follows: discomfort with the EEG
experimental environment; receipt of any smoking cessation treat-
ment in the previous 3 months. Owing to the low percentage of
female smokers in China (2.1%), only male smokers were recruited.
For more details about the recruitment, see the supplementary
materials available at https://dx.doi.org/10.1192/bjo.2022.641.

The authors assert that all procedures contributing to this work
comply with the ethical standards of the relevant national and insti-
tutional committees on human experimentation and with the
Helsinki Declaration of 1975, as revised in 2008. All procedures
involving human participants/patients were approved by the
Medical Research Ethics Committee of the First Affiliated
Hospital of the University of Science and Technology of China
(2022KY-123). All participants signed an informed consent form.

Guided imagery script generation

Personalised scripts describing experiences of cigarette use and
neutral relaxation were generated using the Scene Construction
Questionnaire (SCQ) during the interview session.6 For smoking-
related scripts, participants described a recent situation when they
most wanted to smoke and finally smoked a cigarette (e.g. seeing
someone else smoking). All situations that contained elements of
negative emotions and stress were excluded (e.g. a cigarette after a
quarrel). For neutral-related scripts, participants described a
recent situation that put them in a calm and peaceful state (e.g.
reading a book). All situations that involved cigarettes, friends asso-
ciated with smoking behaviour or those involving high arousal were
excluded. As a manipulation check for situation content, each

situation was evaluated twice, first by the researcher and second
by two objective independent raters.6 For more details, see the sup-
plementary materials. After participants had described each situ-
ation and the researcher had checked the content of the situation,
participants were given a list of phrases that describe physio-
logical/bodily sensations and were told to circle all of the physio-
logical/bodily sensations that they would experience in the
situation in question.6 For each participant, a total of four
smoking-related and four neutral-related descriptions were com-
pleted. The descriptions were edited into the final scripts and
audio-taped to a standard length of 60 s. Although these scripts con-
tained individual elements and were therefore personalised, they
were of uniform format.6

Imagery training

All participants underwent imagery training, which has been found
to effectively improve imagery performance.6 Participants were
asked to practise imagining five training scripts, which were
derived from the Imagery Script Development Procedures Manual
and were audio-taped to a standard length of 60 s. At the end of
each training trial, participants were asked to rate vividness on a
0–10 visual analogue scale. The result is shown in Supplementary
Fig. 1. The baseline imagery ability of the participants was also
assessed (see the supplementary materials).

Experimental procedure

The experimental procedure is summarised in Fig. 1. During the
interview session, participants provided basic demographic infor-
mation, including age, years of education, number of cigarettes
smoked per day and years of smoking, completed the questionnaires
(DSM-5 nicotine dependence, FTND and SCQ) and underwent
imagery training. During the EEG experimental session, all partici-
pants completed the guided imagery cue reactivity task. We used a
block design in the EEG study. There were two blocks (smoking and
neutral block) and the four trials in each block were presented in
pseudorandom order. Each trial contained a baseline period
(5–15 s), a read-imagery period (60 s) and a quiet-imagery period
(30 s). During the baseline period, participants closed their eyes
and waited for the audio-recording. During the read-imagery
period, participants were asked to imagine themselves in the
situation being described. During the quiet-imagery period, partici-
pants continued to imagine until they were told to stop. Participants
then opened their eyes and completed ratings for cigarette craving
and vividness on a 0–10 visual analogue scale. To avoid carryover
effects, that is, interference caused by smoking-related cues, the
smoking block was always presented after the neutral block.
Before the EEG experimental session participants received a tele-
phone call instructing them not to smoke for at least 2 h before
the session began. Details on ensuring and validating smoking
deprivation before the EEG experimental session are given in the
supplementary materials.

EEG acquisition

The EEG data were recorded using a SynAmps RT amplifier
(NeuroScan, Charlotte, NC, U.S.). According to the international
10–20 system, 64 electrodes were placed on the participant’s
scalp. Electrooculogram (EOG) signals and mastoid signals were
recorded using four electrodes (HEOL, HEOR, VEOL and
VEOU) and two electrodes (M1 and M2) respectively. The tip of
the participant’s nose was used as the location for the reference elec-
trode. To prevent interference from electromagnetic noise, AFz was
selected as the ground electrode. The impedance of all electrodes
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was kept under 5 kΩ. The raw EEG signals were digitised at a sam-
pling rate of 1000 Hz.

EEG data preprocessing

Preprocessing of the raw EEG data was conducted using EEGLAB
toolbox (version 14_1_1b) in MATLAB 2020a for Windows
(Mathwork Inc., Natick, USA). The raw EEG data were bandpass fil-
tered between 0.1 and 80 Hz, epoched from−1 to 90 s relative to the
beginning of the cue onset, and baseline corrected using the interval
from −1 to 0 s; 1 to 89 s of each epoch was selected and a conven-
tional recursive least squares algorithm was used to correct for blink
artefacts.27 Then, the EEG data were segmented into 1 s epochs, and
epochs containing amplitude changes exceeding ±100 mV were
rejected. For the EEG microstate analysis, data were downsampled
at 250 Hz, bandpass filtered between 2 and 20 Hz and re-referenced
to the average reference.

EEG microstate analysis

First, we calculated the global field power (GFP), which represents
the standard deviation of the potentials of all electrodes in the topo-
graphical map at each time point, by using the following equation:

GFP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 (μi � �μ)2

N

r

whereN is the number of electrodes, μi is the potential of electrode i at
a given time point and �μ is the mean of the potentials of all electrodes.
In the GFP time series, troughs represent a transition from one type of
topographical map to another.14 The topographical maps at the GFP
peaks had the highest signal-to-noise ratio and were selected as the
initial prototype maps (Supplementary Fig. 2(a)).28

Second, at the individual level, initial prototype maps were sub-
mitted to k-means clustering, with k ranging from 2 to 8. The
Krzanowski–Lai (KL) criterion was used to determine the optimal
number of microstate classes for further analysis. The optimal k
was chosen as the k corresponding to the second KL maximum
value.14 Consistent with previous studies, the optimal number of
microstate classes was four in our study. We thus obtained individ-
ual topographical maps for each participant in the two conditions.
For each condition, the individual topographical maps were then

averaged across participants using a permutation algorithm.28 We
thus obtained two sets of topographical maps at the condition
level (Supplementary Fig. 2(b)). After that, the overall topographical
maps were calculated by averaging the condition-level maps.

Third, the overall topographical maps were fit back to the ori-
ginal GFP peaks for each participant. Based on the maximal
spatial correlation between topographies, each GFP peak was iden-
tified as one of four classes (Supplementary Fig. 2(c)). Microstate
parameters (duration, occurrence and contribution) were then cal-
culated for each class. Specifically, duration represents the average
length of time for each class, occurrence represents the total
number of each class in 1 s and contribution represents the percent-
age of the time covered by each class.14

Statistical analyses

Paired t-testing was conducted to compare the differences between
conditions for craving and vividness ratings. Repeated measures
analysis of variance (rm-ANOVA) was performed with the factors
‘condition’ (smoking versus neutral) and ‘microstate class’ (classes
A, B, C and D) for duration, occurrence and contribution. Post
hoc paired t-testing was performed for each class only when the
interaction effect was significant. To prevent type I error caused
by the multiple-comparison problem, the false discovery rate
(FDR) was used to correct significance. Changes in behavioural
(e.g. craving ratings) and EEG data (e.g. microstate parameters)
were measured by absolute changes (smoking minus neutral) only
when significant differences were observed between conditions.
All correlation analyses were measured using Pearson’s correlation
coefficient. The mediation analysis was performed using the

Interview session
Demographic information, DSM-5,

FTND, SCQ, imagery training

Script generation
8 scripts, independent rating scale,

brief additional interview session (partly)

EEG experimental session
Guided imagery cue reactivity task

Baseline

Read-imagery

Quiet-imagery

Craving

Not at all        extremely
0 -------------10

5-15 s

60 s

Pseudorandom
 order

30 s

Press button

Press button
Vividness

Not at all        extremely
0 -------------10

Fig. 1 Experimental procedure in our study.
FTND, Fagerström Test for Nicotine Dependence; SCQ, Scene Construction Questionnaire; EEG, electroencephalogram. During the read-imagery
period, participants were asked to imagine themselves in the situation being described; during the quiet-imagery period, participants continued
to imagine until they were told to stop.

Table 1 Demographic and clinical characteristics of the study
population (n = 40)

Mean s.d.

Age, years 25.9 5.8
Years of education 15.3 2.5
Cigarettes smoked per day, n 15.4 5.9
Years of smoking 7.5 5.6
FTND score 4.3 1.6
DSM-5 nicotine dependence symptom count 5.0 1.0

FTND, Fagerström Test for Nicotine Dependence.
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bootstrapped method in the PROCESS macro for SPSS for
Windows.29 Two-tailed P-values <0.05 were considered significant.

Results

Demographic and clinical characteristics

Table 1 gives demographic and clinical characteristics for the
participants.

Craving and vividness ratings between conditions

We found that the craving ratings were significantly higher in the
smoking condition than in the neutral condition (t =−23.673, P <
0.001; Fig. 2(a)). However, no significant differences in vividness
ratings were found between conditions (t =−0.803, P = 0.427;
Fig. 2(b)). In addition, we found a significant positive correlation
between craving ratings and vividness ratings in the smoking con-
dition (r = 0.600, P < 0.001; Fig. 2(c)), whereas the opposite

correlation was found in the neutral condition (r =−0.390, P =
0.013; Fig. 2(c)). These results suggest that the guided imagery cue
reactivity task is effective in inducing cigarette craving.

EEG microstate parameters between conditions

Figure 3 shows the four microstate topographies in the two condi-
tions, which are very similar to the four standard topographies in
previous studies.30 The mean global explained variance (GEV) of
the four classes was 0.824 (s.d. = 0.043) in the neutral condition
and 0.833 (s.d. = 0.044) in the smoking condition. Table 2 shows
the comparison of the microstate parameters between conditions.

For duration, the rm-ANOVA showed a significant main effect
of condition (F = 26.978, P < 0.001), a significant main effect of
microstate class (F = 6.595, P < 0.001) and a significant condition ×
microstate class interaction effect (F = 3.798, P = 0.012). Post-hoc
analysis found that classes B, C and D had longer mean durations
in the smoking condition than in the neutral condition (Fig. 4(a)
and Table 2).

For occurrence, the rm-ANOVA showed a significant main
effect of condition (F = 28.721, P < 0.001), a significant main effect
of microstate class (F = 10.646, P < 0.001) and a significant condi-
tion ×microstate class interaction effect (F = 6.172, P < 0.001).
Post-hoc analysis found that the mean occurrence of classes A, B
and C was lower in the smoking condition than in the neutral
condition (Fig. 4(b) and Table 2).
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Fig. 2 Subjective ratings between conditions.
(a) Craving ratings. (b) Vividness ratings. (c) The correlation between
craving and vividness ratings. ***P < 0.001; N.S., not significant;
error bar, standard error (s.e.).
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Fig. 3 Four microstate topographies (classes A–D) in the neutral condition (top) and smoking condition (bottom).

Table 2 Post-hoc paired t-test results for the microstate parameters
‘duration’, ‘occurrence’ and ‘contribution’ between conditionsa

Smoking
condition

Neutral
condition

t PMean s.d. Mean s.d.

Duration
Class A 68.557 8.299 68.160 7.922 −0.653 0.518
Class B 72.945 10.850 71.019 10.771 −3.106 0.004
Class C 77.508 23.747 75.435 23.868 −2.850 0.007
Class D 86.497 26.291 81.479 23.106 −3.183 0.003

Occurrence
Class A 2.738 0.902 2.973 0.903 6.069 <0.001
Class B 3.208 0.796 3.293 0.783 2.200 0.034
Class C 3.440 0.685 3.562 0.686 3.303 0.002
Class D 3.566 0.579 3.609 0.644 1.408 0.167

Contribution
Class A 0.189 0.070 0.204 0.069 4.354 <0.001
Class B 0.235 0.073 0.233 0.066 −0.409 0.685
Class C 0.267 0.093 0.268 0.091 0.258 0.798
Class D 0.309 0.102 0.295 0.098 −2.495 0.017

a. Significant results after false discovery rate correction are shown in bold.

Gan et al

4
https://doi.org/10.1192/bjo.2022.641 Published online by Cambridge University Press

https://doi.org/10.1192/bjo.2022.641


For contribution, the rm-ANOVA showed a significant condi-
tion ×microstate class interaction effect (F = 5.592, P = 0.001) and a
significant main effect of microstate class (F = 8.960, P < 0.001) but
no significant main effect of condition (F = 0.000, P = 1.000). Post-
hoc analysis found that the mean contribution of class A was lower
and the mean contribution of class D was higher in the smoking con-
dition than in the neutral condition (Fig. 4(c) and Table 2).

Correlation between EEG microstate parameters and
craving ratings

We examined the relationship between the changes in craving ratings
and the changes in parameters of microstate classes C and D, which
showed significant increases in the smoking condition compared with
the neutral condition. Correlation analysis showed a significant posi-
tive correlation between the increased craving ratings and the
increased duration of class C (r = 0.382, P = 0.015; Fig. 5). No signifi-
cant correlation was found between the increased craving ratings and
the increased duration and contribution of class D (Supplementary
Table 2).

Correlation between EEG microstate parameters and
nicotine addiction characteristics

Correlation analysis was performed to explore whether there
existed correlation between the nicotine addiction characteristics
(FTND, DSM-5, number of cigarettes smoked per day and years
of smoking) and the changes in microstate parameters which
showed significant differences between conditions. We only
found that years of smoking was positively correlated with the
increased duration of class D (r = 0.508, P < 0.001; Fig. 6(a))
and the increased contribution of class D (r = 0.491, P = 0.001;
Fig. 6(b)). The full results are displayed in Supplementary
Table 3.

Relationship between duration of microstate class C
and craving ratings

As noted above, our results suggested that the increased duration of
microstate class C was significantly correlated with the increased
craving ratings. Given the experimental paradigm similarities
between our study and the study that found class C to be associated
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Fig. 4 Comparison of the microstate parameters between conditions.
(a) Duration. (b) Occurrence. (c) Contribution. ***P < 0.001; **P < 0.01; *P < 0.05; N.S., not significant; error bar, SE.
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with the memory network,15 the finding might suggest the import-
ant role of smoking-related memories in inducing cigarette craving.
Here, mediation analysis was performed to further support this
speculation. A previous study found a significant positive associ-
ation between the duration of class C and posterior alpha
power.31 Importantly, posterior alpha power was thought to be
associated with memory processes.31 We thus assumed that the
association between increased duration of class C and increased
craving ratings might be explained by increased posterior alpha
power. First, we found that there was a significant increase in pos-
terior alpha power in the smoking condition compared with the
neutral condition (t =−3.529, P = 0.001). Second, correlation ana-
lysis showed that there was a significant positive correlation
between increased duration of class C and increased posterior
alpha power (r = 0.475, P = 0.002), supporting the finding from
the previous study.31 Finally, mediation analysis showed that
increased posterior alpha power fully mediated the relationship
between the increased duration of class C and the increased
craving ratings (Fig. 7). For more details about the mediation ana-
lysis, see the Supplementary materials.

Discussion

In this study, we examined the effects of exposure to smoking-
related cues (conditions) on EEG microstates in smokers. First,
we found that the smoking condition elicited a significant increase
in microstate classes B (duration), C (duration) andD (duration and
contribution) compared with the neutral condition. Second, we
found a significant positive correlation between increased duration
of class C and increased craving ratings, which was fully mediated
by increased posterior alpha power. Finally, we also found that
the increased duration and contribution of class D were both posi-
tively correlated with years of smoking.

Our study revealed a significant increase in one or more para-
meters of microstate classes B, C and D in the smoking condition,
supporting our first hypothesis. Previous fMRI studies have
shown that drug-related cues could elicit significant activation of
the visual network, salience network, memory network and dorsal
attention network in substance-dependent individuals.23–26 This is
consistent with findings from previous EEG microstate studies,13–15

suggesting an association between class B and the visual network,
class C and both the salience network and the memory network,
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and class D and dorsal attention network. In addition, we found a sig-
nificant decrease in one ormore parameters of class A in the smoking
condition. Since class A has been shown to be associated with the
auditory network,13–15 it is prudent to speculate that imagining the
neutral situation is more dependent on the guidance of the audio-
scripts than imagining the smoking situation. Similar to our results,
a previous study reported abnormal EEG microstates induced by
methamphetamine-related cues in methamphetamine-dependent
individuals.20 Taken together, our results suggest that the abnormal
brain network activity in smokers on exposure to smoking-related
cues would be captured by EEG microstates.

We found that abnormal changes in the duration of microstate
class C were associated with changes in cigarette craving, that is, the
participants who had a greater increase in the duration of class C
also had a greater increase in craving rating in the smoking condi-
tion compared with the neutral condition. This result supports our
second hypothesis. Given the experimental paradigm similarities
between the present study and the study that found class C to be
associated with the memory network,15 our result might, to some
extent, suggest the important role of smoking-related memories in
inducing cigarette craving on exposure to smoking-related cues.
This speculation is supported by the result showing the mediating
effect of posterior alpha power. Posterior alpha power has been
shown to be associated with memory processes.31 Previous studies
also revealed the relationship between cigarette craving and cue-eli-
cited activation of the memory network.32,33 Our result suggests that
the duration of class C is a novel biomarker for cue-induced craving
that could be targeted for the treatment and assessment of nicotine
addiction interventions.

We also found that abnormal increases in the duration and con-
tribution of microstate class D were both associated with years of
smoking. Owing to the relationship between class D and the
dorsal attention network,13–15 our result might indicate that
smokers who have amore years of smoking would recruit more cog-
nitive resources on exposure to smoking-related cues. Similar to our
findings, a previous study reported that nicotine dependence sever-
ity was associated with cue-elicited activation of the attention
network.33 Our result suggests that the duration and contribution
of class D could reflect the relationship between years of smoking
and cue-elicited activation of the dorsal attention network.

In recent years, EEG-based neurofeedback has increasingly been
used in the treatment of addiction.34,35 Compared with traditional
neurofeedback, microstate neurofeedback might have unique
advantages. The relationship between microstates and brain net-
works makes it easier to modulate the target brain network in real
time through EEG-based neurofeedback. In fact, there has been pre-
liminary research demonstrating the feasibility of microstate neuro-
feedback: participants successfully modulated the contribution of
microstate class D, which was found to be shorter in schizophre-
nia.36 Inspired by a novel neurofeedback training approach devel-
oped by Bu et al that modulated abnormal EEG features (e.g.
P300) induced by smoking-related cues,34 we suggest that abnormal
EEG microstates in smoking cue reactivity could also be targeted in
neurofeedback modulation . In addition, the duration of class C
might be a valid physiological indicator for assessing the efficacy
of nicotine addiction interventions.

Limitations and future research

Several limitations of this study must be noted. First, only male
smokers were recruited, and we limited the age and years of educa-
tion in the inclusion criteria, so whether our findings could be gen-
eralised to the entire smoking population remains unclear. In future,
we will consider exploring abnormal EEG microstates induced by
smoking-related cues in different gender, age and educational

level groups. Second, our study lacked a healthy control group, pri-
marily because the smoking-related imagery scripts were derived
from participants’ personalised smoking-related experiences,
which are lacking in healthy controls.6 Therefore, we can only ten-
tatively conclude that our findings might be specific to nicotine
addiction; more studies and evidence are needed to support our
findings. Although numerous studies have suggested that cue
reactivity is unique to substance-dependent individuals,37,38 we rec-
ommend that recreational smokers should be recruited as healthy
controls in future studies, thus further exploring whether non-
dependent individuals would show abnormal EEG microstates on
exposure to smoking-related cues.
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