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ISOMORPHIC GROUP RINGS 

BY 

M. M. PARMENTER* 

Let R and S be rings with 1, G a group and RG and SG the corresponding 
group rings. In this paper, we study the problem of when RGc^SG implies 
Rc^S. This problem was previously investigated in [8] for the case where G is 
assumed to be infinite cyclic. The corresponding question for polynomial rings, 
namely, when does JR[;*;]cfS'[#] imply Rc^S, has been considered by several 
authors, particularly Coleman and Enochs [3]. Recently Hochster [5] found two 
nonisomorphic integral domains M and N with M[x]o^N[x], However, if (x) 
is an infinite cyclic group, it is still not known whether R(x)c^S(x) implies Rc^S 
even when R and S are integral domains. 

In the first two sections, we develop some necessary background material which 
may be of interest on its own. In section one, we determine the units of RG where 
R is commutative and G is right ordered. Section two studies the J?-automorphisms 
of the group ring R(x), where (x) is an infinite cyclic group. We determine necessary 
and sufficient conditions that x-^ a^ induces an ./^-automorphism of R{x). 
The corresponding results for polynomial rings were obtained by Gilmer [4] when 
R is commutative and by Coleman and Enochs [3] in general. 

Section three takes up the problem R(X)CZLS(X) where (x) is infinite cyclic. We 
show that if R and S have no idempotent 5^0, 1, then R(x)~S(x) implies R and 
S are subisomorphic, that is, R can be embedded in S and S can be embedded in 
R. We then extend this result to commutative Noetherian rings. This is interesting 
because no corresponding result is known for polynomial rings, even over integral 
domains. 

In section four, we prove several results about RGc^SG for G more general 
than infinite cyclic. For example, we show that if R and S are commutative regular 
rings and G belongs to a class C which contains all ordered groups, and if o:RG-+ 
SG is a homomorphism, then a(R)^S. We also show that similar results hold for 
commutative local rings. Corresponding results for polynomial rings have been 
obtained by Jacobson [6]. 

This work was completed during the summer of 1973 at the University of Mani­
toba. The author would like to thank the Department of Mathematics at the 
University of Manitoba for its generous support. 
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1. Units. In this section, we find the units of the group ring RG where R is 
a commutative ring with 1 and G is right-ordered. Let U(RG) denote the units of 
RG. 

PROPOSITION 1.1. Let R be a commutative ring with 1 and let G be right-ordered. 
Then the following are equivalent: 

(i) U(RG) = Q 0Lgg\ there exist fig in R with 2 ^ ^ _ i = l and oLg(3h=0 whenever 

(ii) R has no non-zero nilpotent elements. 

Proof. Assume (i) holds and let n e R be nilpotent. Choose g e G, gj£l. Then 
l+ng is a unit in RG and, if n^O, l+ng does not satisfy condition (i). Hence 
n—0 and (ii) holds. 

Conversely, assume (ii) holds and l e tyz~ \ where j = 2 L i <*igi and z = 2 L i /?A-
We will show that a ^ - = 0 whenever gji^l. The other statement follows immedi­
ately. 

Suppose that gi<* • '<gr and /*!<•• #</2s. For any fixed j , we know that 
gihj<g2hj<* ' "<£A- Choose 71? l< ; ' i<^ , with gv/z^ maximal in {gjij}s. Notice 
that from the choice of y*! the term grA, does not occur again in the set of products 
gthk. We want to show a,j8~0 whenever g A > l . If grh^<\ there is nothing to 
show. If gyhj > 1 we have ocr/?,- = 0 from the above. Hence we conclude that 
0 ^ = 0 . Assume that we knowthat ocz/3m=0 whenevergihm>gihk i=gihkz = ' • • = 
^ /z7c > 1 (the gf hk being a complete list of products equal to g{ hk ). We see that 
ai1A1+* ' ' + ai Pk ~® anc* we may assume that h<i2<- • • < / . Multiplying on the 
right by a v we obtain a<i/îfcialj>+-•- + ^ ^ ^ = 0 . For *<p, giphkt>gihkt. 
Hence, by induction, a?- bk =0 . We conclude that GCZ- &# â  = 0 , hence (at- Z?fc )

2=0 
and â  éfc = 0 using (ii). Working back, we obtain a,- bk = 0 for 1 <t<p. Therefore, 
we have shown that a ^ — 0 whenever gjt^l. 

An identical argument to that given above, starting with g^hj minimal in 
{gihj}j shows that a ^ = 0 whenever gji^l. This completes the proof. 

We now prove the general case. 

THEOREM 1.2. Let R be a commutative ring with 1 and let G be right-ordered. 
Then 2 &9g is a unit in RG if and only if there exist [$g in R such that 2 ocff/5

>
£r_1=1 

and 0Lg@h is nilpotent whenever gh^\. 

Proof. First assume 2 &gg *s a u n ^ m RG. Let /J(JR) denote the prime radical 
of R. Passing from RG to (R^(R))G, ][ oÇg is a unit in (R/f}(R))G. Proposition 1.1 
then says that there exist fig in (R/I3(R))G such that 2 ocffjffa_1=T and oigPh=0 
whenever gh^\. Hence 2 0 C < A - i = l + / 7 where neR(R) and oc^ is nilpotent 
whenever gh^\. If «fc=0, we see that 2 a A - i ( 1 " " w + w 2 ' ' * ±nk~1)=l and 
oig[ih(l—n+n2 • • • zfcn^"1) is nilpotent whenever gh^l. Hence 2 &9g satisfies the 
required conditions. 
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Conversely, if 2 &gg satisfies the conditions, then ]£ âgg is a unit in (RJI3(R))G. 
Since (3(R)G is nil, we conclude that 2 *gg is a unit in RG. 

We state two special cases of this theorem which will be required later. 

COROLLARY 1.3. Let R be commutative with no idempotents T^O, 1. Let G be 
right-ordered. Then 2 &9g is a unit in RG if and only if ah is a unit for some h and 
all other ags are nilpotent. 

Proof. By Theorem 1.2, there exist $g in R such that 2 a <A- i= l a n d a A is 
nilpotent whenever ghj^l. Hence oLg^g_1oLg=oig+n where n is nilpotent. Therefore 
a i A - i is a n idempotent modulo /?(!£), and we conclude that a ^ ^ G j8(i?) or 
&g$g-\ — 1 e |S(X) since idempotents can be lifted modulo /3(iÊ). 

If a ^ _ i e /?(#), then â  G /3(.#) by the above. If o c ^ ^ - l G /3(JR) and k^g, 
then vikfig-! G jff(i?) implies that ocfc G |8(i?). Hence <x.h is a unit for some h and if 
gy^h, 0Lg must be nilpotent. 

COROLLARY 1.4 [7]. Lef i? Z>e commutative with no nilpotent elements 5e0 #«£/ 
«0 idempotents 7*0, 1. 77ze« //ze ow/j; units in RG are of the form ug where u is a 
unit of R and g is in G. 

2. Automorphisms. We will present necessary and sufficient conditions for a 
map x->2 aix* t o induce an iÊ-automorphism of R(x), where (x) is an infinite 
cyclic group. It is interesting to compare this result with the corresponding theorem 
for polynomial rings obtained by Gilmer [4] for R commutative and by Coleman 
and Enochs [3] in general. 

Let Z(R) denote the centre of R. 

THEOREM 2.1. Let Rbe a ring with 1. Then Jt->2 atxi induces an R-automorphism 
of R{x) if and only if the following two conditions hold: 

(i) 2 aixi ^ a unti *n Z(R)(x). 
(ii) Ifi 5^1, — 1 , then at is nilpotent. 

NOTE. Using Theorem 1.2, (i) can be replaced by the condition that there 
exists 2 biX1 in Z{R)(x) with ]T aib_i=l and such that afij is nilpotent whenever 
i+yVO. 

Proof of Theorem. First assume x-^^a^1 induces an JR-automorphism of 
R(x). Then since x is a unit in Z(R(x))=Z(R)(x), 2 aixi must be a unit there also. 
It remains to prove (ii). 

Let ( 2 ^ ) _ 1 = 2 biX\ We know from Theorem 1.2 that 2 aA- ;= l and that 
afij is nilpotent whenever i+j^O. 

Note that ai9 bt all lie in Z(R). If P is a prime ideal of Z(R), then passing to 
(Z(R)IP)(x) we get that 2 M ' is a unit in {Z{R)jP){x). Corollary 1.4 says that for 
some y, aj is a unit and, for all i^j, â{=0. Hence we conclude that exactly one 
a t and exactly one bj do not lie in P. In particular, if ij&j9 a^ and b^ are nil-
potent. 

7 
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Since x-^a^ induces an ^automorphism of R(x), there exist cjeZ{R) 
such that x = 2 CJGL, aix1)*. Equating coefficients of x and using the above remarks 
and the fact that Q£ <VcO~i = Œ ^ixi)3\ w e g e t that l=c1a1+c_1b1+n where n is 
nilpotent. Hence a± and Z?i do not lie in any common prime ideal of Z(R). 

Now ^ 0*6-*=1 together with the fact that 0 ^ is nilpotent if i+j^O, implies 
that é1a_161=è1+m where m is nilpotent. We conclude that if P is a prime ideal 
of Z(R) and a_± e P, then ^ e P also. This, together with the last paragraph, leads 
to the conclusion that ax and a_x lie in no common prime ideals of Z(R). However, 
we remarked earlier that exactly one at does not lie in any given prime ideal. Hence, 
if i 7̂  1, — 1, then at must be nilpotent. 

Conversely, assume that 2 a%xi satisfies the two conditions. We will first prove 
that x ->2 aixi induces a Z(jR)-algebra automorphism of Z(R)(x). To do this, we 
must show that the induced map is 1 — 1 and onto. 

First assume that there exist c5eZ(R) with ^cj(^atx
i)j=0. As before, let 

( I ^ ) " ^ ^ ^ ' If JP is a prime ideal of Z(R), passing to {Z{R)jP)G we get 
2 Ç/Œ aiX*y=0. We know by condition (ii) that all âi except for ax or a_x must 
be zero, and condition (i) and Corollary 1.4 say that either a± or a__x must also 
equal zero. Say â^O. Then b^^O, âjb_1=\ and all other at and bt equal zero. 
Hence, for eachy>0, c,ai=0 and hence q = 0 since âx is a unit in Z(R)/P by 
above. For eachy<0, c^~i=0 and Cj—0. cQ=0 is obtained directly. Therefore, 
each ci is nilpotent in Z(R). 

Let T b e the ideal of Z(R) generated by {c0) U {ai\ai is nilpotent} U {bf.bi is 
nilpotent} U {a^u^j} U {bfi^i^j}. Then J is a nilpotent ideal of Z(i?). 

Say that each ci is in Tk but that some ct does not belong to Tk+1. Then 
mod r^+1(x), we have 2 ^ Œ <M:*y=0, i.e. 

1 - s 

since all other products will equal zero in (Z(R))ITk+1. Equating coefficients of 
x\j>0, we get 

cjâ
3
1+c_jb

3
1 = 0. 

Hence cia(5_1+c_i5{5_1==0. But c _ A è ~ i i s i n ^ + 1 - Hence c,a{5_1=0. 
Now since 2 ^ - i = l anc* Cja—0 if f ^ l , — 1 , we conclude that 0=cja1b_1 = 

^ i ~ (^i&-i)=^i"" ( 1 ~ " ^ - Â ) = ^ i ~ since a ^ j is in T. Continuing this argu­
ment, we get c^â1=0. 

Similarly, equating coefficients of x~j fory>0 gives c iâl1+c_J.5i1=0. 
An identical argument to that given above yields qâ_ 1=0. Hence we have 

tya?i=0 and c ia_1=0, and therefore c i=c /(2û i5_ t-)==0. Hence C3-G rfc+i. In this 
way, we conclude that all c/s are in arbitrarily large powers of T, and hence equal 
zero. 

Therefore the Z(i?)-homomorphism induced by x-^£ a^ is 1 — 1. To show that 
it is onto, we must find c$ eZ(R) such that x = 2 cîŒ aixiY' First notice that if 
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( 2 a z * 0 ~ 1 = 2 ^ x * > t n e n b_1(^aix
i)+a_1(^bix

i)=x+n1 where nx is nilpotent. 
Say « i = 2 dix* anc* tet T be the ideal of Z{R) generated by the d^ Then T is nil-
potent. 

Now x+n1—^di(x+niy=x+n2 where n2eT2(x). Continuing in this way, 
and using the fact that T is nilpotent, we get x as a linear combination of powers 
of 2 fyx*. 

Thus x->2 #*•** induces a Z(i?)-algebra automorphism of Z(R)(x). It is easy 
to see that we can lift such an automorphism to R(x). Define a:R(x)-+R(x) by 
(x(x)=2 fyx* and cr(r)=r. Clearly a is onto and invertible, hence an automorphism 
ofR(x). 

3. Infinite cyclic groups. We now proceed to the study of isomorphic group 
rings. In this section, we will consider the case where the group (x) is infinite 
cyclic. All rings are assumed to have 1. 

Before beginning we need a lemma. 

LEMMA 3.1. Any central idempotent ofR{x) lies in R. 

Proof, Since central idempotents of a group ring have finite support group [2], 
the result is immediate. 

Recall that two rings R and S are subisomorphic if R can be embedded in S 
and S can be embedded in R. 

THEOREM 3.2. Let R9 S have no idempotents 5*0, 1. Then R(x)~S(x) implies 
R and S are subisomorphic. 

Proof. Let 0:R(x)-+S(x) be an isomorphism. We may set R{x)=*T{u) where 
T=zQ-\S) and u^O-^x). Since M is a unit in Z(R(x))=Z(R)(x)9 Corollary 1.3 
says that u=vxr+]? a{x* where v is a unit in Z(R) and a{ is nilpotent in Z(R) for 
all i. 

Hence R(x)=T(vxr+2, ap*). 
First consider the case where r=0 . Then we have R(x)—T(v+^ a^). Now x 

is a unit in Z(T)(v+% a^), so we must have 

x = m(v+2 a^Y+2 bj(v+2 «<**)' 
where m is a unit in Z(T)^Z(R)(x) and bj is nilpotent in Z{T) for a l l / Here we are 
using the fact that Z(T) has no idempotents 5*0, 1, which is true using Lemma 3.1 
since Z(T)^Z(R(x)). We shorten this by writing x=mvl+,£cix

i where m is a 
unit in Z(R)(x) and ct is nilpotent and central for all /. 

Since m is a unit, we must have 

m = w x s + 2 dtx* 

for some w a unit in Z(R) and dt nilpotent in Z(R). Hence 
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Since c* and dt are nilpotent, we conclude that ,y=l. Therefore we have m — wx+ 
2 diX* is a unit in Z(T). 

Using Theorem 2.1, we obtain T(v+^aix
i) = T((wx+^dix

i)(v+y^aix
i))= 

T{wvx+^ e^1) with ei nilpotent in Z(R). 
Also R{x)—R{wvx) since w, t; are units in Z(R) 

=R(wvx+^eiw~iv~i(wxv)i) again using Theorem 2.1. Hence we 
have 

Riwvx+^e^) = T(wwc+2 *<**>. 

Recall that the augmentation ideal AjR(G) of a group ring i?G is the ideal gene­
rated by {g— 1 :g £ G} and (RGl&R(G))~R. In our case, the augmentation ideal 
is the ideal generated by wvx+^ e^ — l, and factoring this out from both sides 
yields Rc^T. Since T^Q-^S), we have Rc^S. 

Next we assume that r^O, i.e. 
R(x) = T{vxrjt^aix

i)i r^O. Now i?(x> contains R(vxr+^ a^) as a subring, 
so we have R(vxr+^aix

i)^T(vxr+^aix
i). To see that R can be embedded 

in T, we follow the diagram R{vxr+J, açè) -** T{vxr+J, a^) ->p ( r (yx r+ 
2 aix

i)\ï)'^iT where / is the augmentation ideal of r ( y x r + 2 0***). Clearly, the 
augmentation ideal of jR ( i ; x r +2^^ ) is contained in Kerp o i. Conversely, 
assume s is in R n Ker /? 0 /. Then we have 

s = ( i^+2^- l ) (g(*) ) 
for some g(x) G i£(x). 

Let Tbe the ideal of R generated by {aj. Since the â  are in Z(R), Tis nilpotent. 
Passing to (RlT)(x)9 we get (vxr— l)(g(x))=s which implies that s=0 and g(x)=0 
since £ is a unit in (R/T) and r^O. Hence s E T and g(x) G T(X). 

Passing to (R/T2){x), we get (vxr— l)(g(x))=s since a,g(x) G T2(X) for all /, 
and this again implies s=0 and g(x)=0. Continuing we get that s is in arbitrarily 
large powers of T and hence s=0. 

Therefore Ker/> 0 /is the augmentation ideal of R(vxr+2 #***')> an<^ we conclude 
that/? o i induces an embedding of R into Tand hence into S. Arguing in the other 
direction produces an embedding of S into R. Hence R and S are subisomorphic. 

Of course, the above proof requires R and S to have no idempotent 7-0, 1. 
However, we have 

PROPOSITION 3.3. Let R and S be finite direct sums of rings with no idempotents 
# 0 , 1. Then R(x)c^S(x) implies R and S are subisomorphic. 

Proof. Let R=R1®R2®
m • '®Rm where each R{ has no idempotent except 

zero and the identity. Say 1 = ^ + - • - + *fm. The fi are orthogonal, central idem­
potents of R. They are also primitive because the only idempotents of R are of 
the form 2 4 f° r certain j . 

Say o:R(x)-+S(x) is an isomorphism. Then R(x)c^R1(x)®' • -®Rm(x) and 
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<x(*Q must be a primitive, orthogonal central idempotent of S(x). If 5=5'1©' • •© 
Sn9 then we conclude that a(Ri(x))=Sj(x) for s o m e / By Theorem 3.2, R{ and 
Sj are subisomorphic. Hence R and 5 are subisomorphic. 

Since commutative Noetherian rings can be written as a finite direct sum of 
rings with no idempotents =^0, 1, we have: 

COROLLARY 3.4. Let R and S be commutative Noetherian rings. Then R(x)c^S(x) 
implies R and S are subisomorphic. 

Note that in [8], certain classes of rings were found for which R(x)c^S(x) 
implied R and S are isomorphic. These included Artinian rings. 

4. Regular and local rings. We now consider the case where RGc^SG with G 
more general than an infinite cyclic group. In particular, the class of groups we 
are interested in is the class C defined as follows: 

G belongs to C if and only if whenever F is a field, then FG has no zero-divisors 
and the only units of FG are of the form ug where u e F and g GG. 

This class is known to contain many torsion free groups including ordered 
groups (Corollary 1.4) and all groups with a finite series G=G0^G1^- • *^G n = 
(1) with Gi+1 <\ Gi and GJGi+1 torsion-free abelian for all / [1]. It is an open ques­
tion as to whether or not all torsion-free groups are in C. 

Recall that a ring R is (von Neumann) regular if for any am R, there exists b 
in R with aba=a. We prove the following: 

PROPOSITION 4.1. Let R, S be commutative regular rings with 1 and let G be in C. 
Then if a:RG->SG is a homomorphism, a(R)^S. 

Proof. Let feSG satisfy fgf=f and (f-l)h(f-l)=f-l for some g, h e SG. 
We will show t h a t / G S. 

Let P be a prime ideal of S. Passing from SG to (S/P)G, we get fgf=f, so 
f(if—1)=0. Since G is in C, (S/P)G has no zero-divisors, so e i ther /=0 or gf=l. 
Similarly, e i t h e r / - 1 = 0 or (f^ï)(h) = l. 

If/V^O, then/ is a unit in (S/P)G, so f=ug for some u a unit in S/P and g in G, 

since G is in C. /—1=0 would then imply that g=l. Otherwise,/— 1 is a unit, 

which means/— \—vh for some v in S/P and heG. Hence f=l+vh=ug so 

g=h=\. 
Therefore, i f / ^ 0 , then/=w for some unit in S/P. We conclude that i f / = 

2 &gg and g 5^1, then ag belongs to every prime ideal of S and hence a g =0 since 
S is regular. Therefore / i s in S. 

Now if r is in R, then a(r) satisfies the conditions on/stated at the beginning of 
the proof because R is regular. Hence a(r) is in S and (r(R)^ S as required. 

We notice several corollaries of this proposition. 

COROLLARY 4.2. Let R, S be commutative regular rings with 1, and let G be in 
C. If o:RG-+SG is an isomorphism, then a(R)=S. 
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COROLLARY 4.3. Let R, S be regular rings with 1 and let G be torsion-free abelian. 
Ifa:RG->SG is an isomorphism, then a{Z{K))—Z{S). 

Proof, a restricts to an isomorphism from Z(RG) to Z(SG). But, by the assump­
tion on G, Z(RG)=Z(R)G and Z(SG)=Z{S)G. 

Hence o:Z(R)G-+Z(S)G. 
Also Z(R) and Z{S) are regular [6]. Hence Corollary 4.2 gives the result. 
We now turn our attention to local rings. Recall that a ring R with 1 is called 

local if the non-units of JR form an ideal. 

PROPOSITION 4.4. Let R, S be commutative local rings with no non-zero nilpotent 
elements. Let G be ordered. Ifc:RG->SG is a homomorphism, then a(R)^S. 

Proof. Since R is local, for all r in R either r or 1 — r is a unit. Hence it is enough 
to prove that if r is a unit in R, then a(r) belongs to S. 

Since R and S are local, they contain no idempotents 7*0, 1. Since they also 
have no nilpotent elements, Corollary 1.4 says that if r is a unit of R9 then o(r)=ug 
for some unit u of S and some g in G. Note that if g 7*1, then g^g'1 since G is 
ordered. 

Now o*(r+r~1)=w^+w~1g-~1 which is not a unit of SG unless g=l by Corollary 
1.4. Hence r+r'1 is not a unit of R. Since R is local, 1 —(r+r - 1) is a unit of R. 
But a (1 — r—r_1)=1 —ug—u^g*1 is not a unit of SG unless g= 1. Hence g = 1 and 
a(R)^S as required. 

If we assume further that G is abelian, we can drop the condition that R and S 
have no nilpotent elements and still conclude that RGc^SG implies R~S, as is 
proved in the following: 

PROPOSITION 4.5. Let R, S be commutative local rings. Let G be finitely generated 
torsion free abelian. If a\RG->SG is an isomorphism, then Rc^S. 

Proof. Assume G=(Xx)x • • • x(xk). It is easy to check that P(RG)=(}(R)G 
and j3(SG)=f}(S)G, where p(R) is the prime radical of R. Hence a induces an 
isomorphism d:(RlP(R))G-+(Slp(S))G. Proposition 4.4 then says that d(Rf 
P(R))=SI(}(S). 

Hence if r is in jR, then o(f)=s+n where s is in S and n is nilpotent in SG. 
Let M be the subring of SG generated by S and {a{xfx)}. We will show that 

M=SG. 
Let t be in SG and say t=0(w), weRG, where w=2 r*£t- Then f=0(w)= 

2 Oifù^igù—lL (si+ni)0(gi) where ^ is in *S and nt is nilpotent as before 

= m+n where m is in M and « is nilpotent in SG. 

Moreover, we can assume that the coefficient of the identity in n is 0 since S^M. 
In particular, there exist elements nx(xl9. . . , xk),... nk(xl9... , xk) of fi(SG} 
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and ml9.. . , mk in M such that 

*i = m^ + n^x^ . . .9xk) 

x2 = m2+n2(xl9 ...9xk) 

xk — WAj + W f t(x l5 . . . , Xk). 

Continually substituting for xl9 . . . , xk and using the fact that nl9 . . . , nk 

have nilpotent coefficients we conclude that xl9 x29... , xk all belong to M. 
Hence M=SG. 

We have just shown that SG is generated as a ring by S and {a(xf*)}. In fact, 
we claim that SG=S(a(x1),.. . , cr(*„)). It remains only to prove that {a(g) :g in G) 
is independent over S. 

Notice that if gi9 g5 are in G, gt^gj9 then <r(g<)=Kfci+2 0 ^ and a{gj)—vki+ 
2 # A where u and t; are units in S, at and 6,- are nilpotent in S, ki9 hi9 k5 are in 
G and k^ky All of these follow from Corollary 1.3, since commutative local 
rings have no idempotents 5^0, 1, except for the last statement. To see the last 
statement, let r1? r2 be units in R and nl9 n2 nilpotent in RG such that o(r1+n1)=u~1 

and a(r2+n2)=v~1 and assume that k^kj. Hence G(Q-1+n1)gi—(r2+n2)gj)
 ls 

nilpotent and we conclude that (r1+n1)gi—(r2+n2)gj has nilpotent coefficients. 
This clearly implies gi—gy 

Now we will prove that {a(g):g e G} is independent over *S. Assume to the 
contrary that ^s^g^O. Say <y(gi)=uiki+^aiJiiJ with u{ units in S9 auj 

nilpotent in S9 k{ and hiti in G for all /, j and ki^ki if f^y. Then 2 ^ ( w ^ + 
2 ai,3^ij)=^ which implies ^ ^ is nilpotent for all z. Hence st is nilpotent for all 
z. Let Tbe the ideal of S generated by {s{} u {aifj}. Passing to (S/T2)G9 we obtain 
2 ^ f e ^ i + 2 ^i,jhitj)=09 hence 2 ^ ( w ^ ) = 0 so each ^ = 0 and s{ e T2. Continuing 
we get that each ^ is in arbitrarily large powers of T and hence each ^ = 0 since 
T is nilpotent. 

Therefore SG=S(a(x1)9. . . , a(xn)). 
Hence R(xl9. . . , xn)^iS{a(x1) • • • a(xn)). Clearly we can modify this iso­

morphism so that each a(xi) has content (sum of coefficients) equal to one. There­
fore if Ai2(G) and às(G) are the augmentation ideals of RG and SG respectively, 
we can conclude that a(kR(Gf))==ks(G). 

Hence 

RG SG 
R ~ ~ ^ S. 

A^(G) AS(G) 
The corresponding results for polynomial rings have been obtained by Jacobson 

[6], and several of the techniques in the above proof are found there. 
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