(C) Canadian Mathematical Society 2011

Poisson Brackets with Prescribed Casimirs

Dedicated to Giuseppe Marmo, on the occasion of his 65-th birthday.

Pantelis A. Damianou and Fani Petalidou

Abstract

We consider the problem of constructing Poisson brackets on smooth manifolds M with prescribed Casimir functions. If M is of even dimension, we achieve our construction by considering a suitable almost symplectic structure on M, while, in the case where M is of odd dimension, our objective is achieved using a convenient almost cosymplectic structure. Several examples and applications are presented.

1 Introduction

A Poisson bracket on the space $C^{\infty}(M)$ of smooth functions on a smooth manifold M is a skew-symmetric, bilinear map,

$$
\{\cdot, \cdot\}: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)
$$

that verifies the Jacobi identity and is a biderivation. Thus, $\left(C^{\infty}(M),\{\cdot, \cdot\}\right)$ has the structure of a Lie algebra. This notion has been introduced in the framework of classical mechanics by S. D. Poisson, who discovered the natural symplectic bracket on $\mathbb{R}^{2 n}$ [27], a notion that was later generalized to manifolds of arbitrary dimension by S . Lie [23]. The increased interest in this subject during the 19th century was originally motivated by the important role of Poisson structures in Hamiltonian dynamics. It has been revived in the last 35 years, after the publication of the fundamental works of A. Lichnérowicz [21], A. Kirillov [14], and A. Weinstein [31], and Poisson geometry has emerged as a major branch of modern differential geometry. The pair $(M,\{\cdot, \cdot\})$ is called a Poisson manifold and is foliated by symplectic immersed submanifolds, the symplectic leaves. The functions in the center of $\left(C^{\infty}(M),\{\cdot, \cdot\}\right)$, i.e., the elements $f \in C^{\infty}(M)$ such that $\{f, \cdot\}=0$, are called the Casimirs of the Poisson bracket $\{\cdot, \cdot\}$, and they define the space of first integrals of the symplectic leaves. For this reason, Casimir invariants have acquired a dominant role in the study of integrable systems defined on a manifold M and in the theory of the local structure of Poisson manifolds [31].

To introduce the problem we remark that, for an arbitrary smooth function f on \mathbb{R}^{3}, the bracket

$$
\begin{equation*}
\{x, y\}=\frac{\partial f}{\partial z}, \quad\{x, z\}=-\frac{\partial f}{\partial y}, \quad \text { and } \quad\{y, z\}=\frac{\partial f}{\partial x} \tag{1.1}
\end{equation*}
$$

Received by the editors March 13, 2011; revised September 4, 2011.
Published electronically November 15, 2011.
AMS subject classification: 53D17, 53D15.
Keywords: Poisson bracket, Casimir function, almost symplectic structure, almost cosymplectic structure.
is Poisson and admits f as Casimir. Clearly, if $\Omega=d x \wedge d y \wedge d z$ is the standard volume element on \mathbb{R}^{3}, then the bracket (1.1) can be written as

$$
\{x, y\} \Omega=d x \wedge d y \wedge d f, \quad\{x, z\} \Omega=d x \wedge d z \wedge d f, \quad\{y, z\} \Omega=d y \wedge d z \wedge d f
$$

More generally, let $f_{1}, f_{2}, \ldots, f_{l}$ be functionally independent smooth functions on \mathbb{R}^{l+2} and let Ω be a non-vanishing $(l+2)$-smooth form on \mathbb{R}^{l+2}. Then the formula

$$
\begin{equation*}
\{g, h\} \Omega=f d g \wedge d h \wedge d f_{1} \wedge \cdots \wedge d f_{l}, \quad g, h \in C^{\infty}\left(\mathbb{R}^{l+2}\right) \tag{1.2}
\end{equation*}
$$

defines a Poisson bracket on \mathbb{R}^{l+2} with f_{1}, \ldots, f_{l} as Casimir invariants. In addition, the symplectic leaves of (1.2) have dimension at most 2. The Jacobian Poisson structure (1.2) (the bracket $\{g, h\}$ is equal, up to a coefficient function f, with the usual Jacobian determinant of $\left.\left(g, h, f_{1}, \ldots, f_{l}\right)\right)$ appeared in [4] in 1989 where it was attributed to H. Flaschka and T. Ratiu. The first explicit proof of this result was given in [12], while the first application of formula (1.2) was presented in [4, 5] in conjunction with transverse Poisson structures to subregular nilpotent orbits of $\mathfrak{g l}(n, \mathbb{C})$, $n \leq 7$. It was shown that these transverse Poisson structures, which are usually computed using Dirac's constraint formula, can be calculated much more easily using the Jacobian Poisson structure (1.2). This fact was extended to any semisimple Lie algebra in [8]. In the same paper it was also proved that, after a suitable change of coordinates, the above referred transverse Poisson structures is reduced to a 3-dimensional structure of type (1.1). We believe that for the other type of orbits, e.g., the minimal orbit and all the other intermediate orbits, one can compute the transverse Poisson structures using the results of this paper. However, this study will be the subject of a future work. Another interesting application of formula (1.2) appears in [26], where the polynomial Poisson algebras with some regularity conditions are studied. We also mention the study of a family of rank 2 Poisson structures in [1].

The purpose of this paper is to extend the formula of type (1.2) in the more general case of higher rank Poisson brackets. The problem can be formulated as follows:

Given $(m-2 k)$ smooth functions $f_{1}, \ldots, f_{m-2 k}$ on an m-dimensional smooth manifold M, functionally independent almost everywhere, describe the Poisson brackets $\{\cdot, \cdot\}$ on $C^{\infty}(M)$ of rank at most $2 k$ that have $f_{1}, \ldots, f_{m-2 k}$ as Casimirs.

First, we investigate this problem in the case where $m=2 n$, i.e., M is of even dimension. We assume that M is endowed with a suitable almost symplectic structure ω_{0}, and we prove that (Theorem 3.3) a Poisson bracket $\{\cdot, \cdot\}$ on $C^{\infty}(M)$ with the required properties is defined, for any $h_{1}, h_{2} \in C^{\infty}(M)$, by the formula

$$
\left\{h_{1}, h_{2}\right\} \Omega=-\frac{1}{f} d h_{1} \wedge d h_{2} \wedge\left(\sigma+\frac{g}{k-1} \omega_{0}\right) \wedge \frac{\omega_{0}^{k-2}}{(k-2)!} \wedge d f_{1} \wedge \cdots \wedge d f_{2 n-2 k}
$$

where $\Omega=\omega_{0}^{n} / n$! is a volume element on M, f satisfies $f^{2}=\operatorname{det}\left(\left\{f_{i}, f_{j}\right\}_{0}\right) \neq 0$ ($\{\cdot, \cdot\}_{0}$ being the bracket defined by ω_{0} on $C^{\infty}(M)$), σ is a 2-form on M satisfying certain special requirements (see Proposition 2.7), and $g=i_{\Lambda_{0}} \sigma$ We proceed by

[^0]considering the case where M is an odd-dimensional manifold, i.e., $m=2 n+1$, and we establish a similar formula for the Poisson brackets on $C^{\infty}(M)$ with the prescribed properties. For this construction, we assume that M is equipped with a suitable almost cosymplectic structure $\left(\vartheta_{0}, \Theta_{0}\right)$ and with the volume form $\Omega=$ $\vartheta_{0} \wedge \frac{\Theta_{0}^{n}}{n!}$. Then we show that (Theorem 3.7) a Poisson bracket $\{\cdot, \cdot\}$ on $C^{\infty}(M)$ with $f_{1}, \ldots, f_{2 n+1-2 k}$ as Casimir functions is defined, for any $h_{1}, h_{2} \in C^{\infty}(M)$, by the formula
$$
\left\{h_{1}, h_{2}\right\} \Omega=-\frac{1}{f} d h_{1} \wedge d h_{2} \wedge\left(\sigma+\frac{g}{k-1} \Theta_{0}\right) \wedge \frac{\Theta_{0}^{k-2}}{(k-2)!} \wedge d f_{1} \wedge \cdots \wedge d f_{2 n+1-2 k}
$$
where f is given by (3.11), σ is a 2-form on M satisfying certain particular conditions (see, Proposition 3.6), and $g=i_{\Lambda_{0}} \sigma{ }^{2}$.

The proofs of the main results are given in Section 3. Section 2 consists of preliminaries and fixing the notation, while in Section 4 we present several applications of our formulæ on Dirac brackets, on brackets associated with nonholonomic systems, and on Toda and Volterra lattices.

2 Preliminaries

We start by fixing our notation and recalling the most important notions and formulæ needed in this paper. Let M be a real, smooth, m-dimensional manifold, let $T M$ and $T^{*} M$ be its tangent and cotangent bundles resepctively, and $C^{\infty}(M)$ the space of smooth functions on M. For each $p \in \mathbb{Z}$, we denote by $\mathcal{V}^{p}(M)$ and $\Omega^{p}(M)$ the spaces of smooth sections, respectively, of $\bigwedge^{p} T M$ and $\bigwedge^{p} T^{*} M$. By convention, we set $\mathcal{V}^{p}(M)=\Omega^{p}(M)=\{0\}$, for $p<0, \mathcal{V}^{0}(M)=\Omega^{0}(M)=C^{\infty}(M)$, and, taking into account the skew-symmetry, we have $\mathcal{V}^{p}(M)=\Omega^{p}(M)=\{0\}$, for $p>m$. Finally, we set $\mathcal{V}(M)=\bigoplus_{p \in \mathbb{Z}} \mathcal{V}^{p}(M)$ and $\Omega(M)=\bigoplus_{p \in \mathbb{Z}} \Omega^{p}(M)$.

2.1 From Multivector Fields to Differential Forms and Back

There is a natural pairing between the elements of $\Omega(M)$ and $\mathcal{V}(M)$, i.e., a $C^{\infty}(M)$-bilinear map $\langle\cdot, \cdot\rangle: \Omega(M) \times \mathcal{V}(M) \rightarrow C^{\infty}(M),(\eta, P) \mapsto\langle\eta, P\rangle$, defined as follows.

For any $\eta \in \Omega^{q}(M)$ and $P \in \mathcal{V}^{p}(M)$ with $p \neq q,\langle\eta, P\rangle=0$; for any $f, g \in$ $\Omega^{0}(M),\langle f, g\rangle=f g$; while if $\eta=\eta_{1} \wedge \eta_{2} \wedge \cdots \wedge \eta_{p} \in \Omega^{p}(M)$ is a decomposable p-form $\left(\eta_{i} \in \Omega^{1}(M)\right)$ and $P=X_{1} \wedge X_{2} \wedge \cdots \wedge X_{p}$ is a decomposable p-vector field $\left(X_{i} \in \mathcal{V}^{1}(M)\right)$,

$$
\langle\eta, P\rangle=\left\langle\eta_{1} \wedge \eta_{2} \wedge \cdots \wedge \eta_{p}, X_{1} \wedge X_{2} \wedge \cdots \wedge X_{p}\right\rangle=\operatorname{det}\left(\left\langle\eta_{i}, X_{j}\right\rangle\right) .
$$

The above definition is extended to the nondecomposable forms and multivector fields by bilinearity in a unique way. Precisely, for any $\eta \in \Omega^{p}(M)$ and $X_{1}, \ldots, X_{p} \in$ $\mathcal{V}^{1}(M)$,

$$
\left\langle\eta, X_{1} \wedge X_{2} \wedge \cdots \wedge X_{p}\right\rangle=\eta\left(X_{1}, X_{2}, \ldots, X_{p}\right)
$$

[^1]Similarly, for $P \in \mathcal{V}^{p}(M)$ and $\eta_{1}, \eta_{2}, \ldots, \eta_{p} \in \Omega^{1}(M)$,

$$
\left\langle\eta_{1} \wedge \eta_{2} \wedge \cdots \wedge \eta_{p}, P\right\rangle=P\left(\eta_{1}, \eta_{2}, \ldots, \eta_{p}\right)
$$

We adopt the following convention for the interior product $i_{P}: \Omega(M) \rightarrow \Omega(M)$ of differential forms by a p-vector field P, viewed as a $C^{\infty}(M)$-linear endomorphism of $\Omega(M)$ of degree $-p$. If $P=X \in \mathcal{V}^{1}(P)$ and η is a q-form, $i_{X} \eta$ is the element of $\Omega^{q-1}(M)$ defined, for any $X_{1}, \ldots, X_{q-1} \in \mathcal{V}^{1}(M)$, by

$$
\left(i_{X} \eta\right)\left(X_{1}, \ldots, X_{q-1}\right)=\eta\left(X, X_{1}, \ldots, X_{q-1}\right)
$$

If $P=X_{1} \wedge X_{2} \wedge \cdots \wedge X_{p}$ is a decomposable p-vector field, we set

$$
i_{P} \eta=i_{X_{1} \wedge X_{2} \wedge \ldots \wedge X_{p}} \eta=i_{X_{1}} i_{X_{2}} \ldots i_{X_{p}} \eta
$$

More generally, recalling that each $P \in V^{p}(M)$ can be locally written as the sum of decomposable p-vector fields, we define as $i_{P} \eta$, with $\eta \in \Omega^{q}(M)$ and $q \geq p$, to be the unique element of $\Omega^{q-p}(M)$ such that, for any $Q \in \mathcal{V}^{q-p}(M)$,

$$
\begin{equation*}
\left\langle i_{P} \eta, Q\right\rangle=(-1)^{(p-1) p / 2}\langle\eta, P \wedge Q\rangle \tag{2.1}
\end{equation*}
$$

While, if $p>q$, we define $i_{P} \eta=0$.
Similarly, we define the interior product $j_{\eta}: \mathcal{V}(M) \rightarrow \mathcal{V}(M)$ of multivector fields by a q-form η. If $\eta=\alpha \in \Omega^{1}(M)$ and $P \in \mathcal{V}^{p}(M)$, then $j_{\alpha} P$ is the unique $(p-1)$-vector field on M given, for any $\alpha_{1}, \ldots, \alpha_{p-1}$, by

$$
\left(j_{\alpha} P\right)\left(\alpha_{1}, \ldots, \alpha_{p-1}\right)=P\left(\alpha_{1}, \ldots, \alpha_{p-1}, \alpha\right)
$$

Moreover, if $\eta=\alpha_{1} \wedge \alpha_{2} \wedge \cdots \wedge \alpha_{q}$ is a decomposable q-form, we set

$$
j_{\eta} P=j_{\alpha_{1} \wedge \alpha_{2} \wedge \cdots \wedge \alpha_{q}} P=j_{\alpha_{1}} j_{\alpha_{2}} \ldots j_{\alpha_{q}} P
$$

Hence, using the fact that any $\eta \in \Omega^{q}(M)$ can be locally written as the sum of decomposable q-forms, we define j_{η} to be the $C^{\infty}(M)$-linear endomorphism of $\mathcal{V}(M)$ of degree $-q$ that associates, with each $P \in \mathcal{V}^{p}(M)(p \geq q)$, the unique $(p-q)$-vector field $j_{\eta} P$ defined, for any $\zeta \in \Omega^{p-q}(M)$, by

$$
\left\langle\zeta, j_{\eta} P\right\rangle=\langle\zeta \wedge \eta, P\rangle
$$

If the degrees of η and P are equal, i.e., $q=p$, the interior products $j_{\eta} P$ and $i_{P} \eta$ are, up to sign, equal:

$$
j_{\eta} P=(-1)^{(p-1) p / 2} i_{P} \eta=\langle\eta, P\rangle .
$$

The Schouten bracket $[\cdot, \cdot]: \mathcal{V}(M) \times \mathcal{V}(M) \rightarrow \mathcal{V}(M)$, which is a natural extension of the usual Lie bracket of vector fields on the space $\mathcal{V}(M)$ [10, 16], is related to the operator i through the following useful formula due to Koszul [16]. For any $P \in \mathcal{V}^{P}(M)$ and $Q \in \mathcal{V}^{q}(M)$,

$$
\begin{equation*}
i_{[P, Q]}=\left[\left[i_{P}, d\right], i_{Q}\right] \tag{2.2}
\end{equation*}
$$

where the brackets on the right-hand side of (2.2) denote the graded commutator of graded endomorphisms of $\Omega(M)$, i.e., for any two endomorphisms E_{1} and E_{2} of $\Omega(M)$ of degrees e_{1} and e_{2}, respectively, $\left[E_{1}, E_{2}\right]=E_{1} \circ E_{2}-(-1)^{e_{1} e_{2}} E_{2} \circ E_{1}$. Hence, we have

$$
\begin{align*}
i_{[P, Q]}=i_{P} \circ d \circ i_{Q}- & (-1)^{p} d \circ i_{P} \circ i_{Q} \tag{2.3}\\
& -(-1)^{(p-1) q} i_{Q} \circ i_{P} \circ d+(-1)^{(p-1) q-p} i_{Q} \circ d \circ i_{P} .
\end{align*}
$$

Furthermore, given a smooth volume form Ω on M, i.e., a nowhere vanishing element of $\Omega^{m}(M)$, the interior product of p-vector fields on M with $\Omega, p=0,1, \ldots, m$, yields a $C^{\infty}(M)$-linear isomorphism Ψ of $\mathcal{V}(M)$ onto $\Omega(M)$ such that, for each degree $p, 0 \leq p \leq m$,

$$
\begin{aligned}
\Psi: \mathcal{V}^{p}(M) & \rightarrow \Omega^{m-p}(M) \\
P & \mapsto \Psi(P)=\Psi_{P}=(-1)^{(p-1) p / 2} i_{P} \Omega
\end{aligned}
$$

Its inverse map $\Psi^{-1}: \Omega^{m-p}(M) \rightarrow \nu^{p}(M)$ is defined, for any $\eta \in \Omega^{m-p}(M)$, by $\Psi^{-1}(\eta)=j_{\eta} \widetilde{\Omega}$, where $\widetilde{\Omega}$ denotes the dual m-vector field of Ω, i.e., $\langle\Omega, \widetilde{\Omega}\rangle=1$. By composing Ψ with the exterior derivative d on $\Omega(M)$ and Ψ^{-1}, we obtain the operator $D=-\Psi^{-1} \circ d \circ \Psi$ which was introduced by Koszul [16]. One should notice that D does not depend on the volume form chosen. It is of degree -1 and of square 0 and it generates the Schouten bracket. For any $P \in \mathcal{V}^{p}(M)$ and $Q \in \mathcal{V}(M)$,

$$
\begin{equation*}
[P, Q]=(-1)^{p}\left(D(P \wedge Q)-D(P) \wedge Q-(-1)^{p} P \wedge D(Q)\right) \tag{2.4}
\end{equation*}
$$

2.2 Poisson Manifolds

We recall the notion of Poisson manifold and some of its properties whose proofs may be found, for example, in [10, 20, 28].

A Poisson structure on a smooth manifold M is a Lie algebra structure on $C^{\infty}(M)$ whose the bracket $\{\cdot, \cdot\}: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ verifies the Leibniz's rule:

$$
\{f, g h\}=\{f, g\} h+g\{f, h\}, \quad \forall f, g, h \in C^{\infty}(M)
$$

In [21], Lichnérowicz remarks that $\{\cdot, \cdot\}$ gives rise to a contravariant antisymmetric tensor field Λ of order 2 such that $\Lambda(d f, d g)=\{f, g\}$, for $f, g \in C^{\infty}(M)$. Conversely, each such bivector field Λ on M gives rise to a bilinear and antisymmetric bracket $\{\cdot, \cdot\}$ on $C^{\infty}(M),\{f, g\}=\Lambda(d f, d g), f, g \in C^{\infty}(M)$. This bracket satisfies the Jacobi identity, i.e., for any $f, g, h \in C^{\infty}(M),\{f,\{g, h\}\}+\{g,\{h, f\}\}+$ $\{h,\{f, g\}\}=0$ if and only if $[\Lambda, \Lambda]=0$, where $[\cdot, \cdot]$ denotes the Schouten bracket on $\mathcal{V}(M)$. In this case Λ is called a Poisson tensor and the manifold (M, Λ) a Poisson manifold.

As was proved in [12], a consequence of expression (2.3) of the Schouten bracket is that an element $\Lambda \in \mathcal{V}^{2}(M)$ defines a Poisson structure on M if and only if

$$
2 i_{\Lambda} \circ d \Psi_{\Lambda}+d \Psi_{\Lambda \wedge \Lambda}=0 \cdot 3
$$

[^2]Equivalently, using formula (2.4) and the fact that, for any $P \in \mathcal{V}^{p}(M)$,

$$
\Psi^{-1} \circ i_{P}=(-1)^{(p-1) p / 2} P \wedge \Psi^{-1}
$$

the last condition can be written as

$$
\begin{equation*}
2 \Lambda \wedge D(\Lambda)=D(\Lambda \wedge \Lambda) \tag{2.5}
\end{equation*}
$$

Given a bivector field Λ on M, we can associate it with a natural homomorphism $\Lambda^{\#}: \Omega^{1}(M) \rightarrow \mathcal{V}^{1}(M)$, which maps each element α of $\Omega^{1}(M)$ to a unique vector field $\Lambda^{\#}(\alpha)$ such that, for any $\beta \in \Omega^{1}(M)$,

$$
\langle\alpha \wedge \beta, \Lambda\rangle=\left\langle\beta, \Lambda^{\#}(\alpha)\right\rangle=\Lambda(\alpha, \beta)
$$

If $\alpha=d f$, for some $f \in C^{\infty}(M)$, the vector field $\Lambda^{\#}(d f)$ is called the hamiltonian vector field of f with respect to Λ and is denoted by X_{f}. If Λ is a Poisson tensor, the image $\operatorname{Im} \Lambda^{\#}$ of $\Lambda^{\#}$ is a completely integrable distribution on M and defines the symplectic foliation of (M, Λ) whose space of first integrals is the space of Casimir functions of Λ, i.e., the space of the functions $f \in C^{\infty}(M)$ such that $\Lambda^{\#}(d f)=0$.

Moreover, $\Lambda^{\#}$ can be extended to a homomorphism, also denoted by $\Lambda^{\#}$, from $\Omega^{p}(M)$ to $\mathcal{V}^{p}(M), p \in \mathbb{N}$, by setting, for any $f \in C^{\infty}(M), \Lambda^{\#}(f)=f$, and, for any $\zeta \in \Omega^{p}(M)$ and $\alpha_{1}, \ldots, \alpha_{p} \in \Omega^{1}(M)$,

$$
\begin{equation*}
\Lambda^{\#}(\zeta)\left(\alpha_{1}, \ldots, \alpha_{p}\right)=(-1)^{p} \zeta\left(\Lambda^{\#}\left(\alpha_{1}\right), \ldots, \Lambda^{\#}\left(\alpha_{p}\right)\right) \tag{2.6}
\end{equation*}
$$

Thus, $\Lambda^{\#}(\zeta \wedge \eta)=\Lambda^{\#}(\zeta) \wedge \Lambda^{\#}(\eta)$, for all $\eta \in \Omega(M)$. When $\Omega(M)$ is equipped with the Koszul bracket $\left\{\{\cdot, \cdot\}\right.$ defined, for any $\zeta \in \Omega^{p}(M)$ and $\eta \in \Omega(M)$, by

$$
\begin{equation*}
\left\{\{\zeta, \eta\}=(-1)^{p}\left(\Delta(\zeta \wedge \eta)-\Delta(\zeta) \wedge \eta-(-1)^{p} \zeta \wedge \Delta(\eta)\right)\right. \tag{2.7}
\end{equation*}
$$

where $\Delta=i_{\Lambda} \circ d-d \circ i_{\Lambda}, \Lambda^{\#}$ becomes a graded Lie algebra homomorphism. Explicitly,

$$
\Lambda^{\#}(\{\zeta, \eta\})=\left[\Lambda^{\#}(\zeta), \Lambda^{\#}(\eta)\right]
$$

where the bracket on the right-hand side is the Schouten bracket.
Example 2.1 Any symplectic manifold $\left(M, \omega_{0}\right)$, where ω_{0} is a nondegenerate closed smooth 2-form on M, is equipped with a Poisson structure Λ_{0} defined by ω_{0} as follows. Define the tensor field Λ_{0} to be the image of ω_{0} by the extension of the isomorphism $\Lambda_{0}^{\#}: \Omega^{1}(M) \rightarrow \mathcal{V}^{1}(M)$, (inverse of $\omega_{0}^{b}: \mathcal{V}^{1}(M) \rightarrow \Omega^{1}(M), X \mapsto \omega_{0}^{b}(X)=$ $\left.-\omega_{0}(X, \cdot)\right)$, to $\Omega^{2}(M)$, given by (2.6).

2.3 Decomposition Theorem for Exterior Differential Forms

In this subsection, we begin by reviewing some important results concerning the decomposition theorem for exterior differential forms on almost symplectic manifolds. The complete study of these results can be found in [18, 20].

Let $\left(M, \omega_{0}\right)$ be a $2 n$-dimensional almost symplectic manifold, i.e., ω_{0} is a nondegenerate smooth 2-form on M, Λ_{0} the bivector field on M associated with ω_{0} (see Example 2.1), $\Omega=\frac{\omega_{0}^{n}}{n!}$ the corresponding volume form on M, and $\widetilde{\Omega}=\frac{\Lambda_{0}^{n}}{n!}$ the dual $2 n$-vector field of Ω. We consider the isomorphism $*=\Psi \circ \Lambda_{0}^{\#}: \Omega^{p}(M) \rightarrow \Omega^{2 n-p}(M)$ given, for any $\varphi \in \Omega^{p}(M)$, by

$$
\begin{equation*}
* \varphi=\left(\Psi \circ \Lambda_{0}^{\#}\right)(\varphi)=(-1)^{(p-1) p / 2} i_{\Lambda_{0}^{\#}(\varphi)} \frac{\omega_{0}^{n}}{n!} . \tag{2.8}
\end{equation*}
$$

Remark 2.2 In order to be in agreement with the convention of sign adopted in (2.1) for the interior product, we make a sign convention for $*$ different from the one given in [20].

The $(2 n-p)$-form $* \varphi$ is called the adjoint of φ relative to ω_{0}. The isomorphism $*$ has the following properties:
(i) $\quad * *=\mathrm{Id}$, which implies that

$$
\begin{equation*}
\Psi \circ \Lambda_{0}^{\#}=\Lambda_{0}^{\#^{-1}} \circ \Psi^{-1} \tag{2.9}
\end{equation*}
$$

(ii) For any $\varphi \in \Omega^{p}(M)$ and $\psi \in \Omega^{q}(M)$,

$$
\begin{align*}
*(\varphi \wedge \psi) & =(-1)^{(p+q-1)(p+q) / 2} i_{\Lambda_{0}^{\#}(\varphi) \wedge \Lambda_{0}^{\#}(\psi)} \frac{\omega_{0}^{n}}{n!} \tag{2.10}\\
& =(-1)^{(p-1) p / 2} i_{\Lambda_{0}^{\#}(\varphi)}(* \psi)=(-1)^{p q+(q-1) q / 2} i_{\Lambda_{0}^{\#}(\psi)}(* \varphi)
\end{align*}
$$

(iii) For any $k \leq n$,

$$
* \frac{\omega_{0}^{k}}{k!}=\frac{\omega_{0}^{n-k}}{(n-k)!} .
$$

Definition 2.3 A smooth form $\psi \in \Omega(M)$ such that $i_{\Lambda_{0}} \psi=0$ everywhere on M is said to be effective. On the other hand, a smooth form φ on M is said to be simple if it can be written as

$$
\varphi=\psi \wedge \frac{\omega_{0}^{k}}{k!}
$$

where ψ is effective.
Proposition 2.4 The adjoint of an effective differential form ψ of degree $p \leq n$ is

$$
* \psi=(-1)^{p(p+1) / 2} \psi \wedge \frac{\omega_{0}^{n-p}}{(n-p)!}
$$

The adjoint $* \varphi$ of a smooth $(p+2 k)$-simple form $\varphi=\psi \wedge \frac{\omega_{0}^{k}}{k!}$ is

$$
\begin{equation*}
* \varphi=(-1)^{p(p+1) / 2} \psi \wedge \frac{\omega_{0}^{n-p-k}}{(n-p-k)!} . \tag{2.11}
\end{equation*}
$$

Theorem 2.5 (Lepage's Decomposition Theorem) Every differential form $\varphi \in$ $\Omega(M)$ of degree $p \leq n$ may be uniquely decomposed as the sum

$$
\varphi=\psi_{p}+\psi_{p-2} \wedge \omega_{0}+\cdots+\psi_{p-2 q} \wedge \frac{\omega_{0}^{q}}{q!}
$$

with $q \leq[p / 2]$ ([p/2] being the largest integer less than or equal to $p / 2$), where, for $s=0, \ldots, q$, the differential forms $\psi_{p-2 s}$ are effective and may be calculated from φ by means of iteration of the operator $i_{\Lambda_{0}}$. Then its adjoint $* \varphi$ may be uniquely written as the sum

$$
\begin{aligned}
* \varphi=(-1)^{p(p+1) / 2}\left(\psi_{p}-\psi_{p-2}\right. & \wedge \frac{\omega_{0}}{n-p+1}+\cdots \\
& \left.+(-1)^{q} \frac{(n-p)!}{(n-p+q)!} \psi_{p-2 q} \wedge \omega_{0}^{q}\right) \wedge \frac{\omega_{0}^{n-p}}{(n-p)!}
\end{aligned}
$$

We continue by indicating the effect of operator $*$ on Poisson structures. Since $\Lambda_{0}^{\#}: \Omega^{p}(M) \rightarrow \nu^{p}(M), p \in \mathbb{N}$, defined by (2.6), is an isomorphism, any bivector field Λ on $\left(M, \omega_{0}\right)$ can be viewed as the image $\Lambda_{0}^{\#}(\sigma)$ of a 2 -form σ on M by $\Lambda_{0}^{\#}$. We want to establish the condition on σ under which $\Lambda=\Lambda_{0}^{\#}(\sigma)$ is a Poisson tensor. For this reason, we consider the codifferential operator $\delta=* d *$ introduced in [18], which is of degree -1 and satisfies the relation $\delta^{2}=0$. We remark that

$$
\delta \stackrel{\boxed{2.8}}{=} \Psi \circ \Lambda_{0}^{\#} \circ d \circ \Psi \circ \Lambda_{0}^{\#} \stackrel{\boxed{2.9}}{=} \Lambda_{0}^{\#^{-1}} \circ \Psi^{-1} \circ d \circ \Psi \circ \Lambda_{0}^{\#}=-\Lambda_{0}^{\#^{-1}} \circ D \circ \Lambda_{0}^{\#},
$$

whence we obtain

$$
\begin{equation*}
\Lambda_{0}^{\#} \circ \delta=-D \circ \Lambda_{0}^{\#} \tag{2.12}
\end{equation*}
$$

Lemma 2.6 For any differential form ζ on $\left(M, \omega_{0}\right)$ of degree $p \leq n$,

$$
\begin{equation*}
\Psi^{-1}(\zeta)=\Lambda_{0}^{\#}(* \zeta) \tag{2.13}
\end{equation*}
$$

Proof We have

$$
\Lambda_{0}^{\#}(* \zeta) \stackrel{[2.8}{=} \Lambda_{0}^{\#} \circ \Psi \circ \Lambda_{0}^{\#}(\zeta) \stackrel{\sqrt{2.9}}{=} \Lambda_{0}^{\#} \circ \Lambda_{0}^{\#^{-1}} \circ \Psi^{-1}(\zeta)=\Psi^{-1}(\zeta)
$$

Proposition 2.7 Using the same notation, $\Lambda=\Lambda_{0}^{\#}(\sigma)$ defines a Poisson structure on $\left(M, \omega_{0}\right)$ if and only if

$$
\begin{equation*}
2 \sigma \wedge \delta(\sigma)=\delta(\sigma \wedge \sigma) \tag{2.14}
\end{equation*}
$$

Proof We have seen that Λ is a Poisson tensor if and only if (2.5) holds. But, in our case $\Lambda=\Lambda_{0}^{\#}(\sigma)$, so $\Lambda \wedge \Lambda=\Lambda_{0}^{\#}(\sigma \wedge \sigma)$, and $\Lambda_{0}^{\#}$ is an isomorphism. Therefore,

$$
\begin{aligned}
2 \Lambda \wedge D(\Lambda)=D(\Lambda \wedge \Lambda) & \Leftrightarrow 2 \Lambda_{0}^{\#}(\sigma) \wedge\left(D \circ \Lambda_{0}^{\#}\right)(\sigma)=\left(D \circ \Lambda_{0}^{\#}\right)(\sigma \wedge \sigma) \\
& \stackrel{\sqrt{2.12}]}{\Leftrightarrow}-2 \Lambda_{0}^{\#}(\sigma) \wedge \Lambda_{0}^{\#}(\delta \sigma)=-\Lambda_{0}^{\#}(\delta(\sigma \wedge \sigma)) \\
& \Leftrightarrow 2 \sigma \wedge \delta(\sigma)=\delta(\sigma \wedge \sigma),
\end{aligned}
$$

and we are done.

Remark 2.8 Brylinski [2] observed that when the manifold is symplectic, i.e., $d \omega_{0}=0, \delta$ is equal up to sign to $\Delta=i_{\Lambda_{0}} \circ d-d \circ i_{\Lambda_{0}}$. Then, in this framework, (2.14) is equivalent to $\left\{\{\sigma, \sigma\}_{0}=0,\left(\{\{\cdot, \cdot\}\}_{0}\right.\right.$ being the Koszul bracket (2.7) associated with Λ_{0}), which means that σ is a complementary 2-form on $\left(M, \Lambda_{0}\right)$ in the sense of Vaisman [29].

3 Poisson Structures with Prescribed Casimir Functions

Let M be a m-dimensional smooth manifold and let $f_{1}, \ldots, f_{m-2 k}$ be smooth functions on M that are functionally independent almost everywhere. We want to construct Poisson structures Λ on M having symplectic leaves of dimension at most $2 k$ that have as Casimirs the given functions $f_{1}, f_{2}, \ldots, f_{m-2 k}$. We start by discussing the problem on even-dimensional manifolds. In the next subsection we extend the results to odd-dimensional manifolds.

3.1 On Even-dimensional Manifolds

We suppose that $\operatorname{dim} M=2 n$ and begin our study with the following lemma.
Lemma 3.1 Given $\left(M, f_{1}, \ldots, f_{2 n-2 k}\right)$ with $f_{1}, \ldots, f_{2 n-2 k}$ functionally independent almost everywhere on M, then there exists, at least locally, $\Lambda_{0} \in \mathcal{V}^{2}(M)$ with $\operatorname{rank} \Lambda_{0}=$ $2 n$ such that

$$
\left\langle d f_{1} \wedge \cdots \wedge d f_{2 n-2 k}, \Lambda_{0}^{n-k}\right\rangle \neq 0
$$

Proof In fact, let $p \in M$ and let U be an open neighborhood of p such that $f_{1}, \ldots, f_{2 n-2 k}$ are functionally independent at each point $x \in U$. That means that $d f_{1} \wedge \cdots \wedge d f_{2 n-2 k}(x) \neq 0$ on U. We select 1 -forms $\beta_{1}, \ldots, \beta_{2 k}$ on U so that $\left(d f_{1}, \ldots, d f_{2 n-2 k}, \beta_{1}, \ldots, \beta_{2 k}\right)$ become a basis of the cotangent space at each point of U. Let $\left(Y_{1}, \ldots, Y_{2 n-2 k}, Z_{1}, \ldots, Z_{2 k}\right)$ be a family of vector fields on U dual to $\left(d f_{1}, \ldots, d f_{2 n-2 k}, \beta_{1}, \ldots, \beta_{2 k}\right)$. That is, they satisfy $d f_{i}\left(Y_{j}\right)=\delta_{i j}, \beta_{i}\left(Z_{j}\right)=\delta_{i j}$, and all other pairings are zero. We consider the bivector field

$$
\Lambda_{0}=\sum_{i=1}^{n-k} Y_{2 i-1} \wedge Y_{2 i}+\sum_{j=1}^{k} Z_{2 j-1} \wedge Z_{2 j}
$$

which is of maximal rank on U. It is clear that

$$
\left\langle d f_{1} \wedge \cdots \wedge d f_{2 n-2 k}, \frac{\Lambda_{0}^{n-k}}{(n-k)!}\right\rangle=1 \neq 0
$$

Now consider $\left(M, f_{1}, \ldots, f_{2 n-2 k}\right)$ and a nondegenerate bivector field Λ_{0} on M such that

$$
\begin{equation*}
f=\left\langle d f_{1} \wedge \cdots \wedge d f_{2 n-2 k}, \frac{\Lambda_{0}^{n-k}}{(n-k)!}\right\rangle=\left\langle\frac{\omega_{0}^{n-k}}{(n-k)!}, X_{f_{1}} \wedge \cdots \wedge X_{f_{2 n-2 k}}\right\rangle \neq 0 \tag{3.1}
\end{equation*}
$$

on an open and dense subset \mathcal{U} of M. In (3.1), ω_{0} denotes the almost symplectic form on M defined by Λ_{0}, and $X_{f_{i}}=\Lambda_{0}^{\#}\left(d f_{i}\right)$ are the hamiltonian vector fields of f_{i},
$i=1, \ldots, 2 n-2 k$, with respect to Λ_{0}. Let $D=\left\langle X_{f_{1}}, \ldots, X_{f_{2 n-2 k}}\right\rangle$ be the distribution on M generated by $X_{f_{i}}, i=1, \ldots, 2 n-2 k, D^{\circ}$ its annihilator, and $\operatorname{orth}_{\omega_{0}} D$ the symplectic orthogonal of D with respect to ω_{0}. Since $\operatorname{det}\left(\left\{f_{i}, f_{j}\right\}_{0}\right)=f^{2} \neq 0$ on \mathcal{U}, $D_{x}=D \cap T_{x} M$ is a symplectic subspace of $T_{x} M$ with respect to $\omega_{0_{x}}$ at each point $x \in \mathcal{U}$. Thus, $T_{x} M=D_{x} \oplus \operatorname{orth}_{\omega_{0_{x}}} D_{x}=D_{x} \oplus \Lambda_{0_{x}}^{\#}\left(D_{x}^{\circ}\right)$, where $D_{x}^{\circ}=D^{\circ} \cap T_{x}^{*} M$ and $T_{x}^{*} M=D_{x}^{\circ} \oplus\left(\Lambda_{0_{x}}^{\#}\left(D_{x}^{\circ}\right)\right)^{\circ}=D_{x}^{\circ} \oplus\left\langle d f_{1}, \ldots, d f_{2 n-2 k}\right\rangle_{x}$. Finally, we denote by σ the smooth 2-form on M that corresponds, via the isomorphism $\Lambda_{0}^{\#}$, to an element Λ of $V^{2}(M)$.

Proposition 3.2 Under the above assumptions, a bivector field Λ on $\left(M, \omega_{0}\right)$ of rank at most $2 k$ on M admits as unique Casimirs the functions $f_{1}, \ldots, f_{2 n-2 k}$ if and only if its corresponding 2-form σ is a smooth section of $\bigwedge^{2} D^{\circ}$ of maximal rank on \mathcal{U}.

Proof Effectively, for any $f_{i}, i=1, \ldots, 2 n-2 k$,

$$
\begin{equation*}
\Lambda\left(d f_{i}, \cdot\right)=0 \Leftrightarrow \Lambda_{0}^{\#}(\sigma)\left(d f_{i}, \cdot\right)=0 \Leftrightarrow \sigma\left(X_{f_{i}}, \Lambda_{0}^{\#}(\cdot)\right)=0 \tag{3.2}
\end{equation*}
$$

Thus, $f_{1}, \ldots, f_{2 n-2 k}$ are the unique Casimir functions of Λ on \mathcal{U} if and only if the vector fields $X_{f_{1}}, \ldots, X_{f_{2 n-2 k}}$ with functionally independent hamiltonians on \mathcal{U} generate $\operatorname{ker} \sigma$, i.e., for any $x \in \mathcal{U}, D_{x}=\operatorname{ker} \sigma_{x}^{b}$. The last relation means that σ is a section of $\bigwedge^{2} D^{\circ}$ of maximal rank on \mathcal{U}.

Still using the same notation, we can formulate the following main theorem.
Theorem 3.3 Let $f_{1}, \ldots, f_{2 n-2 k}$ be smooth functions on a $2 n$-dimensional differentiable manifold M that are functionally independent almost everywhere, let ω_{0} be an almost symplectic structure on M such that (3.1) holds on an open and dense subset \mathcal{U} of $M, \Omega=\omega_{0}^{n} / n!$ the corresponding volume form on M, and let σ be a section of $\bigwedge^{2} D^{\circ}$ of maximal rank on \mathcal{U} that satisfies (2.14). Then the $(2 n-2)$-form

$$
\begin{equation*}
\Phi=-\frac{1}{f}\left(\sigma+\frac{g}{k-1} \omega_{0}\right) \wedge \frac{\omega_{0}^{k-2}}{(k-2)!} \wedge d f_{1} \wedge \cdots \wedge d f_{2 n-2 k} \tag{3.3}
\end{equation*}
$$

where f is given by (3.1) and $g=i_{\Lambda_{0}} \sigma$, corresponds, via the isomorphism Ψ^{-1}, to a Poisson tensor Λ with orbits of dimension at most $2 k$ for which $f_{1}, \ldots, f_{2 n-2 k}$ are Casimirs. Precisely, $\Lambda=\Lambda_{0}^{\#}(\sigma)$ and the associated bracket of Λ on $C^{\infty}(M)$ is given, for any $h_{1}, h_{2} \in C^{\infty}(M)$, by

$$
\begin{equation*}
\left\{h_{1}, h_{2}\right\} \Omega=-\frac{1}{f} d h_{1} \wedge d h_{2} \wedge\left(\sigma+\frac{g}{k-1} \omega_{0}\right) \wedge \frac{\omega_{0}^{k-2}}{(k-2)!} \wedge d f_{1} \wedge \cdots \wedge d f_{2 n-2 k} \tag{3.4}
\end{equation*}
$$

Conversely, if $\Lambda \in \mathcal{V}^{2}(M)$ is a Poisson tensor of rank $2 k$ on an open and dense subset \mathcal{U} of M, then there are $2 n-2 k$ functionally independent smooth functions $f_{1}, \ldots, f_{2 n-2 k}$ on \mathcal{U} and a section σ of $\bigwedge^{2} D^{\circ}$ of maximal rank on \mathcal{U} satisfying (2.14) such that Ψ_{Λ} and $\{\cdot, \cdot\}$ are given, respectively, by (3.3) and (3.4).

Proof We denote by $\widetilde{\Omega}=\frac{\Lambda_{0}^{n}}{n!}$ the dual $2 n$-vector field of Ω on M, and we set $\Lambda=$ $j_{\Phi} \widetilde{\Omega}$. For any $f_{i}, i=1, \ldots, 2 n-2 k$, we have

$$
\Lambda^{\#}\left(d f_{i}\right)=-j_{d f_{i}} \Lambda=-j_{d f_{i}} j_{\Phi} \widetilde{\Omega}=-j_{d f_{i} \wedge \Phi} \widetilde{\Omega}=-j_{0} \widetilde{\Omega}=0
$$

which means that $f_{1}, \ldots, f_{2 n-2 k}$ are Casimir functions of Λ. We shall see that $\Lambda=$ $\Lambda_{0}^{\#}(\sigma)$. Thus, Λ will define a Poisson structure on M having the required properties. We calculate the adjoint form $* \Phi$ of Φ relative to ω_{0} :

$$
\begin{aligned}
* \Phi & =-\frac{1}{f} *\left(\left(\sigma+\frac{g}{k-1} \omega_{0}\right) \wedge \frac{\omega_{0}^{k-2}}{(k-2)!} \wedge d f_{1} \cdots \wedge d f_{2 n-2 k}\right) \\
& \stackrel{[2.10}{=}-(-1)^{(2 n-2 k-1)(2 n-2 k) / 2} \frac{1}{f} i_{X_{f_{1}} \wedge \cdots \wedge X_{f_{2 n-2 k}}}\left[*\left(\left(\sigma+\frac{g}{k-1} \omega_{0}\right) \wedge \frac{\omega_{0}^{k-2}}{(k-2)!}\right)\right] .
\end{aligned}
$$

But, from Lepage's decomposition theorem, σ can be written as $\sigma=\psi_{2}+\psi_{0} \omega_{0}$, where ψ_{2} is an effective 2-form on M with respect to Λ_{0} and $\psi_{0}=\frac{i_{\Lambda_{0}} \sigma}{i_{\Lambda_{0}} \omega_{0}}=-\frac{g}{n}$. It is easy to check that

$$
i_{\Lambda_{0}} \omega_{0}=-\left\langle\omega_{0}, \Lambda_{0}\right\rangle=-\frac{\operatorname{Tr}\left(\omega_{0}^{b} \circ \Lambda_{0}^{\#}\right)}{2}=-\frac{\operatorname{Tr}\left(I_{2 n}\right)}{2}=-n .
$$

Hence,

$$
\begin{aligned}
\left(\sigma+\frac{g}{k-1} \omega_{0}\right) \wedge \frac{\omega_{0}^{k-2}}{(k-2)!} & =\left(\psi_{2}-\frac{g}{n} \omega_{0}+\frac{g}{k-1} \omega_{0}\right) \wedge \frac{\omega_{0}^{k-2}}{(k-2)!} \\
& =\psi_{2} \wedge \frac{\omega_{0}^{k-2}}{(k-2)!}+\frac{n-k+1}{n} g \frac{\omega_{0}^{k-1}}{(k-1)!}
\end{aligned}
$$

and

$$
\begin{align*}
& *\left(\left(\sigma+\frac{g}{k-1} \omega_{0}\right) \wedge \frac{\omega_{0}^{k-2}}{(k-2)!}\right) \tag{3.5}\\
& \quad=*\left(\psi_{2} \wedge \frac{\omega_{0}^{k-2}}{(k-2)!}\right)+\frac{n-k+1}{n} g\left(* \frac{\omega_{0}^{k-1}}{(k-1)!}\right) \\
& \stackrel{\boxed{2.11}=}{=}-\psi_{2} \wedge \frac{\omega_{0}^{n-(k-2)-2}}{(n-(k-2)-2)!}+\frac{n-k+1}{n} g \frac{\omega_{0}^{n-(k-1)}}{(n-(k-1))!} \\
& \quad=-\left(\psi_{2}-\frac{g}{n} \omega_{0}\right) \wedge \frac{\omega_{0}^{n-k}}{(n-k)!}=-\sigma \wedge \frac{\omega_{0}^{n-k}}{(n-k)!}
\end{align*}
$$

Consequently,

$$
\begin{gather*}
* \Phi=-(-1)^{(2 n-2 k-1)(2 n-2 k) / 2} \frac{1}{f} i_{X_{1} \wedge \cdots \wedge X_{f_{2 n-2 k}}}\left[-\sigma \wedge \frac{\omega_{0}^{n-k}}{(n-k)!}\right] \tag{3.6}\\
\stackrel{(2.1)[3.2}{=} \frac{1}{f}\left\langle\frac{\omega_{0}^{n-k}}{(n-k)!}, X_{f_{1}} \wedge \cdots \wedge X_{f_{2 n-2 k}}\right\rangle \sigma=\frac{1}{f} f \sigma=\sigma
\end{gather*}
$$

By applying (2.13) to the above relation, we obtain

$$
\Lambda_{0}^{\#}(\sigma)=\Lambda_{0}^{\#}(* \Phi)=\Psi^{-1}(\Phi)=j_{\Phi} \widetilde{\Omega}=\Lambda
$$

Thus, according to Proposition 2.7, Λ defines a Poisson structure on M with orbits of dimension at most $2 k$ for which $f_{1}, \ldots, f_{2 n-2 k}$ are Casimir functions. Obviously, the associated bracket of Λ on $C^{\infty}(M)$ is given by (3.4). For any $h_{1}, h_{2} \in C^{\infty}(M)$,

$$
\begin{aligned}
\left\{h_{1}, h_{2}\right\} & =j_{d h_{1} \wedge d h_{2}} \Lambda=j_{d h_{1} \wedge d h_{2}} j_{\Phi} \widetilde{\Omega}=j_{d h_{1} \wedge d h_{2} \wedge \Phi} \widetilde{\Omega} \Longleftrightarrow \\
\left\{h_{1}, h_{2}\right\} \Omega & =-\frac{1}{f} d h_{1} \wedge d h_{2} \wedge\left(\sigma+\frac{g}{k-1} \omega_{0}\right) \wedge \frac{\omega_{0}^{k-2}}{(k-2)!} \wedge d f_{1} \wedge \cdots \wedge d f_{2 n-2 k}
\end{aligned}
$$

Conversely, if Λ is a Poisson tensor on M with symplectic leaves of dimension at most $2 k$, then in a neighborhood U of a nonsingular point there are coordinates $\left(z_{1}, \ldots, z_{2 k}, f_{1}, \ldots, f_{2 n-2 k}\right)$ such that the symplectic leaves of Λ are defined by $f_{l}=$ const, $l=1, \ldots, 2 n-2 k$. Let Λ_{0} be a nondegenerate bivector field on U such that

$$
f=\left\langle d f_{1} \wedge \cdots \wedge d f_{2 n-2 k}: \frac{\Lambda_{0}^{n-k}}{(n-k)!}\right\rangle \neq 0
$$

on U and let σ be the 2 -form on U that corresponds, via the isomorphism $\Lambda_{0}^{\#}$, to Λ. As we did earlier, we construct the distribution D on U and its annihilator D°. According to Propositions 3.2 and 2.7σ is a section of $\bigwedge^{2} D^{\circ}$ of maximal rank on U satisfying (2.14). We will prove that the $(2 n-2)$-form $\Psi_{\Lambda}=-i_{\Lambda_{0}^{\#}(\sigma)} \Omega=* \sigma$, where $\Omega=\frac{\omega_{0}^{n}}{n!}$ is the volume element on U defined by the almost symplectic form ω_{0}, the inverse of Λ_{0}, can be written in the form (3.3).

Since (3.1) holds on U, Ω can be written on U as

$$
\Omega=\frac{1}{f} \frac{\omega_{0}^{k}}{k!} \wedge d f_{1} \wedge \cdots \wedge d f_{2 n-2 k}
$$

and

$$
\begin{equation*}
\Psi_{\Lambda}=-i_{\Lambda} \Omega=-\frac{1}{f}\left(i_{\Lambda} \frac{\omega_{0}^{k}}{k!}\right) \wedge d f_{1} \wedge \cdots \wedge d f_{2 n-2 k} \tag{3.7}
\end{equation*}
$$

We now proceed to calculate the $(2 k-2)$-form $-i_{\Lambda} \frac{\omega_{0}^{k}}{k!}$. We remark that $\frac{\omega_{0}^{k}}{k!}=* \frac{\omega_{0}^{n-k}}{(n-k)!}$. So, from (2.10) we get that

$$
\begin{equation*}
-i_{\Lambda} \frac{\omega_{0}^{k}}{k!}=*\left(\sigma \wedge \frac{\omega_{0}^{n-k}}{(n-k)!}\right) \tag{3.8}
\end{equation*}
$$

Repeating the calculation of (3.5) in the inverse direction, we have

$$
\begin{align*}
\left(\sigma \wedge \frac{\omega_{0}^{n-k}}{(n-k)!}\right) & =- *\left(\left(\sigma+\frac{g}{k-1} \omega_{0}\right) \wedge \frac{\omega_{0}^{k-2}}{(k-2)!}\right) \tag{3.9}\\
& =-\left(\sigma+\frac{g}{k-1} \omega_{0}\right) \wedge \frac{\omega_{0}^{k-2}}{(k-2)!}
\end{align*}
$$

Therefore, by replacing (3.9) in (3.8) and the obtained relation in (3.7), we prove that Ψ_{Λ} is given by the expression (3.3). Then it is clear that $\{\cdot, \cdot\}$ is given by (3.4).

Remark 3.4 Theorem 3.3 can be generalized by replacing the exact 1 -forms $d f_{1}, \ldots, d f_{2 n-2 k}$ with 1 -forms $\alpha_{1}, \ldots, \alpha_{2 n-2 k}$ that are linearly independent at each point of an open and dense subset of M. It suffices to consider a nondegenerate bivector Λ_{0} on M such that

$$
f=\left\langle\alpha_{1} \wedge \cdots \wedge \alpha_{2 n-2 k}, \frac{\Lambda_{0}^{n-k}}{(n-k)!}\right\rangle \neq 0
$$

holds on an open and dense subset \mathcal{U} of M and to construct the distribution $D=$ $\left\langle X_{\alpha_{1}}, \ldots, X_{\alpha_{2 n-2 k}}\right\rangle, X_{\alpha_{i}}=\Lambda_{0}^{\#}\left(\alpha_{i}\right)$, and its annihilator D°. Then to each section σ of $\Lambda^{2} D^{\circ}$ of maximal rank on \mathcal{U} corresponds a bivector $\Lambda \in \mathcal{V}^{2}(M)$ of rank at most $2 k$ whose kernel coincides with the space $\left\langle\alpha_{1}, \ldots, \alpha_{2 n-2 k}\right\rangle$ almost everywhere on M and its associated bracket on $C^{\infty}(M)$ is given by

$$
\begin{equation*}
\left\{h_{1}, h_{2}\right\} \Omega=-\frac{1}{f} d h_{1} \wedge d h_{2} \wedge\left(\sigma+\frac{g}{k-1} \omega_{0}\right) \wedge \frac{\omega_{0}^{k-2}}{(k-2)!} \wedge \alpha_{1} \wedge \cdots \wedge \alpha_{2 n-2 k} \tag{3.10}
\end{equation*}
$$

ω_{0} being the almost symplectic structure on M defined by $\Lambda_{0}, g=i_{\Lambda_{0}} \sigma$, and $\Omega=\frac{\omega_{0}^{n}}{n!}$.

3.2 On Odd-dimensional Manifolds

Let M be a $(2 n+1)$-dimensional manifold. We remark that any Poisson tensor Λ on M admitting $f_{1}, \ldots, f_{2 n+1-2 k} \in C^{\infty}(M)$ as Casimir functions can be viewed as a Poisson tensor on $M^{\prime}=M \times \mathbb{R}$ admitting $f_{1}, \ldots, f_{2 n+1-2 k}$ and $f_{2 n+2-2 k}(x, s)=s$ (s being the canonical coordinate on the factor \mathbb{R}) as Casimir functions, and conversely. Thus, the problem of construction of Poisson brackets on $C^{\infty}(M)$ having as center the space of functions generated by $\left(f_{1}, \ldots, f_{2 n+1-2 k}\right)$ is equivalent to that of construction of Poisson brackets on $C^{\infty}\left(M^{\prime}\right)$ having as center the space of functions generated by $\left(f_{1}, \ldots, f_{2 n+1-2 k}, s\right)$, a setting that was completely studied in Subsection 3.1 In what follows, using the results of Subsection 3.1., we establish a formula analogous to (3.4) for Poisson brackets on odd-dimensional manifolds. But before we proceed, let us recall the notion of almost cosymplectic structures on M and some of their properties [19, 22].

An almost cosymplectic structure on a smooth manifold M, with $\operatorname{dim} M=2 n+1$, is defined by a pair $\left(\vartheta_{0}, \Theta_{0}\right) \in \Omega^{1}(M) \times \Omega^{2}(M)$ such that $\vartheta_{0} \wedge \Theta_{0}^{n} \neq 0$ everywhere on M. The last condition means that $\vartheta_{0} \wedge \Theta_{0}^{n}$ is a volume form on M and that Θ_{0} is of constant rank $2 n$ on M. Thus, $\operatorname{ker} \vartheta_{0}$ and ker Θ_{0} are complementary subbundles of $T M$ called, respectively, the horizontal bundle and the vertical bundle. Of course, their annihilators are complementery subbundles of $T^{*} M$. Moreover, it is well known [22] that $\left(\vartheta_{0}, \Theta_{0}\right)$ gives rise to a transitive almost Jacobi structure $\left(\Lambda_{0}, E_{0}\right) \in \mathcal{V}^{2}(M) \times$ $\nu^{1}(M)$ on M such that

$$
\begin{gathered}
i_{E_{0}} \vartheta_{0}=1 \quad \text { and } \quad i_{E_{0}} \Theta_{0}=0, \\
\Lambda_{0}^{\#}\left(\vartheta_{0}\right)=0 \quad \text { and } \quad i_{\Lambda_{0}^{\#}(\zeta)} \Theta_{0}=-\left(\zeta-\left\langle\zeta, E_{0}\right\rangle \vartheta_{0}\right), \quad \text { for all } \zeta \in \Omega^{1}(M) .
\end{gathered}
$$

We have, $\operatorname{ker} \vartheta_{0}=\operatorname{Im} \Lambda_{0}^{\#}$ and $\operatorname{ker} \Theta_{0}=\left\langle E_{0}\right\rangle$. So, $T M=\operatorname{Im} \Lambda_{0}^{\#} \oplus\left\langle E_{0}\right\rangle$ and $T^{*} M=$ $\left\langle E_{0}\right\rangle^{\circ} \oplus\left\langle\vartheta_{0}\right\rangle$. The sections of $\left\langle E_{0}\right\rangle^{\circ}$ are called semi-basic forms and $\Lambda_{0}^{\#}$ is an isomorphism from the $C^{\infty}(M)$-module of semi-basic 1-forms to the $C^{\infty}(M)$-module of horizontal vector fields. This isomorphism can be extended, as in (2.6), to an isomorphism, also denoted by $\Lambda_{0}^{\#}$, from the $C^{\infty}(M)$-module of semi-basic p-forms on the $C^{\infty}(M)$-module of horizontal p-vector fields. Finally, we note that $\left(\vartheta_{0}, \Theta_{0}\right)$ determines on $M^{\prime}=M \times \mathbb{R}$ an almost symplectic structure $\omega_{0}^{\prime}=\Theta_{0}+d s \wedge \vartheta_{0}$ whose corresponding nondegenerate bivector field is $\Lambda_{0}^{\prime}=\Lambda_{0}+\frac{\partial}{\partial s} \wedge E_{0}$.

Now, we consider $\left(M, f_{1}, \ldots, f_{2 n+1-2 k}\right)$, with $f_{1}, \ldots, f_{2 n+1-2 k}$ functionally independent almost everywhere on M, and an almost cosymplectic structure $\left(\vartheta_{0}, \Theta_{0}\right)$ on M whose associated nondegenerate almost Jacobi structure (Λ_{0}, E_{0}) verifies the condition

$$
\begin{equation*}
f=\left\langle d f_{1} \wedge \cdots \wedge d f_{2 n+1-2 k}, E_{0} \wedge \frac{\Lambda_{0}^{n-k}}{(n-k)!}\right\rangle \neq 0 \tag{3.11}
\end{equation*}
$$

on an open and dense subset \mathcal{U} of $M \sqrt[4]{4}$ Let $\omega_{0}^{\prime}=\Theta_{0}+d s \wedge \vartheta_{0}$ and $\Lambda_{0}^{\prime}=\Lambda_{0}+\frac{\partial}{\partial s} \wedge E_{0}$ be the associated tensors on $M^{\prime}=M \times \mathbb{R}$. Since, for any $m=1, \ldots, n+1$,

$$
\begin{equation*}
\frac{\omega_{0}^{\prime m}}{m!}=\frac{\Theta_{0}^{m}}{m!}+d s \wedge \vartheta_{0} \wedge \frac{\Theta_{0}^{m-1}}{(m-1)!} \quad \text { and } \quad \frac{\Lambda_{0}^{\prime m}}{m!}=\frac{\Lambda_{0}^{m}}{m!}+\frac{\partial}{\partial s} \wedge E_{0} \wedge \frac{\Lambda_{0}^{m-1}}{(m-1)!} \tag{3.12}
\end{equation*}
$$

it is clear that

$$
\begin{align*}
& \left\langle d f_{1} \wedge \cdots \wedge d f_{2 n+1-2 k} \wedge d s, \frac{\Lambda_{0}^{\prime}{ }^{n+1-k}}{(n+1-k)!}\right\rangle \tag{3.13}\\
& \quad=\left\langle d f_{1} \wedge \cdots \wedge d f_{2 n+1-2 k} \wedge d s, \frac{\Lambda_{0}^{n+1-k}}{(n+1-k)!}+\frac{\partial}{\partial s} \wedge E_{0} \wedge \frac{\Lambda_{0}^{n-k}}{(n-k)!}\right\rangle \\
& \quad=\left\langle d f_{1} \wedge \cdots \wedge d f_{2 n+1-2 k} \wedge d s, \frac{\partial}{\partial s} \wedge E_{0} \wedge \frac{\Lambda_{0}^{n-k}}{(n-k)!}\right\rangle=-f \neq 0
\end{align*}
$$

on the open and dense subset $\mathcal{U}^{\prime}=\mathcal{U} \times \mathbb{R}$ of M^{\prime}. Furthermore, we view any bivector field Λ on $\left(M, \vartheta_{0}, \Theta_{0}\right)$, having as Casimirs the given functions, as a bivector field on ($M^{\prime}, \omega_{0}^{\prime}$), having $f_{1}, \ldots, f_{2 n+1-2 k}$ and $f_{2 n+2-2 k}(x, s)=s$ as Casimirs. Let $D^{\prime \circ}$ be the annihilator of the distribution $D^{\prime}=\left\langle X_{f_{1}}^{\prime}, \ldots, X_{f_{2 n+2-2 k}}^{\prime}\right\rangle$ on M^{\prime} generated by the hamiltonian vector fields

$$
\begin{aligned}
& X_{f_{i}}^{\prime}=\Lambda_{0}^{\prime \#}\left(d f_{i}\right)=\Lambda_{0}^{\#}\left(d f_{i}\right)-\left\langle d f_{i}, E_{0}\right\rangle \frac{\partial}{\partial s}, \quad i=1, \ldots, 2 n+1-2 k \\
& X_{f_{2 n+2-2 k}}^{\prime}=\Lambda_{0}^{\prime \#}(d s)=E_{0}
\end{aligned}
$$

of $f_{1}, \ldots, f_{2 n+1-2 k}$ and $f_{2 n+2-2 k}(x, s)=s$ with respect to Λ_{0}^{\prime}. Then, from Proposition 3.2, we get that there exists a unique 2-form σ^{\prime} on M^{\prime} that is a section of $\bigwedge^{2} D^{\prime \circ}$

[^3]of maximal rank $2 k$ on $\mathcal{U}^{\prime}=\mathcal{U} \times \mathbb{R}$, such that $\Lambda=\Lambda_{0}^{\prime \#}\left(\sigma^{\prime}\right)$. Moreover, since Λ is independent of s and without a term of type $X \wedge \frac{\partial}{\partial s}, \sigma^{\prime}$ must be of type
\[

$$
\begin{equation*}
\sigma^{\prime}=\sigma+\tau \wedge d s \tag{3.14}
\end{equation*}
$$

\]

where σ and τ are, respectively, a 2-form and a 1-form on M having the following additional properties:
(i) σ is a section $\bigwedge^{2}\left\langle E_{0}\right\rangle^{\circ}$, i.e., σ is a semi-basic 2-form on M with respect to $\left(\Lambda_{0}, E_{0}\right)$;
(ii) τ is a section of $D^{\circ}=\left\langle X_{f_{1}}, \ldots, X_{f_{2 n+1-2 k}}, E_{0}\right\rangle^{\circ}$, where $X_{f_{i}}=\Lambda_{0}^{\#}\left(d f_{i}\right)$, i.e., τ is a semi-basic 1 -form on (M, Λ_{0}, E_{0}) which is also semi-basic with respect to $X_{f_{1}}, \ldots, X_{f_{2 n+1-2 k}} ;$
(iii) for any $f_{i}, i=1, \ldots, 2 n+1-2 k, \sigma\left(X_{f_{i}}, \cdot\right)+\left\langle d f_{i}, E_{0}\right\rangle \tau=0$.

Consequently, Λ is written, in an unique way, as $\Lambda=\Lambda_{0}^{\#}(\sigma)+\Lambda_{0}^{\#}(\tau) \wedge E_{0}$.
Summarizing, we may formulate the next proposition.
Proposition 3.5 Under the above notations and assumptions, a bivector field Λ on $\left(M, \vartheta_{0}, \Theta_{0}\right)$, of rank at most $2 k$, has as unique Casimirs the functions $f_{1}, \ldots, f_{2 n+1-2 k}$ if and only if its corresponding pair of forms (σ, τ) has the properties (i)-(iii) and $(\operatorname{rank} \sigma, \operatorname{rank} \tau)=(2 k, 0)$ or $(2 k, 1)$ or $(2 k-2,1)$ on \mathcal{U}.

On the other hand, it follows from Theorem 3.3 that the bracket $\{\cdot, \cdot\}$ of Λ on $C^{\infty}(M)$ is calculated, for any $h_{1}, h_{2} \in C^{\infty}(M)$, viewed as elements of $C^{\infty}\left(M^{\prime}\right)$, by the formula
$\left\{h_{1}, h_{2}\right\} \Omega^{\prime} \stackrel{(3.13}{=} \frac{1}{f} d h_{1} \wedge d h_{2} \wedge\left(\sigma^{\prime}+\frac{g^{\prime}}{k-1} \omega_{0}^{\prime}\right) \wedge \frac{\omega_{0}^{\prime k-2}}{(k-2)!} \wedge d f_{1} \wedge \cdots \wedge d f_{2 n+1-2 k} \wedge d s$,
where $\Omega^{\prime}=\frac{\omega_{0}^{\prime n+1}}{(n+1)!}$ and $g^{\prime}=i_{\Lambda_{0}^{\prime}} \sigma^{\prime}$. But, $\Omega^{\prime} \stackrel{[3.12]}{=}-\Omega \wedge d s, \Omega=\vartheta_{0} \wedge \frac{\Theta_{0}^{n}}{n!}$ being a volume form on M, and $g^{\prime}=i_{\Lambda_{0}^{\prime}} \sigma^{\prime}=i_{\Lambda_{0}+\partial / \partial s \wedge E_{0}}(\sigma+\tau \wedge d s)=i_{\Lambda_{0}} \sigma=g$. Thus, taking into account (3.12) and (3.14), we have
$\left\{h_{1}, h_{2}\right\} \Omega \wedge d s=-\frac{1}{f} d h_{1} \wedge d h_{2} \wedge\left(\sigma+\frac{g}{k-1} \Theta_{0}\right) \wedge \frac{\Theta_{0}^{k-2}}{(k-2)!} \wedge d f_{1} \wedge \cdots \wedge d f_{2 n+1-2 k} \wedge d s$,
which is equivalent to

$$
\left\{h_{1}, h_{2}\right\} \Omega=-\frac{1}{f} d h_{1} \wedge d h_{2} \wedge\left(\sigma+\frac{g}{k-1} \Theta_{0}\right) \wedge \frac{\Theta_{0}^{k-2}}{(k-2)!} \wedge d f_{1} \wedge \cdots \wedge d f_{2 n+1-2 k}
$$

However, according to Proposition 2.7 $\{\cdot, \cdot\}$ is a Poisson bracket on $C^{\infty}(M) \subset$ $C^{\infty}\left(M^{\prime}\right)$ if and only if

$$
\begin{equation*}
2 \sigma^{\prime} \wedge \delta^{\prime}\left(\sigma^{\prime}\right)=\delta^{\prime}\left(\sigma^{\prime} \wedge \sigma^{\prime}\right) \tag{3.15}
\end{equation*}
$$

where $\delta^{\prime}=*^{\prime} d *^{\prime}$ is the codifferential on $\Omega\left(M^{\prime}\right)$ of $\left(M^{\prime}, \omega_{0}^{\prime}\right)$ defined by the isomorphism $*^{\prime}: \Omega^{p}\left(M^{\prime}\right) \rightarrow \Omega^{2 n+2-p}\left(M^{\prime}\right)$ of (2.8). We want to translate (3.15) to a
condition on (σ, τ). Let $\Omega_{s b}^{p}(M)$ be the space of semi-basic p-forms on $\left(M, \Lambda_{0}, E_{0}\right)$, let $*$ be the isomorphism between $\Omega_{s b}^{p}(M)$ and $\Omega_{s b}^{2 n-p}(M)$ given, for any $\varphi \in \Omega_{s b}^{p}(M)$, by

$$
* \varphi=(-1)^{(p-1) p / 2} i_{\Lambda_{0}^{*}(\varphi)} \frac{\Theta_{0}^{n}}{n!},
$$

let $d_{s p}: \Omega_{s b}^{p}(M) \rightarrow \Omega_{s b}^{p+1}(M)$ be the operator that corresponds to each semi-basic form φ the semi-basic part of its differential $d \varphi$, and let $\delta=* d_{s b} *$ be the associated "codifferential" operator on $\Omega_{s b}(M)=\bigoplus_{p \in \mathbb{Z}} \Omega_{s b}^{p}(M)$. By a straightforward, but long, computation, we show that (3.15) is equivalent to the system

$$
\left\{\begin{array}{l}
2 \sigma \wedge \delta(\sigma)=\delta(\sigma \wedge \sigma) \tag{3.16}\\
\delta(\sigma \wedge \tau)+\delta(\sigma) \wedge \tau-\sigma \wedge \delta(\tau)=\left(i_{\Lambda_{0}^{\#}\left(d \vartheta_{0}\right)} \sigma\right) \sigma-\frac{1}{2} i_{\Lambda_{0}^{\#}\left(d \vartheta_{0}\right)}(\sigma \wedge \sigma)
\end{array}\right.
$$

Hence, we deduce the following proposition.
Proposition 3.6 Under the above assumptions and notations, $\Lambda=\Lambda_{0}^{\#}(\sigma)+\Lambda_{0}^{\#}(\tau) \wedge E_{0}$ defines a Poisson structure on $\left(M, \vartheta_{0}, \Theta_{0}\right)$ if and only if (σ, τ) satisfies (3.16).

Concluding, we can announce the following theorem.
Theorem 3.7 Let $f_{1}, \ldots, f_{2 n+1-2 k}$ be smooth functions on a $(2 n+1)$-dimensional smooth manifold M that are functionally independent almost everywhere, let $\left(\vartheta_{0}, \Theta_{0}\right)$ be an almost cosymplectic structure on M such that (3.11) holds on an open and dense subset U of M, let $\Omega=\vartheta_{0} \wedge \frac{\Theta_{0}^{n}}{n!}$ be the corresponding volume form on M, and let (σ, τ) be an element of $\Omega_{s b}^{2}(M) \times \Omega_{s b}^{1}(M)$, with $(\operatorname{rank} \sigma, \operatorname{rank} \tau)=(2 k, 0)$ or $(2 k, 1)$ or $(2 k-2,1)$ on \mathcal{U}, that has the properties (ii)-(iii) and satisfies 3.16). Then the bracket $\{\cdot, \cdot\}$ on $C^{\infty}(M)$ given, for any $h_{1}, h_{2} \in C^{\infty}(M)$, by

$$
\begin{equation*}
\left\{h_{1}, h_{2}\right\} \Omega=-\frac{1}{f} d h_{1} \wedge d h_{2} \wedge\left(\sigma+\frac{g}{k-1} \Theta_{0}\right) \wedge \frac{\Theta_{0}^{k-2}}{(k-2)!} \wedge d f_{1} \wedge \cdots \wedge d f_{2 n+1-2 k} \tag{3.17}
\end{equation*}
$$

where f is that of (3.11) and $g=i_{\Lambda_{0}} \sigma$, defines a Poisson structure Λ on $M, \Lambda=\Lambda_{0}^{\#}(\sigma)+$ $\Lambda_{0}^{\#}(\tau) \wedge E_{0}$, with symplectic leaves of dimension at most $2 k$ for which $f_{1}, \ldots, f_{2 n+1-2 k}$ are Casimirs. The converse is also true.

Remark 3.8 We remark that, in both cases (of even dimension $m=2 n$ and of odd dimension $m=2 n+1$), when $k=1$, the brackets (3.4) and (3.17) are reduced to a bracket of type (1.2). Precisely,

$$
\left\{h_{1}, h_{2}\right\} \Omega=-\frac{g}{f} d h_{1} \wedge d h_{2} \wedge d f_{1} \wedge \cdots \wedge d f_{m-2}
$$

4 Some Examples

4.1 Dirac Brackets

Let $\left(M, \omega_{0}\right)$ be a symplectic manifold of dimension $2 n$, let Λ_{0} be its associated Poisson structure, and let $f_{1}, \ldots, f_{2 n-2 k}$ be smooth functions on M whose the differentials are
linearly independent at each point of the submanifold M_{0} of M defined by the equations $f_{1}(x)=0, \ldots, f_{2 n-2 k}(x)=0$. We assume that the matrix $\left(\left\{f_{i}, f_{j}\right\}_{0}\right)$ is invertible on an open neighborhood \mathcal{W} of M_{0} in M and we denote by $c_{i j}$ the coefficients of its inverse matrix which are smooth functions on \mathcal{W} such that $\sum_{j=1}^{2 n-2 k}\left\{f_{i}, f_{j}\right\}_{0} c_{j k}=$ $\delta_{i k}$. We consider on \mathcal{W} the 2 -form

$$
\begin{equation*}
\sigma=\omega_{0}+\sum_{i<j} c_{i j} d f_{i} \wedge d f_{j} \tag{4.1}
\end{equation*}
$$

We will prove that it is a section of $\bigwedge^{2} D^{\circ}$ of maximal rank on \mathcal{W} that verifies (2.14). As in Subsection 3.1, D denotes the subbundle of $T M$ generated by the hamiltonian vector fields $X_{f_{i}}$ of $f_{i}, i=1, \ldots, 2 n-2 k$, with respect to Λ_{0} and D° its annihilator. For any $X_{f_{l}}, l=1, \ldots, 2 n-2 k$, we have

$$
\begin{aligned}
\sigma\left(X_{f_{l}}, \cdot\right) & =\omega_{0}\left(X_{f_{l}}, \cdot\right)+\sum_{i<j} c_{i j}\left\langle d f_{i}, X_{f_{l}}\right\rangle d f_{j}-\sum_{i<j} c_{i j}\left\langle d f_{j}, X_{f_{i}}\right\rangle d f_{i} \\
& =-d f_{l}+\sum_{i<j} c_{i j}\left\{f_{l}, f_{i}\right\}_{0} d f_{j}-\sum_{i<j} c_{i j}\left\{f_{l}, f_{j}\right\}_{0} d f_{i} \\
& =-d f_{l}+\sum_{j} \delta_{l j} d f_{j}=-d f_{l}+d f_{l}=0
\end{aligned}
$$

which means that σ is a section of $\bigwedge^{2} D^{\circ} \rightarrow \mathcal{W}$. The assumption that $\left(\left\{f_{i}, f_{j}\right\}_{0}\right)$ is invertible ensures that D is a symplectic subbundle of $T_{\mathcal{W}} M$. So, for any $x \in \mathcal{W}$, $T_{x}^{*} M=D_{x}^{\circ} \oplus\left\langle d f_{1}, \ldots, d f_{2 n-2 k}\right\rangle_{x}$, and

$$
\bigwedge^{2} T_{x}^{*} M=\bigwedge^{2} D_{x}^{\circ}+\bigwedge^{2}\left\langle d f_{1}, \ldots, d f_{2 n-2 k}\right\rangle_{x}+D_{x}^{\circ} \wedge\left\langle d f_{1}, \ldots, d f_{2 n-2 k}\right\rangle_{x}
$$

But, ω_{0} is a nondegenerate section of $\bigwedge^{2} T^{*} M$ and the part $\sum_{i<j} c_{i j} d f_{i} \wedge d f_{j}$ of σ is a smooth section of $\bigwedge^{2}\left\langle d f_{1}, \ldots, d f_{2 n-2 k}\right\rangle$ of maximal rank on \mathcal{W}, because $\operatorname{det}\left(c_{i j}\right) \neq 0$ on \mathcal{W}. Thus, σ is of maximal rank on \mathcal{W}. Also, we have

$$
\begin{aligned}
g & =i_{\Lambda_{0}} \sigma=-\left\langle\omega_{0}+\sum_{i<j} c_{i j} d f_{i} \wedge d f_{j}, \Lambda_{0}\right\rangle=-n-\sum_{i<j} c_{i j}\left\{f_{i}, f_{j}\right\}_{0} \\
& =-n+(n-k)=-k
\end{aligned}
$$

and

$$
\begin{align*}
\sigma & \stackrel{\sqrt{3.6}}{=}\left(\frac{3.3}{}\right. \tag{4.2}\\
f & \frac{1}{f}\left(\sigma+\frac{g}{k-1} \omega_{0}\right) \wedge \frac{\omega_{0}^{k-2}}{(k-2)!} \wedge d f_{1} \wedge \cdots \wedge d f_{2 n-2 k} \\
& =-\frac{1}{f}\left(\omega_{0}+\sum_{i<j} c_{i j} d f_{i} \wedge d f_{j}-\frac{k}{k-1} \omega_{0}\right) \wedge \frac{\omega_{0}^{k-2}}{(k-2)!} \wedge d f_{1} \wedge \cdots \wedge d f_{2 n-2 k} \\
& =\frac{1}{f} \frac{\omega_{0}^{k-1}}{(k-1)!} \wedge d f_{1} \wedge \cdots \wedge d f_{2 n-2 k}
\end{align*}
$$

Consequently,

$$
\delta \sigma=(* d *) \sigma \stackrel{[4.2}{=} *\left(-\frac{d f}{f} \wedge(* \sigma)\right) \stackrel{2.10}{=}-\frac{1}{f} i_{X_{f}} \sigma
$$

and

$$
\begin{equation*}
2 \sigma \wedge \delta(\sigma)=-\frac{2}{f} \sigma \wedge\left(i_{X_{f}} \sigma\right)=-\frac{1}{f} i_{X_{f}}(\sigma \wedge \sigma) \tag{4.3}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
&(4.4) *(\sigma \wedge \sigma) \stackrel{\sqrt{2.10}}{=}-i_{\Lambda_{0}^{*}(\sigma)}(* \sigma) \stackrel{\sqrt[4.2]]{=}}{=}-\frac{1}{f}\left(i_{\Lambda_{0}^{*}(\sigma)} \frac{\omega_{0}^{k-1}}{(k-1)!}\right) \wedge d f_{1} \wedge \cdots \wedge d f_{2 n-2 k} \\
& \stackrel{[3.8}{=} \frac{1}{f}\left[*\left(\sigma \wedge \frac{\omega_{0}^{n-k+1}}{(n-k+1)!}\right)\right] \wedge d f_{1} \wedge \cdots \wedge d f_{2 n-2 k} \\
& \stackrel{3.5}{=}[4.1] \\
&= \frac{1}{f}\left(\omega_{0}+\sum_{i<j} c_{i j} d f_{i} \wedge d f_{j}-\frac{k}{k-2} \omega_{0}\right) \wedge \frac{\omega_{0}^{k-3}}{(k-3)!} \\
& \wedge d f_{1} \wedge \cdots \wedge d f_{2 n-2 k} \\
&= \frac{2}{f} \wedge \frac{\omega_{0}^{k-3}}{(k-3)!} \wedge d f_{1} \wedge \cdots \wedge d f_{2 n-2 k}
\end{aligned}
$$

and

$$
\begin{equation*}
\delta(\sigma \wedge \sigma)=* d *(\sigma \wedge \sigma) \stackrel{[4.4]}{=} *\left(-\frac{d f}{f} \wedge *(\sigma \wedge \sigma)\right) \stackrel{\sqrt{2.10}}{=}-\frac{1}{f} i_{X_{f}}(\sigma \wedge \sigma) \tag{4.5}
\end{equation*}
$$

From (4.3) and (4.5) we conclude that σ verifies (2.14). Thus, according to Theorem 3.3 the bivector field

$$
\Lambda=\Lambda_{0}^{\#}(\sigma)=\Lambda_{0}+\sum_{i<j} c_{i j} X_{f_{i}} \wedge X_{f_{j}}
$$

defines a Poisson structure on \mathcal{W} whose corresponding bracket $\{\cdot, \cdot\}$ on $C^{\infty}(\mathcal{W}, \mathbb{R})$ is given, for any $h_{1}, h_{2} \in C^{\infty}(\mathcal{W}, \mathbb{R})$, by

$$
\begin{equation*}
\left\{h_{1}, h_{2}\right\} \Omega=\frac{1}{f} d h_{1} \wedge d h_{2} \wedge \frac{\omega_{0}^{k-1}}{(k-1)!} \wedge d f_{1} \wedge \cdots \wedge d f_{2 n-2 k} \tag{4.6}
\end{equation*}
$$

In the above expression of Λ we recognize the Poisson structure defined by Dirac [9] on an open neighborhood \mathcal{W} of the constrained submanifold M_{0} of M, and in (4.6), we see the expression of the Dirac bracket given in [13].

4.2 Nonholonomic Systems

Let Q be the configuration space of a Lagrangian system with Lagrangian function $L: T Q \rightarrow \mathbb{R}$, subjected to nonholonomic homogeneous constraints defined by a distribution $C \subset T Q$ on Q. In a local coordinate system $\left(q^{1}, \ldots, q^{n}, \dot{q}^{1}, \ldots, \dot{q}^{n}\right)$ of $T Q, C$ is described by the independent equations

$$
\begin{equation*}
\zeta_{s}^{i}(q) \dot{q}^{s}=0,5 \quad i=1, \ldots, n-k \tag{4.7}
\end{equation*}
$$

where $\zeta_{s}^{i}, s=1, \ldots, n$, are smooth functions on Q, and the equations of motion of the nonholonomic system are given by

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}^{s}}\right)-\frac{\partial L}{\partial q^{s}}=\lambda_{i} \zeta_{s}^{i}, \quad s=1, \ldots, n \tag{4.8}
\end{equation*}
$$

(λ_{i} being the Lagrangian multipliers) together with the constraint equations 4.7).
We now turn to the Hamiltonian formulation of our system on the cotangent bundle $T^{*} Q$ of Q. We suppose that $T^{*} Q$ is equipped with the standard, nondegenerate, Poisson structure $\Lambda_{0}=\frac{\partial}{\partial p_{s}} \wedge \frac{\partial}{\partial q^{s}}$ associated with the symplectic form $\omega_{0}=d p_{s} \wedge d q^{s}$. Let

$$
\mathcal{L}: T Q \rightarrow T^{*} Q, \quad\left(q^{s}, \dot{q}^{s}\right) \mapsto\left(q^{s}, p_{s}=\frac{\partial L}{\partial \dot{q}^{s}}\right),
$$

be the Legendre transformation associated with L. Assuming that L is regular, we have that \mathcal{L} is a diffeomorphism that maps the equations of motion 4.8) to the system

$$
\begin{align*}
& \dot{q}^{s}=\frac{\partial H}{\partial p_{s}} \tag{4.9}\\
& \dot{p}_{s}=-\frac{\partial H}{\partial q^{s}}+\lambda_{i} \zeta_{s}^{i}, \quad s=1, \ldots, n
\end{align*}
$$

where $H: T^{*} Q \rightarrow \mathbb{R}$ is the Hamiltonian given by $H=\left(\dot{q}^{s} \frac{\partial L}{\partial \dot{q}^{s}}-L\right) \circ \mathcal{L}^{-1}$, and the constraint distribution C to the constraint submanifold \mathcal{M} of $T^{*} Q$, which is defined by the equations

$$
f^{i}(q, p)=\zeta_{s}^{i}(q) \frac{\partial H}{\partial p_{s}}=0, \quad i=1, \ldots, n-k
$$

Also, the regularity assumption on L implies that, at each point $(q, p) \in \mathcal{M}, T_{(q, p)} T^{*} Q$ splits into a direct sum of symplectic subspace and that the matrix

$$
\mathcal{C}=\left(\mathcal{C}^{i j}\right)=\left(\Lambda_{0}\left(d f^{i}, \mathbf{q}^{*} \zeta^{j}\right)\right)=\left(\zeta_{s}^{i} \frac{\partial^{2} H}{\partial p_{s} \partial p_{t}} \zeta_{t}^{j}\right)
$$

which is symmetric, is invertible on \mathcal{M}. Precisely,

$$
T_{(q, p)} T^{*} Q=T_{(q, p)} \mathcal{M} \oplus \mathcal{Z}
$$

[^4]where $Z \subset T T^{*} Q$ is the distribution on $T^{*} Q$ spanned by the vector fields
$$
Z^{i}=\zeta_{s}^{i} \frac{\partial}{\partial p_{s}}=\Lambda_{0}^{\#}\left(-\mathbf{q}^{*} \zeta^{i}\right)
$$
where $\zeta^{i}=\zeta_{s}^{i}(q) d q^{s}, i=1, \ldots, n-k$, are the constraint 1 -forms on Q and $\mathbf{q}: T^{*} Q \rightarrow$ Q is the canonical projection. Hence, in view of (4.9), the Hamiltonian vector field $X_{H}=\Lambda_{0}^{\#}(d H)$ admits, along \mathcal{M}, the decomposition $X_{H}=X_{n h}-\lambda_{i} Z^{i}$. The part $X_{n h}$ is tangent to \mathcal{M} and $\lambda_{i} Z^{i}$ lies on \mathcal{Z}, along \mathcal{M}. According to the results of [3, 24, 30], the dynamical equations of $X_{n h}$ on \mathcal{M} are expressed in Hamiltonian form with respect to the restriction $\{\cdot, \cdot\}_{n h}^{\mathcal{M}}$ on $C^{\infty}(\mathcal{M})$ of the bracket $\{\cdot, \cdot\}_{n h}$ given, for any $H_{1}, H_{2} \in$ $C^{\infty}\left(T^{*} Q\right)$, by
\[

$$
\begin{align*}
& \left\{H_{1}, H_{2}\right\}_{n h}=\left\{H_{1}, H_{2}\right\}_{0}+\mathcal{C}_{l m}\left\{f^{l}, H_{1}\right\}_{0}\left\langle d H_{2}, Z^{m}\right\rangle \tag{4.10}\\
& \quad-\mathcal{C}_{l m}\left\{f^{l}, H_{2}\right\}_{0}\left\langle d H_{1}, Z^{m}\right\rangle+\mathcal{C}_{i j}\left\{f^{j}, f^{l}\right\}_{0} \mathcal{C}_{l m}\left\langle d H_{1}, Z^{i}\right\rangle\left\langle d H_{2}, Z^{m}\right\rangle
\end{align*}
$$
\]

where $\{\cdot, \cdot\}_{0}$ is the bracket of Λ_{0} on $C^{\infty}\left(T^{*} Q\right)$ and $\left(\mathcal{C}_{i j}\right)$ is the inverse matrix of \mathcal{C}. In other words, for functions $h_{1}, h_{2} \in C^{\infty}(\mathcal{M})$, the value of $\left\{h_{1}, h_{2}\right\}_{n h}^{\mathcal{M}}$ is equal to the value of $\left\{H_{1}, H_{2}\right\}_{n h}$ along \mathcal{M}, where H_{1} and H_{2} are, respectively, arbitrary smooth extensions of h_{1} and h_{2} on $T^{*} Q$. We will show that (4.10) holds, and so $\{\cdot, \cdot\}_{n h}^{\mathcal{M}}$ can be calculated by (3.10).

We remark that

$$
\Lambda_{n h}=\Lambda_{0}+\mathcal{C}_{l m} X_{f^{l}} \wedge Z^{m}+\frac{1}{2} \mathcal{C}_{i j}\left\{f^{j}, f^{l}\right\}_{0} \mathcal{C}_{l m} Z^{i} \wedge Z^{m}
$$

where $X_{f^{l}}=\Lambda_{0}^{\#}\left(d f^{l}\right)$ is the bivector field on $T^{*} Q$ associated with (4.10) whose the kernel along \mathcal{M} coincides with the space $\left.\left\langle d f^{1}, \ldots, d f^{n-k}, \mathbf{q}^{*} \zeta^{1}, \ldots, \mathbf{q}^{*} \zeta^{n-k}\right\rangle\right|_{\mathcal{M}}$. In fact,

$$
\begin{aligned}
\Lambda_{n h}\left(d f^{s}\right)= & X_{f^{s}}+\mathcal{C}_{l m}\left\{f^{l}, f^{s}\right\}_{0} Z^{m}-\mathcal{C}_{l m}\left\langle d f^{s}, Z^{m}\right\rangle X_{f^{l}} \\
& +\frac{1}{2} \mathcal{C}_{i j}\left\{f^{j}, f^{l}\right\}_{0} \mathcal{C}_{l m}\left\langle d f^{s}, Z^{i}\right\rangle Z^{m}-\frac{1}{2} \mathcal{C}_{i j}\left\{f^{j}, f^{l}\right\}_{0} \mathcal{C}_{l m}\left\langle d f^{s}, Z^{m}\right\rangle Z^{i} \\
= & X_{f^{s}}+\mathcal{C}_{l m}\left\{f^{l}, f^{s}\right\}_{0} Z^{m}-\mathcal{C}_{l m} \mathcal{C}^{s m} X_{f^{l}} \\
& +\frac{1}{2} \mathcal{C}_{i j}\left\{f^{j}, f^{l}\right\}_{0} \mathcal{C}_{l m} \mathcal{C}^{s i} Z^{m}-\frac{1}{2} \mathcal{C}_{i j}\left\{f^{j}, f^{l}\right\}_{0} \mathcal{C}_{l m} \mathcal{C}^{s m} Z^{i} \\
= & X_{f^{s}}+\mathcal{C}_{l m}\left\{f^{l}, f^{s}\right\}_{0} Z^{m}-X_{f^{s}}+\frac{1}{2}\left\{f^{s}, f^{l}\right\}_{0} \mathcal{C}_{l m} Z^{m}-\frac{1}{2} \mathcal{C}_{i j}\left\{f^{j}, f^{s}\right\}_{0} Z^{i} \\
= & 0
\end{aligned}
$$

and

$$
\Lambda_{n h}\left(\mathbf{q}^{*} \zeta^{s}\right)=\Lambda_{0}^{\#}\left(\mathbf{q}^{*} \zeta^{s}\right)+\mathcal{C}_{l m}\left\langle\mathbf{q}^{*} \zeta^{s}, X_{f^{\prime}}\right\rangle Z^{m}=-Z^{s}+\mathcal{C}_{l m} \mathcal{C}^{l s} Z^{m}=-Z^{s}+Z^{s}=0
$$

while rank $\Lambda_{n h}=2 k$ everywhere on \mathcal{M} [30]. On the other hand, $\Lambda_{n h}$ can be viewed as the image, via the isomorphism $\Lambda_{0}^{\#}$, of the 2 -form

$$
\sigma=\omega_{0}-\mathfrak{C}_{l m} d f^{l} \wedge \mathbf{q}^{*} \zeta^{m}+\frac{1}{2} \mathfrak{C}_{i j}\left\{f^{j}, f^{l}\right\}_{0} \mathfrak{C}_{l m} \mathbf{q}^{*} \zeta^{i} \wedge \mathbf{q}^{*} \zeta^{m}
$$

on $T^{*} \mathrm{Q}$ with $\operatorname{rank} \sigma=2 k$ on \mathcal{M}. Also,

$$
f=\left\langle d f^{1} \wedge \cdots \wedge d f^{n-k} \wedge \mathbf{q}^{*} \zeta^{1} \wedge \cdots \wedge \mathbf{q}^{*} \zeta^{n-k}, \frac{\Lambda_{0}^{n-k}}{(n-k)!}\right\rangle \neq 0
$$

on \mathcal{M}, because $f^{2}=\operatorname{det} J=\operatorname{det} \mathcal{C}^{2} \neq 0$ on \mathcal{M}, where

$$
J=\left(\begin{array}{cc}
\left\{f^{i}, f^{j}\right\}_{0} & \Lambda_{0}\left(d f^{i}, \mathbf{q}^{*} \zeta^{j}\right) \\
\Lambda_{0}\left(\mathbf{q}^{*} \zeta^{i}, d f^{j}\right) & \Lambda_{0}\left(\mathbf{q}^{*} \zeta^{i}, \mathbf{q}^{*} \zeta^{j}\right)
\end{array}\right)=\left(\begin{array}{cc}
\left\{f^{i}, f^{j}\right\}_{0} & \mathbb{C} \\
-\mathcal{C} & 0
\end{array}\right)
$$

and

$$
\begin{aligned}
g & =i_{\Lambda_{0}} \sigma=-\left\langle\omega_{0}-\mathfrak{C}_{l m} d f^{l} \wedge \mathbf{q}^{*} \zeta^{m}+\frac{1}{2} \mathfrak{C}_{i j}\left\{f^{j}, f^{l}\right\}_{0} \mathfrak{C}_{l m} \mathbf{q}^{*} \zeta^{i} \wedge \mathbf{q}^{*} \zeta^{m}, \Lambda_{0}\right\rangle \\
& =-\left(n-\mathcal{C}_{l m} \mathfrak{C}^{l m}\right)=-n+(n-k)=-k .
\end{aligned}
$$

Hence, we can apply (3.10) for the calculation of $\{\cdot, \cdot\}_{n h}$ on $C^{\infty}\left(T^{*} Q\right)$ and, by restriction, on $C^{\infty}(\mathcal{M})$. For any $H_{1}, H_{2} \in C^{\infty}\left(T^{*} Q\right)$,
$\left\{H_{1}, H_{2}\right\}_{n h} \Omega=\frac{1}{f} d H_{1} \wedge d H_{2} \wedge \frac{\omega_{0}^{k-1}}{(k-1)!} \wedge d f^{1} \wedge \cdots \wedge d f^{n-k} \wedge \mathbf{q}^{*} \zeta^{1} \wedge \cdots \wedge \mathbf{q}^{*} \zeta^{n-k}$,
where $\Omega=\frac{\omega_{0}^{n}}{n!}$ is the corresponding volume element on $T^{*} Q$.
Remark 4.1 Without doubt, $\Lambda_{n h}$ is Poisson if and only if σ satisfies (2.14). But, Van der Schaft and Maschke [30] proved that $\{\cdot, \cdot\}_{n h}$ satisfies the Jacobi identity if and only if the constraints (4.7) are holonomic. Hence, we conclude that σ satisfies (2.14) if and only if the constraint distribution C is completely integrable. These facts have an interesting geometric interpretation observed by Koon and Marsden [15]; the vanishing of the Schouten bracket $\left[\Lambda_{n h}, \Lambda_{n h}\right]$ is equivalent with the vanishing of the curvature of an Ehresmann connection associated with the constraint distribution C.

4.3 Periodic Toda and Volterra Lattices

In this paragraph we study the linear Poisson structure Λ_{T} associated with the periodic Toda lattice of n particles. This Poisson structure has two well-known Casimir functions. Using Theorem 3.3 we construct another Poisson structure having the same Casimir invariants as Λ_{T}. It turns out that this structure decomposes as a direct sum of two Poisson tensors one of which (involving only the a variables in Flaschka's coordinates) is the quadratic Poisson bracket of the Volterra lattice (also known as
the KM-system). It agrees with the general philosophy (see [6]) that one obtains the Volterra lattice from the Toda lattice by restricting to the a variables.

The periodic Toda lattice of n particles $(n \geq 2)$ is the system of ordinary differential equations on $\mathbb{R}^{2 n}$ that in Flaschka's [11] coordinate system $\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right)$ takes the form
$\dot{a}_{i}=a_{i}\left(b_{i+1}-b_{i}\right) \quad$ and $\quad \dot{b}_{i}=2\left(a_{i}^{2}-a_{i-1}^{2}\right) \quad\left(i \in \mathbb{Z} \quad\right.$ and $\left.\quad\left(a_{i+n}, b_{i+n}\right)=\left(a_{i}, b_{i}\right)\right)$.
This system is hamiltonian with respect to the nonstandard Lie-Poisson structure

$$
\Lambda_{T}=\sum_{i=1}^{n} a_{i} \frac{\partial}{\partial a_{i}} \wedge\left(\frac{\partial}{\partial b_{i}}-\frac{\partial}{\partial b_{i+1}}\right)
$$

on $\mathbb{R}^{2 n}$, and it has as hamiltonian the function $H=\sum_{i=1}^{n}\left(a_{i}^{2}+\frac{1}{2} b_{i}^{2}\right)$. The structure Λ_{T} is of rank $2 n-2$ on

$$
\mathcal{U}=\left\{\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right) \in \mathbb{R}^{2 n} \mid \sum_{i=1}^{n} a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n} \neq 0\right\}
$$

and it admits two Casimir functions:

$$
C_{1}=b_{1}+b_{2}+\cdots+b_{n} \quad \text { and } \quad C_{2}=a_{1} a_{2} \ldots a_{n}
$$

We consider on $\mathbb{R}^{2 n}$ the standard symplectic form $\omega_{0}=\sum_{i=1}^{n} d a_{i} \wedge d b_{i}$, its associated Poisson tensor $\Lambda_{0}=\sum_{i=1}^{n} \frac{\partial}{\partial a_{i}} \wedge \frac{\partial}{\partial b_{i}}$, and the corresponding volume element $\Omega=\omega_{0}^{n} / n!=d a_{1} \wedge d b_{1} \wedge \cdots \wedge d a_{n} \wedge d b_{n}$. The hamiltonian vector fields of C_{1} and C_{2} with respect to Λ_{0} are

$$
X_{C_{1}}=-\sum_{i=1}^{n} \frac{\partial}{\partial a_{i}} \quad \text { and } \quad X_{C_{2}}=\sum_{i=1}^{n} a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n} \frac{\partial}{\partial b_{i}}
$$

So, $D=\left\langle X_{C_{1}}, X_{C_{2}}\right\rangle$ and

$$
\begin{aligned}
D^{\circ}=\left\{\sum_{i=1}^{n}\left(\alpha_{i} d a_{i}+\beta_{i} d b_{i}\right) \in \Omega^{1}\left(\mathbb{R}^{2 n}\right)\right. & \mid \sum_{i=1}^{n} \alpha_{i}=0 \\
& \text { and } \left.\sum_{i=1}^{n} a_{1} \ldots a_{i-1} \beta_{i} a_{i+1} \ldots a_{n}=0\right\}
\end{aligned}
$$

The family of 1 -forms $\left(\sigma_{1}, \ldots, \sigma_{n-1}, \sigma_{1}^{\prime}, \ldots, \sigma_{n-1}^{\prime}\right)$,

$$
\sigma_{j}=d a_{j}-d a_{j+1} \quad \text { and } \quad \sigma_{j}^{\prime}=a_{j} d b_{j}-a_{j+1} d b_{j+1}, \quad j=1, \ldots, n-1
$$

provides, at every point $(a, b) \in \mathcal{U}$, a basis of $D_{(a, b)}^{\circ}$. The section of maximal rank σ_{T} of $\bigwedge^{2} D^{\circ} \rightarrow \mathcal{U}$, which corresponds to Λ_{T}, via the isomorphism $\Lambda_{0}^{\#}$, and verifies (2.14), is written in this basis as

$$
\sigma_{T}=\sum_{j=1}^{n-1} \sigma_{j} \wedge\left(\sum_{l=j}^{n-1} \sigma_{l}^{\prime}\right)
$$

Now, we consider on $\mathbb{R}^{2 n}$ the 2 -form

$$
\begin{aligned}
\sigma= & \sum_{j=1}^{n-2} \sigma_{j} \wedge\left(\sum_{l=j+1}^{n-1} \sigma_{l}\right)+\sum_{j=1}^{n-2} \sigma_{j}^{\prime} \wedge\left(\sum_{l=j+1}^{n-1} \sigma_{l}^{\prime}\right) \\
= & \sum_{j=1}^{n-2}\left[\left(d a_{j}-d a_{j+1}\right) \wedge\left(d a_{j+1}-d a_{n}\right)\right. \\
& \left.\quad+\left(a_{j} d b_{j}-a_{j+1} d b_{j+1}\right) \wedge\left(a_{j+1} d b_{j+1}-a_{n} d b_{n}\right)\right] \\
= & \sum_{j=1}^{n}\left(d a_{j} \wedge d a_{j+1}+a_{j} a_{j+1} d b_{j} \wedge d b_{j+1}\right)
\end{aligned}
$$

It is a section of $\bigwedge^{2} D^{\circ}$ whose rank depends on the parity of n; if n is odd, its rank is $2 n-2$ on \mathcal{U}, while, if n is even, its rank is $2 n-4$ almost everywhere on $\mathbb{R}^{2 n}$. Also, after a long computation, we can confirm that it satisfies (2.14). Thus, its image via $\Lambda_{0}^{\#}$, i.e., the bivector field

$$
\begin{equation*}
\Lambda=\sum_{j=1}^{n}\left(a_{j} a_{j+1} \frac{\partial}{\partial a_{j}} \wedge \frac{\partial}{\partial a_{j+1}}+\frac{\partial}{\partial b_{j}} \wedge \frac{\partial}{\partial b_{j+1}}\right) \tag{4.11}
\end{equation*}
$$

defines a Poisson structure on $\mathbb{R}^{2 n}$ with symplectic leaves of dimension at most $2 n-2$, when n is odd, that has C_{1} and C_{2} as Casimir functions. (When n is even, Λ has two more Casimir functions.) We remark that $\left(\mathbb{R}^{2 n}, \Lambda\right)$ can be viewed as the product of Poisson manifolds $\left(\mathbb{R}^{n}, \Lambda_{V}\right) \times\left(\mathbb{R}^{n}, \Lambda^{\prime}\right)$, where

$$
\Lambda_{V}=\sum_{j=1}^{n} a_{j} a_{j+1} \frac{\partial}{\partial a_{j}} \wedge \frac{\partial}{\partial a_{j+1}} \quad \text { and } \quad \Lambda^{\prime}=\sum_{j=1}^{n} \frac{\partial}{\partial b_{j}} \wedge \frac{\partial}{\partial b_{j+1}}
$$

The Poisson tensor Λ_{V} is the quadratic bracket of the periodic Volterra lattice on \mathbb{R}^{n}, and it has C_{2} as unique Casimir function when n is odd.

In the following, using (3.4), we illustrate the explicit formulæ of the brackets of Λ_{T} and Λ in the special case $n=3$. We have $C_{1}=b_{1}+b_{2}+b_{3}, C_{2}=a_{1} a_{2} a_{3}, k=2$, $\Lambda_{0}=\sum_{i=1}^{3} \frac{\partial}{\partial a_{i}} \wedge \frac{\partial}{\partial b_{i}}$, and $\Omega=d a_{1} \wedge d b_{1} \wedge d a_{2} \wedge d b_{2} \wedge d a_{3} \wedge d b_{3}$. Consequently, $f=\left\langle d C_{1} \wedge d C_{2}, \Lambda_{0}\right\rangle=-\left(a_{1} a_{2}+a_{2} a_{3}+a_{1} a_{3}\right)$, which is a nonvanishing function on \mathcal{U}.

For the periodic Toda lattice of 3 particles, we have $\sigma_{T}=\left(d a_{1}-d a_{2}\right) \wedge\left(a_{1} d b_{1}-\right.$ $\left.a_{3} d b_{3}\right)+\left(d a_{2}-d a_{3}\right) \wedge\left(a_{2} d b_{2}-a_{3} d b_{3}\right), g_{T}=i_{\Lambda_{0}} \sigma_{T}=-\left(a_{1}+a_{2}+a_{3}\right)$ and

$$
\begin{aligned}
\Phi_{T}= & -\frac{1}{f}\left(\sigma_{T}+g_{T} \omega_{0}\right) \wedge d C_{1} \wedge d C_{2} \\
= & -a_{1} d b_{1} \wedge d a_{2} \wedge d a_{3} \wedge d b_{3}+a_{1} d a_{2} \wedge d b_{2} \wedge d a_{3} \wedge d b_{3} \\
& +a_{2} d a_{1} \wedge d b_{1} \wedge d a_{3} \wedge d b_{3} \\
& -a_{2} d a_{1} \wedge d b_{1} \wedge d b_{2} \wedge d a_{3}+a_{3} d a_{1} \wedge d a_{2} \wedge d b_{2} \wedge d b_{3} \\
& +a_{3} d a_{1} \wedge d b_{1} \wedge d a_{2} \wedge d b_{2}
\end{aligned}
$$

Thus,

$$
\begin{array}{ll}
\left\{a_{1}, b_{1}\right\}_{T} \Omega=d a_{1} \wedge d b_{1} \wedge \Phi_{T}=a_{1} \Omega, & \left\{a_{1}, b_{2}\right\}_{T} \Omega=d a_{1} \wedge d b_{2} \wedge \Phi_{T}=-a_{1} \Omega \\
\left\{a_{2}, b_{2}\right\}_{T} \Omega=d a_{2} \wedge d b_{2} \wedge \Phi_{T}=a_{2} \Omega, & \left\{a_{2}, b_{3}\right\}_{T} \Omega=d a_{2} \wedge d b_{3} \wedge \Phi_{T}=-a_{2} \Omega \\
\left\{a_{3}, b_{3}\right\}_{T} \Omega=d a_{3} \wedge d b_{3} \wedge \Phi_{T}=a_{3} \Omega, & \left\{a_{3}, b_{1}\right\}_{T} \Omega=d a_{3} \wedge d b_{1} \wedge \Phi_{T}=-a_{3} \Omega
\end{array}
$$

and all other brackets are zero.
For the Poisson structure 4.11) on \mathbb{R}^{6}, we have $\sigma=\left(d a_{1}-d a_{2}\right) \wedge\left(d a_{2}-d a_{3}\right)+$ $\left(a_{1} d b_{1}-a_{2} d b_{2}\right) \wedge\left(a_{2} d b_{2}-a_{3} d b_{3}\right), g=i_{\Lambda_{0}} \sigma=0$ and

$$
\begin{aligned}
\Phi= & -\frac{1}{f} \sigma \wedge d C_{1} \wedge d C_{2} \\
= & -a_{1} a_{2} d b_{1} \wedge d b_{2} \wedge d a_{3} \wedge d b_{3}+a_{1} a_{3} d b_{1} \wedge d a_{2} \wedge d b_{2} \wedge d b_{3} \\
& -a_{2} a_{3} d a_{1} \wedge d b_{1} \wedge d b_{2} \wedge d b_{3} \\
& -d a_{1} \wedge d b_{1} \wedge d a_{2} \wedge d a_{3}-d a_{1} \wedge d a_{2} \wedge d a_{3} \wedge d b_{3} \\
& +d a_{1} \wedge d a_{2} \wedge d b_{2} \wedge d a_{3} .
\end{aligned}
$$

Thus,

$$
\begin{array}{ll}
\left\{a_{1}, a_{2}\right\} \Omega=d a_{1} \wedge d a_{2} \wedge \Phi=a_{1} a_{2} \Omega, & \left\{a_{1}, a_{3}\right\} \Omega=d a_{1} \wedge d a_{3} \wedge \Phi=-a_{1} a_{3} \Omega \\
\left\{a_{2}, a_{3}\right\} \Omega=d a_{2} \wedge d a_{3} \wedge \Phi=a_{2} a_{3} \Omega, & \left\{b_{1}, b_{2}\right\} \Omega=d b_{1} \wedge d b_{2} \wedge \Phi=\Omega \\
\left\{b_{1}, b_{3}\right\} \Omega=d b_{1} \wedge d b_{3} \wedge \Phi=-\Omega, & \left\{b_{2}, b_{3}\right\} \Omega=d b_{2} \wedge d b_{3} \wedge \Phi=\Omega
\end{array}
$$

and all other brackets are zero.

4.4 A Lie-Poisson Bracket on $\mathfrak{g l}(3, \mathbb{R})$

On the 9 -dimensional space $\mathfrak{g l}(3, \mathbb{R})$ of 3×3 matrices

$$
\left(\begin{array}{lll}
x_{1} & z_{2} & y_{3} \\
y_{1} & x_{2} & z_{3} \\
z_{1} & y_{2} & x_{3}
\end{array}\right)
$$

which is isomorphic to \mathbb{R}^{9}, we consider the functions
$C_{1}(x, y, z)=x_{1}+x_{2}+x_{3}, \quad C_{2}(x, y, z)=y_{1} z_{2}+y_{2} z_{3}+y_{3} z_{1}, \quad C_{3}(x, y, z)=z_{1} z_{2} z_{3}$.

Using Theorem 3.7 we are able to construct a linear Poisson structure Λ on $\mathfrak{g l}(3, \mathbb{R})$, with sysmplectic leaves of dimension at most 6 , having C_{1}, C_{2}, and C_{3} as Casimir functions. For this, we consider on $\mathfrak{g l}(3, \mathbb{R}) \cong \mathbb{R}^{9}$ the cosymplectic structure $\left(\vartheta_{0}, \Theta_{0}\right)$,

$$
\vartheta_{0}=d z_{3} \quad \text { and } \quad \Theta_{0}=d x_{1} \wedge d y_{1}+d x_{2} \wedge d y_{2}+d x_{3} \wedge d y_{3}+d z_{1} \wedge d z_{2}
$$

whose corresponding transitive Jacobi structure $\left(\Lambda_{0}, E_{0}\right)$ is

$$
\Lambda_{0}=\frac{\partial}{\partial x_{1}} \wedge \frac{\partial}{\partial y_{1}}+\frac{\partial}{\partial x_{2}} \wedge \frac{\partial}{\partial y_{2}}+\frac{\partial}{\partial x_{3}} \wedge \frac{\partial}{\partial y_{3}}+\frac{\partial}{\partial z_{1}} \wedge \frac{\partial}{\partial z_{2}} \quad \text { and } \quad E_{0}=\frac{\partial}{\partial z_{3}}
$$

Clearly,

$$
f=\left\langle d C_{1} \wedge d C_{2} \wedge d C_{3}, E_{0} \wedge \Lambda_{0}\right\rangle=-z_{1} z_{2}^{2}-z_{1}^{2} z_{2}-z_{1} z_{2} z_{3}
$$

is nonzero on the open and dense subset

$$
\mathcal{U}=\left\{(x, y, z) \in \mathbb{R}^{9} \mid z_{1} z_{2}^{2}+z_{1}^{2} z_{2}+z_{1} z_{2} z_{3} \neq 0\right\}
$$

of $\mathfrak{g l}(3, \mathbb{R}) \cong \mathbb{R}^{9}$ and

$$
\Omega=\vartheta_{0} \wedge \Theta_{0}^{4}=d x_{1} \wedge d y_{1} \wedge d x_{2} \wedge d y_{2} \wedge d x_{3} \wedge d y_{3} \wedge d z_{1} \wedge d z_{2} \wedge d z_{3}
$$

is a volume form of $\mathfrak{g l}(3, \mathbb{R})$. Furthermore, we consider on $\mathfrak{g l}(3, \mathbb{R})$ the pair of semibasic forms (σ, τ),

$$
\begin{aligned}
\sigma= & -z_{1} d x_{1} \wedge d x_{2}-z_{2} d x_{2} \wedge d x_{3}+z_{3} d x_{1} \wedge d x_{3}-y_{1} d x_{1} \wedge d y_{1}+y_{1} d x_{1} \wedge d y_{2} \\
& -y_{2} d x_{2} \wedge d y_{2}+y_{2} d x_{2} \wedge d y_{3}-y_{3} d x_{3} \wedge d y_{3}+y_{3} d x_{3} \wedge d y_{1} \\
& -z_{2} d y_{1} \wedge d z_{1}-z_{1} d y_{1} \wedge \wedge d z_{2}+z_{2} d y_{2} \wedge d z_{1}+z_{1} d y_{3} \wedge d z_{2}
\end{aligned}
$$

and

$$
\tau=-z_{3} d y_{2}+z_{3} d y_{3},
$$

which has the properties (ii)-(iii) and verifies the system (3.16). Thus, the bracket $\{\cdot, \cdot\}$ on $C^{\infty}(\mathfrak{g l}(3, \mathbb{R}))$ given by (3.17) defines a Poisson structure Λ on $\mathfrak{g l}(3, \mathbb{R})$. We
have $g=i_{\Lambda_{0}} \sigma=y_{1}+y_{2}+y_{3}$ and

$$
\begin{aligned}
\Phi= & -\frac{1}{f}\left(\sigma+\frac{g}{2} \Theta_{0}\right) \wedge \Theta_{0} \wedge d C_{1} \wedge d C_{2} \wedge d C_{3} \\
= & z_{1} d x_{1} \wedge d y_{1} \wedge d x_{2} \wedge d y_{2} \wedge d y_{3} \wedge d z_{2} \wedge d z_{3} \\
& -z_{1} d y_{1} \wedge d x_{2} \wedge d y_{2} \wedge d x_{3} \wedge d y_{3} \wedge d z_{2} \wedge d z_{3} \\
& -z_{1} d x_{1} \wedge d x_{2} \wedge d x_{3} \wedge d y_{3} \wedge d z_{1} \wedge d z_{2} \wedge d z_{3} \\
& -z_{2} d x_{1} \wedge d y_{1} \wedge d x_{2} \wedge d x_{3} \wedge d z_{1} \wedge d z_{2} \wedge d z_{3} \\
& -z_{2} d y_{1} \wedge d x_{2} \wedge d y_{2} \wedge d x_{3} \wedge d y_{3} \wedge d z_{1} \wedge d z_{3} \\
& +z_{2} d y_{1} \wedge d z_{1} \wedge d x_{3} \wedge d y_{3} \wedge d z_{3} \wedge d y_{2} \wedge d x_{1} \\
& -y_{1} d x_{3} \wedge d y_{3} \wedge d z_{1} \wedge d z_{2} \wedge d z_{3} \wedge d y_{2} \wedge d x_{2} \\
& -y_{3} d y_{1} \wedge d z_{1} \wedge d x_{2} \wedge d y_{2} \wedge d z_{3} \wedge d z_{2} \wedge d x_{3} \\
& -y_{1} d x_{1} \wedge d y_{2} \wedge d z_{1} \wedge d z_{2} \wedge d z_{3} \wedge d y_{3} \wedge d x_{3} \\
& -z_{3} d y_{2} \wedge d z_{1} \wedge d x_{1} \wedge d y_{1} \wedge d z_{2} \wedge d y_{3} \wedge d x_{2} \\
& -y_{2} d x_{2} \wedge d y_{3} \wedge d z_{1} \wedge d z_{2} \wedge d z_{3} \wedge d y_{1} \wedge d x_{1} \\
& +z_{3} d x_{1} \wedge d x_{2} \wedge d z_{1} \wedge d z_{2} \wedge d z_{3} \wedge d y_{2} \wedge d x_{3} \\
& -y_{3} d y_{1} \wedge d z_{1} \wedge d x_{2} \wedge d y_{2} \wedge d z_{3} \wedge d z_{2} \wedge d x_{1} \\
& -z_{3} d y_{2} \wedge d z_{1} \wedge d x_{3} \wedge d y_{3} \wedge d z_{2} \wedge d y_{1} \wedge d x_{1} \\
& -y_{2} d y_{3} \wedge d z_{2} \wedge d x_{1} \wedge d y_{1} \wedge d z_{1} \wedge d z_{3} \wedge d x_{3} .
\end{aligned}
$$

So,

$$
\begin{array}{ll}
\left\{x_{1}, y_{1}\right\} \Omega=d x_{1} \wedge d y_{1} \wedge \Phi=-y_{1} \Omega, & \left\{x_{1}, y_{3}\right\} \Omega=d x_{1} \wedge d y_{3} \wedge \Phi=y_{3} \Omega, \\
\left\{x_{1}, z_{1}\right\} \Omega=d x_{1} \wedge d z_{1} \wedge \Phi=-z_{1} \Omega, & \left\{x_{1}, z_{2}\right\} \Omega=d x_{1} \wedge d z_{2} \wedge \Phi=z_{2} \Omega, \\
\left\{x_{2}, y_{1}\right\} \Omega=d x_{2} \wedge d y_{1} \wedge \Phi=y_{1} \Omega, & \left\{x_{2}, y_{2}\right\} \Omega=d x_{2} \wedge d y_{2} \wedge \Phi=-y_{2} \Omega, \\
\left\{x_{2}, z_{2}\right\} \Omega=d x_{2} \wedge d z_{2} \wedge \Phi=-z_{2} \Omega, & \left\{x_{2}, z_{3}\right\} \Omega=d x_{2} \wedge d z_{3} \wedge \Phi=z_{3} \Omega, \\
\left\{x_{3}, y_{2}\right\} \Omega=d x_{3} \wedge d y_{2} \wedge \Phi=y_{2} \Omega, & \left\{x_{3}, y_{3}\right\} \Omega=d x_{3} \wedge d y_{3} \wedge \Phi=-y_{3} \Omega, \\
\left\{x_{3}, z_{1}\right\} \Omega=d x_{3} \wedge d z_{1} \wedge \Phi=z_{1} \Omega, & \left\{x_{3}, z_{3}\right\} \Omega=d x_{3} \wedge d z_{3} \wedge \Phi=-z_{3} \Omega, \\
\left\{y_{1}, y_{2}\right\} \Omega=d y_{1} \wedge d y_{2} \wedge \Phi=-z_{1} \Omega, & \left\{y_{1}, y_{3}\right\} \Omega=d y_{1} \wedge d y_{3} \wedge \Phi=z_{3} \Omega, \\
\left\{y_{2}, y_{3}\right\} \Omega=d y_{2} \wedge d y_{3} \wedge \Phi=-z_{2} \Omega, &
\end{array}
$$

and all other brackets are zero.

The Lie-Poisson bracket in this example coincides with the one of the bi-Hamiltonian pair formulated by Meucci [25] for Toda ${ }_{3}$ system, a dynamical system studied by Kupershmidt in [17] as a reduction of the KP hierarchy. Meucci derives this structure by a suitable restriction of a related pair of Lie algebroids on the set of maps from the cyclic group \mathbb{Z}_{3} to $G L(3, \mathbb{R})$. Explicit formulæ for the above bracket can also be found in [7] where the Toda_{3} system is reduced to the phase space of the full Kostant-Toda lattice.

Acknowledgments We would like to thank Professor Giuseppe Marmo for pointing out references [12, 13] where the basic ideas of this work lie. We also thank the anonymous referee for some useful remarks and improvements.

References

[1] B. Hernández-Bermejo, Characterization, global analysis and integrability of a family of Poisson structures. Phys. Lett. A 372(2008), no. 7, 1009-1017. http://dx.doi.org/10.1016/j.physleta.2007.08.052
[2] J.-L. Brylinski, A differential complex for Poisson manifolds. J. Differential Geom. 28(1988), no. 1, 93-114.
[3] F. Cantrijn, M. de León, and D. Martin de Diego, On almost-Poisson structures in nonholonomic mechanics. Nonlinearity 12(1999), no. 3, 721-737. http://dx.doi.org/10.1088/0951-7715/12/3/316
[4] P. A. Damianou, Nonlinear Poisson Brackets. Ph.D. Dissertation, University of Arizona, 1989.
[5] —— Transverse Poisson structures of coadjoint orbits. Bull. Sci. Math. 120(1996), no. 2, 195-214.
[6] P. A. Damianou and R. Loja Fernandes, From the Toda lattice to the Volterra lattice and back. Rep. Math. Phys. 50(2002), no. 3, 361-378. http://dx.doi.org/10.1016/S0034-4877(02)80066-0
[7] P. A. Damianou and F. Magri, A gentle (without chopping) approach to the full Kostant-Toda lattice. SIGMA Symmetry Integrability Geom. Methods Appl. 1(2005), Paper 010.
[8] P. A. Damianou, H. Sabourin, and P. Vanhaecke, Transverse Poisson structures to adjoint orbits in semi-simple Lie algebras. Pacific J. Math. 232(2007), no. 1, 111-138. http://dx.doi.org/10.2140/pjm.2007.232.111
[9] P. A. M. Dirac, Lectures in quantum mechanics. Yeshida University, 1964.
[10] J.-P. Dufour and N. T. Zung, Poisson structures and their normal forms. Progress in Mathematics, 242, Birkhäuser Verlag, Basel, 2005.
[11] H. Flaschka, The Toda lattice. I. Existence of integrals. Phys. Rev. B 9(1974), 1924-1925. http://dx.doi.org/10.1103/PhysRevB.9.1924
[12] J. Grabowski, G. Marmo, and A. M. Perelomov, Poisson structures: towards a classification. Modern Phys. Lett. A 8(1993), no. 18, 1719-1733. http://dx.doi.org/10.1142/S0217732393001458
[13] J. Grabowski and G. Marmo, Generalized n-Poisson brackets on a symplectic manifold. Modern Phys. Lett. A 13(1998), no. 39, 3185-3192. http://dx.doi.org/10.1142/S0217732398003399
[14] A. A. Kirillov, Local Lie algebras. (Russian) Uspehi Mat. Nauk 31(1976), no. 4(190), 57-76.
[15] W. S. Koon and J. E. Marsden, Poisson reduction of nonholonomic mechanical systems with symmetry. Pacific Institute of Mathematical Sciences Workshop on Nonholonomic Constraints in Dynamics (Calgary, AB, 1997). Rep. Math. Phys. 42(1998), no. 1-2, 101-134. http://dx.doi.org/10.1016/S0034-4877(98)80007-4
[16] J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie. In: The mathematical heritage of Élie Cartan (Lyon, 1984), Astérisque 1985, Numéro Hors Série, 257-271.
[17] B. A. Kupershmidt, Discrete Lax equations and differential-difference calculus. Astérisque 123(1985), 1-212.
[18] P. Libermann, Sur le problème d'équivalence de certaines structures infinitésimales régulières. Ann. Mat. Pura Appl. 36(1954), 27-120. http://dx.doi.org/10.1007/BF02412833
[19] P. Libermann, Sur les automorphismes infinitésimaux des structures symplectiques et des structures de contact. In: Colloque Géom. Diff. Globale (Bruxelles, 1958), Centre Belge Rech. Math., Louvain, 1959, pp. 37-59.
[20] P. Libermann and Ch.-M. Marle, Symplectic geometry and analytical mechanics. Mathematics and its Applications, 35, D. Reidel Publishing Co., Dordrecht, 1987.
[21] A. Lichnérowicz, Les variétés de Poisson et leurs algèbres de Lie associées. J. Differential Geometry 12(1977), no. 2, 253-300.
[22] A. Lichnérowicz, Les variétés de Jacobi et leurs algèbres de Lie associées. J. Math. Pures et Appl. 57(1978), no. 4, 453-488.
[23] S. Lie, Theorie der transformationsgruppen. Zweiter Abschnitt, Teubner, Leipzig, 1890.
[24] Ch.-M. Marle, Various approaches to conservative and nonconservative nonholonomic systems. Pacific Institute of Mathematical Sciences Workshop on Non-Holonomic Constraints in Dynamics (Calgary 1997). Rep. Math. Phys. 42 (1998), no. 1-2, 211-229. http://dx.doi.org/10.1016/S0034-4877(98)80011-6
[25] A. Meucci, Toda equations, bi-Hamiltonian systems, and compatible Lie algebroids. Math. Phys. Anal. Geom. 4(2001), no. 2, 131-146. http://dx.doi.org/10.1023/A:1011913226927
[26] A. V. Odesskii and V. N. Rubtsov, Polynomial Poisson algebras with regular structure of symplectic leaves. (Russian) Teoret. Mat. Fiz. 133(2002), no. 1, 3-23; translation in Theoret. and Math. Phys. 133(2002), no. 1, 1321-1337.
[27] S. D. Poisson, Sur la variation des constantes arbitraires dans les questions de Mécanique. Journal de l'École Polytechnique, quinzième cahier, tome VIII, 266-344, 1809.
[28] I. Vaisman, Lectures on the geometry of Poisson manifolds. Progress in Mathematics, 118, Birkhäuser Verlag, Basel, 1994.
[29] Complementary 2-forms of Poisson structures. Compositio Math. 101(1996), no. 1, 55-75.
[30] A. J. Van der Schaft and B. M. Maschke, On the Hamiltonian formulation of nonholonomic mechanical systems. Rep. Math. Phys. 34(1994), no. 2, 225-233. http://dx.doi.org/10.1016/0034-4877(94)90038-8
[31] A. Weinstein, The local structure of Poisson manifolds. J. Differential Geom. 18(1983), no. 3, 523-557.

Department of Mathematics and Statistics, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
e-mail: damianou@ucy.ac.cy petalido@ucy.ac.cy

[^0]: ${ }^{1} \Lambda_{0}$ being the bivector field on M associated to ω_{0}.

[^1]: ${ }^{2} \Lambda_{0}$ being the bivector field on M associated to $\left(\vartheta_{0}, \Theta_{0}\right)$.

[^2]: ${ }^{3}$ Since we have adopted a different convention of sign for the interior product i, condition differs up to a sign from the one in [12].

[^3]: ${ }^{4}$ As in the case of even-dimensional manifolds, such a structure $\left(\Lambda_{0}, E_{0}\right)$ always exists at least locally.

[^4]: ${ }^{5}$ In this subsection, the Einstein convention of sum over repeated indices holds.

