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ABSTRACT. The statistical modelling of gravitational avalanche-type processes is
carried out using the Monte Carlo method. The process of snow avalanche origin is
described with the model of stress state and stability of snow cover on a slope. The
statistical simulation of the stress state of a snow slab is performed for avalanche site No.
22 (Khibiny, Russia).The strength characteristics of the snow slab are considered as ran-
dom variables.The influence of the first moments of the distributions of the slab-strength
parameters on the probability of avalanche release is studied. Using a hydraulic model of a
dense flow avalanche, the statistical modelling of avalanche dynamics for the avalanche
site ‘‘Domestic’’ (Elbrus region, Russia) is carried out. The coefficients of dry and turbu-
lent friction and snow entrainment are considered as random parameters of the model.
The histograms and distribution functions of the run-out distance, thickness and volume
of avalanche depositions are obtained.The model and empirical distribution functions of
the avalanche run-out distance are compared. Statistical simulation of slushflow dynam-
ics (basin of Bear brook, Khibiny, Russia) is performed. The two-layer deterministic
model of slushflow is used.The random parameters of the model assumed are: the water
inflow on the ‘‘tail’’of the flow and the coefficient of dry friction for slush.The histograms
and distribution functions of dynamic characteristics of flow are obtained.Themodel out-
comes are compared with field data.

INTRODUCTION

Macromechanics of gravitational avalanche-type processes
(snow avalanches, slushflows and debris flows) has actively
developed in recent decades. The processes of snow ava-
lanche origin have been described (Bozhinskiy and Cher-
nouss, 1986; Bozhinskiy and others, 2002a). Dynamic
models of dense snow avalanches, powder avalanches and
mixed avalanches have been proposed (Bozhinskiy and Lo-
sev, 1987; Eglit, 1998; Harbitz, 1998). Dynamic models for
slushflow and debris flow have also been developed (Iver-
son, 1997; Bozhinskiy and Nazarov, 1998, 2000). A model
usually includes some parameters, which, together with in-
put data, control the solution of a problem.The rather pre-
cise assessments of model parameters for natural problems,
including avalanche-type processes, are impossible practi-
cally. Each realization of an avalanche-type process is the
result of the interaction of many complex natural factors,
and thus has ultimately a probabilistic character. In this
context, a probabilistic approach to the assessment of ava-
lanche dynamic characteristics seems to be a sound perspec-
tive (Barbolini and Savi, 2001; Bozhinskiy and others, 2001,
2002a,b,c; Barbolini and others, 2002).

The object of this paper is the statistical simulation of
avalanche-type processes. As a basis, deterministic models
of these processes are used, but the model parameters
and/or input data are treated as random variables.The out-
put data, obtained in operating the deterministic model,
will also be random variables. The statistical simulation of
random parameters is carried out by the Monte Carlo
method.

MONTE CARLOMETHODOLOGY

TheMonte Carlo method is a statistical simulation method
that can simulate any process that undergoes an influence of
random factors. The Monte Carlo method simulates ran-
dom variables with known distribution laws. A reference
random variable used in the Monte Carlo method is �, uni-
formly distributed within an interval (0,1).

Having generated a value for �, it is possible to calculate
a value � of another random variable x, distributed within
an interval (a; b) with a probability density pðxÞ, from the
equation (Sobol’,1968)Z �

a

pðxÞ dx ¼ � : ð1Þ

If the variable x is distributed uniformly within an interval
(a, bÞ, its density p is constant (p ¼ ða� bÞ�1), and from
Equation (1) follows the equation for generation of values
of �:

� ¼ aþ �ðb� aÞ: ð2Þ
There are various ways of generating random variables

for more complicated distributions of � (Sobol’, 1968). In
particular, if � is normally distributed with parameters �
and � (� ¼ E� is the mathematical expectation;
� ¼ ðD�Þ1=2 is the sample standard deviation, with D indi-
cating the variance) the generated values follow from the
equation

� ¼ � þ ��0; ð3Þ
where �0 is the normal distributed random variable with
zero mathematical expectation and unit variance.
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In this paper, the uniform distribution law of model
parameters is used for three reasons. First, the true distribu-
tion of any model parameter is not known. Secondly, as
shown earlier, the influence of the distribution laws for
model parameters on distribution functions for output
model characteristics is relatively weak (Bozhinskiy and
others, 2001). Thirdly, the uniform distribution law is con-
venient for examining how the moments of distributions of
model parameters influence the output data.

STATISTICAL MODELLING

Snow avalanche origin

The problemof the stability of snowonmountain slopes and
avalanche origin is key in avalanche science. During statis-
tical simulation, the model of the stress state of a snow slab
on mountain slopes based on the equations of the moment-
less theory of thin elastic (viscous) shells was used (Bozhin-
skiy and others, 2002a).The zone of the avalanche origin or
instability is determined by the critical thickness Hcr of a
snow slab:

Hcr ¼ c½�gðsin � f cos Þ��1 ; ð4Þ
where c is cohesion, f is the coefficient of internal friction, �
is the snow density, and  is the local slope angle.

The output characteristics of the two-dimensional
model are normal stresses S11, S22 (along and across a
slope) and shear stresses S12 in a plane of a slab. Thus, it is
possible to determine an avalanche origin not only from a
maximum tensile stress, which is usually observed on the
upper contour (fracture line), but also by more complicated
criteria, for example, the intensity Si of shear stresses (Boz-
hinskiy and others, 2002a), which achieves a maximum
along longitudinal edges of the instability zone (flank shear
fractures):

Si ¼ ðS11
2 þ S22

2 � S11S22 þ 3S12
2Þ1=2: ð5Þ

From the solution of the two-dimensional problem, it is
possible to estimate a configuration of an instability zone
and a volume of snow, which is potentially unstable. How-
ever, this volume practically always exceeds the actual
volume of snow originally involved in the motion, because
the action of maximal stresses is spread to only a part of
the instability zone (Bozhinskiy and others, 2002a).

The statistical simulation of snow instability on a slope
was carried out for avalanche path No.22 (Khibiny, Russia).
The stress state and stability of the snow slab before an ava-
lanche release was estimated.The avalanche occurred on 9
February1987, as a result of mortar firing, and had a volume

of 31� 103 m3. The distribution of the snow slab thickness
within a starting zone was determined from field measure-
ments on 40 stakes and was approximated by a cubic poly-
nomial, as shown in Figure 1. Storm-accumulated snow is
noticeable in the left upper corner of the starting zone. Data
on the strength characteristics of snow are lacking, so typ-
ical ranges of values were assumed: 0:4 � f � 0:5; 300
� c � 700 Pa. The strength of the snow slab on rupture
and shear, and accordingly the limiting value Si

� of the
shear stress intensity in a plane of a slab, were also random.
The assumed value was 1� 104 � Si

� � 2� 104 Pa. The
assumed ranges for strength parameters approximately cor-
respond to experimental data for storm-packed snow with a
density of about 300 kgm^3 (Voitkovskiy,1977).

Auniform distribution of strength characteristics within
the assumed ranges was supposed. One hundred values of
randomvariables c; f; Si

�weregenerated, andthenthe stress
distributionswithintheavalanche startingzoneareobtained.
It isnecessary tounderlinethat, foragivenproblem,aswellas
for two other problems considered in this paper, the number
of generations has an illustrative character.

The fragment of the starting zone, corresponding to the
left upper corner of Figure1, is shown in Figure 2.There the
typical distribution of Si is given. It is seen that the contours

Fig. 1. Distribution of snow slab thickness; contour ofH level

is 0.1m. Avalanche site No. 22 (Khibiny).

Fig. 2. Contours of shear stress intensity Si.

Fig. 3. Histogram and distribution function of�Si.
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of the maximum stress Si form a near-triangular shape.
Maximum tensile stresses act at the crown, and maximum
shear stresses and transverse normal stresses on the sides.
The thick solid line marks the fracture line of the avalanche.
Good agreement between the model calculations and field
data is noticeable.

The maximum values Si for each realization were com-
pared to a random value Si

�, and the random difference
�Si ¼ Si

� � Si was determined. The histogram and distri-
bution function of �Si are shown in Figure 3.The distribu-
tion has a negative skewness and excess. By definition,
�Si > 0 corresponds to stability and �Si < 0 to instability
of the slab. According to the distribution function in Figure
3, the probability of stability and instability of the snow slab
is equal to 0.11 and 0.89, respectively. The probability of in-
stability of the snow slab is rather great, which also proves to
be true of the avalanche release.

However, as the boundary values of ranges of change of
snow-strength characteristics are not exact, the influence of
the first moments of distributions (mathematical expecta-
tion and variance) on stability of the snow slab was investi-
gated. In Figure 4, the curves of probability of stability and
instability of the slab are shown to depend on the variance of
S�
i ;DS

�
i : The mean value of S�

i ; �S, was held constant and
set to 1:5� 104 Pa. This corresponds to expansion or nar-
rowing of the range of changing of S�

i . It is apparent that
the influence of the variance of S�

i on stability of the snow
slab is rather weak. At the same time, the dependence of
the probability of snow-slab stability on the mean value of
cohesion �c is noticeably stronger (Dc is constant, which
corresponds to a shift of the range of changing of c) (see
Fig. 5).The curves corresponding to stability and instability
of the slab draw together with increasing �c, and at
�c � 700 Pa the probabilities of avalanche release and snow-
slab stability are nearly identical and equal to 0.5.Thus, con-
trol of the process of the avalanche origin is determined by
mean values of strength parameters of a snow slab, whereas
the influence of variance of these parameters is secondary.
This conclusion is important for modelling and should be
proved by the subsequent calculations.

Snow avalanche dynamics

The following avalanche problem is connectedwith describ-
ing the process of an avalanche motion on a slope. Here, the

deterministic one-dimensional hydraulic model, which
takes into account an entrainment of new snow masses into
the motion, is applied (Bozhinskiy and others, 2001). Three
parameters of themodel, namely, coefficients �; k of dry and
turbulent friction, respectively, and the coefficientme of the
snow mass entrainment into the motion, are considered as
random variables. The statistical simulation of the ava-
lanche-motion process is carried out for the well-known
avalanche path ‘‘Domestic’’ (Elbrus region, Russia), where
there is a series of field observations of run-out distances
(38 events). The uniform distribution of random model
parameters within ranges 0:15 � � � 0:525; 0:005 � k �
0.2, and 0.002 � me � 0.01 was assumed. The mean values
of � and kwere assumed based on several back model calcu-
lations of actual avalanches. The boundaries of ranges can-
not be prescribed precisely, and naturally contain some
indeterminacy, but they correspond to rather rare ava-
lanches (short and long run-out distances). The boundaries
of me correspond approximately to one-quarter and total
erosion of snow cover. The remaining model parameters
and input data were deterministic and set to an average
value. The density � of the avalanche body was equal to
200 kgm�3, the snow-cover thickness in a transit and de-
position zone H0 ¼ 1:5m, and the initial volume (per unit
of width) of snow involved in the motion, V0 ¼ 50m2.

Two hundred values of random model parameters were
generated. As a result of statistical simulation, the 200-term
series of the following output model characteristics were
obtained: the run-out distances of avalanches, the maxi-
mum thickness of depositions, the time of motion, and the
volume and length of an avalanche deposit body.

The statistics (the mathematical expectation �, the
sample standard deviation �, the coefficient of skewness �a,
the coefficient of excess �e, the coefficient of variationCvÞ of

Fig. 4. Probability of snow slab instability (solid line) and

stability (dashed line) vs dispersion of Si.

Fig. 5. Probability of snow slab instability (solid line) and

stability (dashed line) vs mean value �c of snow cohesion.

Table1. Statistics of model and empirical distributions of run-

out distance (avalanche site ‘‘Domestic’’)

Model Empirical

� 1613m 1614m
� 47m 84m
�a ^0.39 ^0.48
�e 0.84 0.40
Cv 0.029 0.052
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the empirical and model run-out distance S� are shown in
Table 1. The mean values of distributions practically coin-
cide; also, the coefficients of skewness are close. The scatter
of model values is less noticeable. Moreover, the model dis-
tribution has amore acute peak. A comparison of themodel
and empirical cumulative distribution functions F ðS�Þ of
the run-out distance is depicted in Figure 6. According to
the Kolmogorov^Smirnov test, the maximum value of the
module of the difference is used as a measure of deviation-
model (m) and empirical (e) distributions (Ventsel,1969):

d ¼ max j FeðS�Þ � FmðS�Þ j : ð6Þ
Then the value � ¼ dN1=2 is determined, whereN is the

number of observations, and under the relevant table the
probability pð�Þ is found, which means that the discrepancy
between model and empirical distributions will be not less
than the actually observed one. In the case under considera-
tion, d � 0:12; N ¼ 38; � � 0:7 and �ð�Þ � 0:7.This prob-
ability is not small; therefore, it is possible to consider a
hypothesis about the goodness of model and empirical dis-
tributions compatiblewith data from field observations.The
hypothesis is also not rejected according to Pearson’s chi-
square test. At the same time, some discrepancy is found in
zones of rather rare values, which is due to both ignorance of
precise distribution laws of model parameters, and re-
stricted series of field observations.

The histogram and distribution function of themaximum
thickness of avalanche depositions are shown in Figure 7.The
distribution is characterized by positive asymmetry
(�a ¼ 0:63Þ and almost by lack of excess (�e ¼ �0:11Þ: The
mean value is �Hmax ¼ 5:5m. This value is in accordance
with field observations, which, unfortunately, are unit.

Slushflow dynamics

The two-layer deterministic hydraulic model of a slushflow
is a basis for developing a probabilistic model of a slushflow
and statistical simulation (Bozhinskiy and Nazarov,1998).

Series of numerical experiments using the model have
shown that the coefficient � of dry friction of slush and the
intensity Q of a water inflow on the ‘‘tail’’ strongly influence
dynamic characteristics, run-out distance, thickness and

volume of slushflow depositions. The influence of the other
model parameters is weaker. In this connection, the follow-
ing model parameters were assumed to be deterministic: the
drag coefficients ks; kw; ksw of the turbulent flow of slush
and water over the snow-cover surface and over the slush^
water interface, respectively, and the intensity 	 of water
percolation from the lower to the upper layer. Morpho-
metric parameters of the slope were also considered as pre-
scribed.

It was supposed that the inflowQ of water on the ‘‘tail’’of
the flowdamps in time (t) within 600 s under the square law

Q ¼ Q0½1� ðt=600Þ1=2�: ð7Þ

The parameters � and Q0 were considered as random.
The uniform distribution law was accepted. The statistical
simulation of slushflow dynamics was carried out for basin
No.166, which is located on the western slope of Khibiny in
the basin of Bear brook. Tracks of slushflow, released pre-
sumably in 1950/51, 1968/69 and reliably in 1977 and 1984,
are traced on terrain.The slushflow in1984 left the most nu-
merous and reliable tracks, making it possible to produce a
survey of boundaries and to determine some parameters of
slushflow. The flow has passed 3.35 km up the channel. The
height of the leading front reached410m.Thebasicmass of
wet snow was deposited by the extended ‘‘tongue’’, about
250m long and up to 40m wide. The total volume of snow
deposits was of the order of 3:5� 104 m3. The run-out dis-
tance of slushflow in 1984 was not maximal. From the char-
acter of depositions on boards and at the bottom valley, the
age of new growth and damages on tree trunks, it appears
that in the beginning of the 1950s, slushflows advanced
900m further (Bozhinskiy and others, 2002c).

The data from field observations and morphometric
parameters of the slope were used during statistical simula-
tion of slushflow dynamics. From a relation of water and
snow masses in slushflow it was assumed Q0min ¼ 5m s�1,
Q0max ¼ 15m s�1. The minimum value �min of the coeffi-
cient of dry friction was estimated according to the possibi-
lity of model slushflow reaching the visual boundaries on
the terrain, and was equal to 0.1.The maximum value �max

was assumed equal to 0.2. The values of the deterministic

Fig. 6. Model and empirical distribution function of ava-

lanche run-out. Avalanche site ‘‘Domestic’’.

Fig. 7. Histogram and distribution function of Hmax. Ava-

lanche site ‘‘Domestic’’.
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model parameters were set to: snow porosity P ¼ 0:5;
ks ¼ kw ¼ 0:03; ksw ¼ 0:02; 	 ¼ 0:05. The snow-cover
thickness in the channel was Hc ¼ 1m; the density of in-
volved snow was equal to 450 kgm�3.The value of the coef-
ficient of snow entrainment was assumed such that the snow
accumulated in the channel was completely involved in the
motion according to field observations.

Fifty values of random variables �;Q0 were generated,
and then, using the two-layer model of slushflow, 50 numer-
ical experiments were carried out. Thus, the 50-term series
of the following output model characteristics were obtained:
the run-out distance S; the length ls of a zone of slushflow
depositions; the length lsw of the lower water layer; themax-
imal thickness Hs of snow depositions; the maximal depth
Hw of the lower water layer; the volume (per unit width)
Vs of snow depositions and the total volume of water Vw;
the time of motion T . The outcomes of the statistical simu-
lation of slushflowdynamics are shown inTable 2 and Figure
8. It is necessary to emphasize that the distributions of all
output model characteristics, excluding Vw, have appeared
essentially non-uniform, though the input distributions of �
and Q0 were uniform.This outcome is due to non-linearity
of the operator of the slushflow dynamic model. In addition,
it is possible to note that the majority of distributions are
characterized by rather weak asymmetry. At the same time,
the coefficients of excess of distributions noticeably differ
(from 1:24 to �1:33).

The distribution of the run-out distance of slushflow is
characterized by positive excess. Figure 8 testifies to a con-
centration of stop points of the leading front of slushflow
within a slope-length interval of 2700^3200m. For gravita-
tional avalanche-type flows, as a rule, this is due tomorpho-
metric peculiarities of a profile of a channel in this interval
(a flattening zone of a slope). According to the distribution

function obtained, the run-out distance of slushflow in 1984
approximately corresponds to a probability of 0.05.The dis-
tant run-outs are rather rare; their realization requires a
combination of considerable water inflow on the ‘‘tail’’ and
low coefficients of dry friction.

CONCLUSION

This paper illustrates the possibilities of applying theMonte
Carlo method for statistical simulation of avalanche-type
processes, using the restricted field information usually
available. For more precise estimations of the characteristics
of avalanche-type processes, a greater number of random
model parameters and input data is needed.With a sequen-
tial increase in the number of random model parameters,
the distribution functions of output characteristics will de-
form (Bozhinskiy and others, 2001). In the end, they should
converge to limiting distribution functions, which will be
practically ‘‘rigid’’ (undeformed). In essence, these limiting
distribution functions will compensate our ignorance of the
true distribution of model parameters. The number of gen-
erations will depend onboth the necessary accuracy and the
number of random parameters.
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