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Abstract

The notion of a scalar operator on a Banach space, in the sense of N. Dunford, is widened
so as to cover those operators which can be approximated in the operator norm by linear
combinations of disjoint values of an additive and multiplicative operator valued set function, P,
on an algebra of sets in a space fi such that P(ii) = I, subject to some conditions guaranteeing
that this definition is unambiguous. An operator T turns out to be scalar in this sense, if and
only if, there exists a (not necessarily bounded) Boolean algebra of bounded projections such
that the Banach algebra of operators it generates is semisimple and contains T.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 46 G 10, 47 B 40,
47 D 30, 43 A 22.

Let £ be a complex Banach space. Let B(E) be the algebra of all bounded
linear operators on E. Then B(E) is a Banach algebra with respect to the
operator (uniform) norm defined by ||T|| = sup{|Tx|: |z| < l , i e E}, for every
T € B(E). The identity operator is denoted by / .

A spectral measure is a multiplicative and cr-additive (in the strong operator
topology) map P: $ —* B(E), whose domain, (§, is a <7-algebra of sets in a space
Q, such that P(Cl) = I. An operator T € B(E) is said to be of scalar type if
there exists a spectral measure P and a P-integrable function / such that

(1) T=f fdP.

This notion, due to N. Dunford, extends to arbitrary Banach spaces the idea of
an operator with diagonalizable matrix on a finite-dimensional space. It proved
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402 Igor Kluvinek [2]

to be very fruitful as is shown by the exposition in monograph [4]. Many powerful
techniques in which scalar operators play a role are based on the requirements
that & be a er-algebra and that P be cr-additive. But precisely these requirements
are responsible for excluding many operators of prime interest from the class of
scalar-type operators. Suggestions for extending this class lead to new interesting
theories.

So, C. Foias, introduced the notion of a generalized scalar operator, which was
extended further by I. Colojoara and C. Foias,. They take Q to be the complex
plane and replace the algebra of all bounded measurable functions by a suitable
but, possibly, much poorer algebra of functions on fi and the integration map
by a certain kind of homomorphism of such an algebra into B(E). The resulting
theory is systematically presented in [1].

The theory of well-bounded operators has its origin in the work of D. R.
Smart, [12], and J. R. Ringrose, [11]. It is discussed in Section XV.16 of [4] and,
more completely, in the monograph [3]. The underlying idea of this theory is that
even if the set function P is not cr-additive and is not denned on a er-algebra, it
may still be possible to introduce the integral with respect to F , based on strong
operator convergence, for sufficiently many functions.

The theory of extended spectral operators, due to W. Ricker, [2], is not yet
available in a monograph form. Its point of departure is the observation that the
failure of an operator T to be of scalar type may be, so to say, not the fault of the
operator T itself but, rather, of the space E. Indeed, there often exist a space
F, continuously and densely containing E, and an extension, 5 , of the operator
T, by continuity, onto the whole of F such that S is a scalar-type operator.

The purpose of this note is to propose still another generalization of the notion
of a scalar-type operator. It is suggested by the fact that the integral (1) exists
if and only if there exist & -simple functions / , , j = 1,2,.. . , such that

and the equality

(3)

holds for every u> € fi for which

(4)

in that case,

(5)
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[3] Scalar operators and integration 403

So, the integral with respect to P can be characterized purely in te rms of the
operator-norm convergence. Moreover, t o use this characterizat ion as a definition
of the integral with respect to P, it is not necessary to assume t h a t the set
function P be bounded, let alone a-addit ive, nor t h a t @ be a <r-algebra. These
assumptions can be replaced by less str ingent ones which nevertheless guarantee
tha t the integral is defined unambiguously, t h a t any opera tor expressible in the
form (1) can be approximated by linear combinations of disjoint values of P,
that the spectrum of T is equal to the essential range of the function / and the
family of all operators so expressed, with fixed P but varying / , is a semisimple
commutative Banach algebra.

Thus, as scalar operators in a wider sense, we propose operators which can
be expressed in the form (1), assuming that P is an additive and multiplicative
B(.E)-valued function on an algebra of sets in a space Q, with P(O) = /, such that
the integral with respect to P can be defined in the indicated manner and has
the mentioned properties. Such operators can also be characterized intrinsically,
that is, without the reference to any particular definition of integral. Namely, an
operator T € B(E) turns out to be scalar in this sense if and only if there exists
a (not necessarily bounded) Boolean algebra of projections belonging to B(E)
such that the Banach algebra of operators it generates is semisimple and contains
T. However, in contrast with the classical theory, the Gelfand representation of
this Banach algebra is not necessarily the algebra of all continuous functions on
the structure space but only a dense subalgebra.

So, we have two alternative approaches to the notion of a scalar operator:
one using integration and the other operator algebras. The fact that these two
approaches tally can be taken as a good indication that the introduced concept
would lead to a rich and fruitful theory. Indeed, the successes which P. G. Dodds
and W. Ricker obtained in [2] and elsewhere, by injecting techniques related to
integration into an area pertaining seemingly exclusively to operator algebras,
show convincingly the advantage of complementing and harmonizing the two
approaches.

To demonstrate the viability of the introduced concepts and methods, we use
them to obtain new information about some multiplier operators in V spaces.
We show, in particular, that for any p € (1, oo) translations are scalar operators
in the indicated wider sense. This is particularly significant if p > 2, because,
as proved in [5], in this case translations are not extended spectral operators in
the sense of W. Ricker [10].

The presented theory is open to the extension along the lines suggested by
W. Ricker in [10]. Indeed, such an extension becomes necessary if we want to
produce a theory comprehensive enough to cover also certain operators which
commute with too few projections but nevertheless are natural candidats for
being of scalar type in some sense. However, the natural context for such an
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404 Igor Kluvanek [4]

extension is that of general locally convex spaces rather than normed spaces.
Therefore, for the sake of simplicity, no attempt in this direction will be made
here.

For this and other reasons, the influence of my happy association with Werner
Ricker may not be apparent in what follows. Therefore I would like to acknowl-
edge this influence explicity. I also recollect with a pleasure that the proposed
approach to scalar operators and its application to multipliers occured to me
during and in consequence of the discussions I had with Earl Berkson.

Let f2 be a non-empty set to be called the space. To save subscripts and
circumlocution, subsets of fi will be identified with their characteristic functions.

A family, &, of subsets of fi is called a quasialgebra of sets in the space fi if the
family of the unions of all finite collections of pair-wise disjoint sets from $ form
an algebra of sets. By s im(^) is denoted the set of all £f-simple functions, that is
the vector space spanned by (£'. If (S is a quasialgebra of sets then sim(^f) is an
algebra of functions on fi under pointwise operations. If M is the algebra of sets
generated by the quasialgebra d2', then s i m ( ^ ) = sim(^f). Consequently, the
introduction of quasialgebras instead of algebras does not bring with it greater
generality; it is dicated simply by convenience in considering the families of
sets which classically occur in .integration and spectral theories but are merely
quasialgebras and not algebras.

If (§ is a quasialgebra of sets then a map P: (S —• B(E) is additive if and
only if it has a linear extension onto the whole of sim(^f). Because the linear
extension is unique, we shall not distinguish in the notation between an additive
map on $ and its linear extension on sim(^f). We shall also write

(6) f fdP = P(f)
Jn

for every / G sim(^f).
Let ^ be a quasialgebra of sets in the space fi. An additive map P: & -*

B(E) is said to be multiplicative if P{fg) = P(f)P(g) for every / G sim(^f)
and g € sim(^). For an additive map, P, to be multiplicative if suffices that
P[X n y) = P(X)P(Y) for every X G S and Y G <S.

An additive and multiplicative map P: $ —> B{E) such that P(fi) = / will
be called a B(£)-valued spectral set function on $'.

In virtue of the Stone representation theorem, a set W c B(E) is a Boolean
algebra of projection operators if and only if there exist an algebra of sets, <!%, in a
space fi and a spectral set function, P:£l-> B{E), such that W = {P{X): X G

}. Accordingly, a set of operators W C B(E) is called a Boolean quasialgebra
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[5] Scalar operators and integration 405

of projection operators if it is the range of a B(E)-va\ued spectral set function,
tha t is, if there exist a quasialgebra of sets, &, in a space fi and a spectral set
function, P:S ^ B{E), such that W = {P{X) :X<E&}.

If W C B(E), then by A(W) is denoted the least uniformly closed algebra of
operators which contains W. If W = {P(X): X € &} is the range of a spectral
set function P:€^ B(E), we write A(W) = A(P). Clearly, A(P) is then the
closure of the family of operators {P(f): / € sim(^f)} in the space B(E).

Recall that, if A is a commutative Banach algebra with unit, then the structure
space, A, of A is the set of all homomorphisms of A onto the field of complex
numbers. For an element T of A, by T is denoted the Gelfand transform of T;
it is the function on A defined by T(h) = h{T), for every ft € A. It is well
known (see, for example, [9], 23B) that sup{|T(ft)|: ft € A} < ||T|| and that the
coarsest topology on A which makes all the functions, f,TeA, continuous
turns A into a compact Hausdorff space. Hence the Gelfand transform is a
norm-decreasing homomorphism of the algebra A into the algebra, C(A), of all
complex continuous functions on A. If the Gelfand transform is injective, then
the algebra A is called semisimple.

Recall that an operator T e B(E) is called nonsingular if it is invertible in
B(E), that is, if there exists an operator S € B{E) such that ST = TS = / .
Then of course S = T~l is the inverse of T. A full algebra of operators is
uniformly closed algebra of operators which contains the inverse of each of its
nonsingular elements (see [4], Definition XVII.1.1).

LEMMA 1. LetS be a quasialgebra of sets in a space fi and let P: & —• B(E)
be a spectral set function.

(i) If f € sim(^), then the operator P(f) is nonsingular if and only if the
function f can be represented in the form

n

(7) / = Eei*i.

where n is a natural number, Cj are non-zero complex numbers and Xj are pair-
wise disjoint sets from S', j = 1,2,..., n, such that £)"=i p(xj) = I- In " ^
case, (P(f))-1 = P(g), where g = £ " = 1 c~lX3.

(ii) Let f € sim(^f) be a function expressed in the form (7) where Xj € $
are pairwise disjoint sets such that P(Xj) ^ 0, for every j = 1,2,..., n, and let
c = sup{|cj|: j = 1,2,..., n} and

d — sup

Then c < \\P{f)\\ < 4cd.
(iii) A(P) is a full algebra of operators.
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406 Igor Kluvanek [6]

PROOF. Let n > 1 be an integer. Let Xj € (S be pairwise disjoint sets, such
that P(Xj) ^ 0, for every j = 1,2,..., n and the sum of the operators P(Xj),
j = 1,2,..., n, is equal to / . Then the family of operators X)>=i cjP{Xj), with
arbitrary complex c3• = 1,2,..., n, is a closed algebra of operators generated by
the Boolean algebra of projections 5 Z J € J P{Xj), where J varies over all subsets
of {1,2,.. . , n}. Then (i) holds by Lemma XVII.2.1 and (ii) by Lemma XVII.2.2
in [4].

To show that A(P) is a full algebra of operators let T be a non-singular element
of A{P). Let /„ e sim(^f), n = 1,2,..., be functions such that | |T-P( / n ) | | -> 0,
as n —• oo. Then for all sufficiently large n, the operator P{fn) is nonsingular
and | |T - 1 — (P(fn))~

1\\ —*• 0. But, by (i), for each such n, there exists a function
gn e sim(^) such that (PC/n))"1 = P{gn). Therefore, T'1 G A(P).

Let (S be a quasialgebra of sets in a space Q and let P: Q —• B(-E) be a
spectral set function.

Let us call P-null any set Y C fi for which there exist sets Xj 6 @ such that
j) = 0, for every j = 1,2,..., and

(8)

PROPOSITION 2. A set y C n is P-null if and only if there exist functions
fj € sim(£f), j — 1,2,..., satisfying condition (2), suc/i that

(9)

for every u G K .

PROOF. Let the set y be P-null. Let Xj € £ be sets such that P{Xj) = 0,
for every j = 1,2,..., and (8) holds. Let us repeat each set countably many
times, arrange the resulting family of sets into a single sequence and call their
characteristic functions fj, j = 1,2, Then fj e sim(^f), j = 1,2,..., the
inequality (2) holds and the equality (9) holds for every u> € Y.

Conversely, assume that fj e sim^f), j — 1,2,..., are functions, satisfying
condition (2), such that the equality (9) holds for every w e Y. Let /_,• =
Y^jLi CjkXjk, with some integer rij > 1, numbers Cjk and pair-wise disjoint sets
Xjk e£, k -1,2,...rij, for every j = 1,2,.... By Lemma 1, ||P(/,)|| > |cjfc|,
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\7\ Scalar operators and integration 407

whenever P(Xjk) ^ 0. Therefore if we modify each function fj by omiting those
sets Xjki together with the corresponding numbers Cjk for which P(Xjk) ^ 0,
then (9) will remain satisfied for every w € Y. But then, Y is covered by the
remaining sets Xjk, k = 1,2,..., n,-, j = 1,2,

For a function / o n O , let

H/lloo = inf{sup{|/(w) : w e n \ y } : y e / } ,

where «/T is the family of all P-null sets. Then 0 < ||/||oo < °°- T n e function /
is said to be P-essentially bounded if ||/||oo < oo. In that case, the infimum is
actually a minimum because any subset of the union of countably many P-null
sets is P-null. That is to say, for any P-essentially bounded function / , there
exists a P-null set Y such that

ll/||»=sup{|/(w)|:wen\y}.
Following the custom, we shall call P-null any function / o n O such that ||/||<x> =
0. The P-equivalence class of a function / will be denoted by [/]. To be sure,
[/] is the set of all functions g on fi such that | | / — ff||oo — 0.

Let j2f°°(P) be the family of all functions / on fi such that, for every e > 0,
there exists a function g € sim(^f) for which \\f - g||oo < e. Then ^f°°(P) is an
algebra under the point-wise operations.

Let L°°{P) = { [ / ] : / € 3>°°{P)}. Then L°°{P) is a Banach algebra with
respect to the operations induced by the operators in the algebra J ? 0 0 (P) and
the norm, || • ||oo, induced by the seminorm / •-> ||/||oo, / € J2?°°(P).

The Banach algebra L°°(P) is semisimple (see, for example, [9], Theorem
24C). Actually, if A is the structure space of L°°(P), then the Gelfand transform
is an isometric isomorphism of L°°(P) onto the whole of C(A). Moreover, for
any function / 6 Sf°°{P), the equality

(10) { [ / ] » : h e A} = f | { / ( w ) : w e Q \ Y } -

holds, where JV is the family of all P-null sets and the bar indicates the closure
in the complex plane. The set (10) is called the P-essential range of the function

Let S be a quasialgebra of sets in a space fi and let P : & —> B(E) be a
spectral set function.

The spectral set function P will be called closable if
oo

(11)

https://doi.org/10.1017/S1446788700031116 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700031116


408 Igor Kluvanek [8]

for any functions fj € s i m ^ ) , j = l,2,..., satisfying condition (2), such tha t

(12)
3 = 1

for every w € fi satisfying the inequality (4).
The reason for using this term will become apparent after Proposition 6 has

been stated.
Now, assume that the spectral set function P is closable.
A function / on fi will be called P-integrable if there exist functions fj e

sim(«f), j — 1,2,..., satisfying condition (2), such that the equality (3) holds
for every w € fi for which the inequality (4) does. The integral with respect
to P of such a function / is then denned by the formula (5). Because the set
function P is closable, it is determined unambiguously by the function / . For
convenience, we shall use also the simple notation (6) for every P-integrable
function / .

The family of all P-integrable functions is denoted by -S^P). It is straight-
forward that S'(P) is a vector space of functions and the integration map
P : SC{P) -•• B(E) is linear. Therefore, the functional / H-+ ||P(/)||, / G -S^P),
is a seminorm on ^f(P). The normed space, obtained by the identification of
any two elements oi^f(P) such that this seminorm vanishes on their difference,
will be denoted by L{P). The integration map then induces a linear map of
L{P) into B(E) still to be called the integration map and denoted by P.

LEMMA 3 . Iffe5?{P) then

where the infimum is taken over all choices of functions fj £ sim(^), j =
1,2,. . . , satisfying condition (2), such that the equality (3) holds for every w € fi
for which the inequality (4) does.

PROOF. Clearly, | |P(/)| | < ££Li ||P(/j)|| for any such choice of the ^-simple
functions fj, j = 1,2, On the other hand, one can choose them so that the
numbers £ ° 1 2 ||P(/,-)|| and || |P(/)| | - | |P(/i)| | | are both arbitrarily small. This
can always be achieved: it suffices to take first any such functions and then, if
necessary, to replace the first one by the sum of the first n of them, for sufficiently
large n, and renumber the rest.

The following proposition is a formulation of the Beppo Levi theorem in the
present setting.
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[9] Scalar operators and integration 409

PROPOSITION 4 . Let fj G -S?(p), j = 1 , 2 , . . . , be function satisfying condi-
tion (2) and let f be a function on fi such that the equality (3) holds for every
u 6 ( l for which the inequality (4) does. Then f G -2*(P) and the equality (5)
holds.

PROOF. Let, for every j — 1 , 2 , . . . , / ,* G sim(&) be functions, k = 1 , 2 , . . . ,
such that Efcli ITOifc)!! < ITOi)ll + 2"J and /,-(«) - £ £ 1 /ifc(w) for every
a; G fi for which YlT=i \fjk(^)\ < 00. Then, for every n — 0,1,2,.. . ,

00 00 00

E V l p f f -ill ^ V*

j=n+lfc=l j=n+l

and
n 00

»/ -, V"~* t I \ V *
J\ J / j J j Vw/ / .#

j = l J=n+1 fc=l

for every w G fi for which £ ° l n + 1 DfcLi |/jfc(^)| < 00• Therefore, for every
n = 0,1,2,..., the function / - X)"=1 /j belongs to Sf{P) and

00

: E llp(/i)ll + 2"n-
j=n+l

PROPOSITION 5. T/ie equality \\f\\oo = 0 /»oWs for a function f onQ if and
only iffe SP{P) and P(f) = 0. Furthermore, S?{P) C ^ ° ° ( P ) .

/ / / G ̂ ( P ) and g G ̂ ( P ) , </ien fg G ̂ ( P ) and P( / j ) = P{f)P{g). So,
-^(P) ts an algebra of functions.

The range of the integration map P: &(P) —* B(E) is equal to A(P). The
Banach algebra A{P) is semisimple. The integration map P: L{P) —> A(P) is
an isomorphism of the algebra L(P) onto the algebra A(P).

If f G Jz?(P), then the spectrum of the operator T — P{f) is equal to the
P-essential range of the function f.

PROOF. If / is a function on fi such that ||/||oo = 0, then, by the definitions
of the P-null sets, P-null functions and integral, / G S'iP) and P( / ) = 0.

Let / G -S^P). Let fj G sim(^), j = 1,2,..., be functions, satisfying
condition (2), such that (3) holds for every a; G O for which (4) does. Then, by
Lemma 1,

(13) Ell/il <00.
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410 Igor Kluvanek [10]

By the completeness of the space L°°(P), there exists a function g €

such tha t

(14) M =

in L°°(P). Since, by Proposition 2, the set of points u € fi for which the
equality (3) does not hold is P-null, we have ||/-ff||oo = 0, and so, / € Jt?°°(P).
Moreover, by Lemma 1,

E/i

for every n = 1,2, Therefore, by Proposition 4 and the continuity of norms,
ll/lloo < ||P(/)||.

If, moreover, 9 € sim(^), then, by Lemma 1, P(fjg) — P(gj)P(g), for every
j = 1,2,..., and, by (2),

(15) < oo.

Hence, fg € -S^-P) and P(fg) = P(f)P{g). But then, we can write (15) for
any function g € J2?(P). Consequently, by Proposition 4, fg e 2C{P) and
^(/<7) - P{f)P{9) for any / e &{P) and g € &{P).

It is clear, from the definition of the integral, that for any / € J2?(P), the
operator P(f) belongs to A(P), the closure of the set {P(h): h e sim(^)}.
Hence, to show that {P{h): h e S?(P)} - A(P), it suffices to show that the set
{P(h): h € ^f(P)} is closed in B{E). So, let the operator T be in the closure
of this set. Let hj € £?(P) be functions such that \\T - P(hj)\\ < 2~i for every
3 = 1,2, Let /1 = hi and fj = ftj — hj-i, for every j = 2,3, Then the
condition (2) is satisfies, and, so by Proposition 4, if / is a function such that
(3) holds for every u G fi for which (4) does, then / € &(P) and T = P(f).

If is now obvious that the integration map P: L(P) —> A(P) is an isomorphism
of the algebras L{P) and >i(P). Because the algebra L{P) is semisimple, being
a dense subalgebra of L°°(P), the algebra A(P) too is semisimple.

By Lemma 1, the algebra A(P) is full. Therefore, the spectrum of an operator
T belonging to A(P) coincides with its spectrum as an element of this algebra.
Because of the isomorphism of A(P) and L(P), this spectrum coincides with the
spectrum of the element [/] of the algebra L(P) such that T = P(f) which is
equal to the essential range of the function / .
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[11] Scalar operators and integration 411

4

Let & be a quasialgebra of sets in a space fi.

If P: (§ —> B{E) is a closable spectral set function, then by Proposit ion 5,

L(P) C L°°{P). Clearly, if P is not bounded on the algebra generated by &,

then the integration m a p is not continuous in the norm of the space L°° (P) and

its domain, L(P), is not equal to the whole of L°°(P). This domain is of course

dense in L°° {P) and the following proposition implies tha t the integration m a p

is closed.

PROPOSITION 6. A spectral set function P: & —• B(E) is closable if and
only if there exists an injective map $ : A(P) —• L°°(P) such that |[^>(T')||OO <
||T||, for every T € A{P), and $(P(/)) = [/], for every f € sim(^).

// the spectral set function P: & —> B(E) is indeed closable, then such a map
$ is unique, its range is equal to L(P) and the map $ is equal to the inverse of
the integration map.

PROOF. If such a map $ : A(P) —> L°°(P) exists, then it is unique and linear
because {P{f): / €E sim(^)} is a dense subspace of A(P). Let then fj e sim(^),
j = 1,2,..., be functions satisfying condition (2) and let the equality (12) hold
for every w € fi for which the inequality (4) does. Let T € B(E) be the operator
such that lim^oo \\T - £ " = 1 P(fj)\\ = 0. Then of course T € A{P). Because
the map $ is norm-decreasing, condition (2) implies that (13) holds and, if
[g] — $(T), then (14) does. Now, by Proposition 2, the set of points u> 6 fi for
which (9) holds is P-null, and so, \g] = 0. Consequently, T = 0 because the map
$ is injective. That is, (11) holds and the set function P is closable.

If the set function P is closable, then, by Proposition 5, such a map <fr: A(P)
—> L°° (P) exists: it is the inverse of the integration map.

Let us now mention a sufficient condition for a spectral set function to be
closable which implies in particular that spectral measures are closable spectral
set function. But first a definition.

A spectral set function P: S —• B(E) is said to be stable if P(Y) = 0 for
every P-null set Y which belongs to S.

PROPOSITION 7. If @ is an algebra of sets and P:<S^> B(E) a bounded
and stable spectral set function, then P is closable.

PROOF. Let [sim(^f)] = { [ / ] : / 6 sim(^f)}. Because P is stable, there is a
map P: [sim(£f)] —> B(E), unambiguously defined by P([f]) = P(/), for every
/ G sim(£f). Because P is bounded and € is an algebra, by Lemma 1, the map
P is bounded. Then P has a unique continuous extension onto the whole of
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L°°(P). By Lemma 1, P and its extension are norm-increasing. Therefore, P
so extended has an inverse, $ , which is norm-decreasing. Because both maps, P
and $, are bounded, the domain of $ is closed and, hence, equal to A(P). So,
by Proposition 6, the set function P is closable.

COROLLARY 8. LetP.S-* B(E) be a spectral set function such that, for
every x € E and x' E E', the set function X i-> x'P(X)x, X E <S, generates a
a-additive measure of finite variation. Then the set function P is closable.

PROOF. The assumption implies that the additive extension of P onto the
algebra of sets generated by <$ is bounded and stable.

In particular, if S is a a-algebra and P: & —• B(E) a spectral measure, then
P is a closable spectral set function.

Let us call a Boolean quasialgebra of projections W C B{E) semisimple if the
Banach algebra, J 4 ( W ) , it generates is semisimple.

PROPOSITION 9. A Boolean quasialgebra of projection operators, W C B{E),
is semisimple if and only if there exists a quasialgebra of sets, (§, in a space fi,
and a closable spectral set function, P: & —> B(E), such that A(W) = A(P).

PROOF. Let W be semisimple. Let fi be the structure space of the Ba-
nach algebra A(VK). Let us denote by $ the Gelfand transform and put (£ —
{$(5): S € W}. Because we identify sets with their characteristic functions, (§
is a quasialgebra of sets in the space fi. Let P($(5)) = S, for every S G W.
This defines a spectral set function P: S —> B{E) such that the empty set is
the only P-null set. Therefore, L°°{P) = C(fi) and the Gelfand transform is
clearly a norm-decreasing injective map from A{P) = A(W) into L°°(P) such
that $(P(/)) = [/] for every / € sim(^). So, by Proposition 6, the spectral set
function P is closable.

Conversely, if a closable spectral set function P such that A(W) = A(P)
exists, then, by Proposition 5, the Banach algebra A(W) is semisimple.

COROLLARY 10. Any bounded Boolean algebra of projections is semisimple.

PROOF. By the Stone representation theorem, for any Boolean algebra of
operators, W, there exists and algebra of sets (S and a spectral set function
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P: € -> B(E) such that 0 is the only P-null set and {P(X): X € £} = W. By
Proposition 7, the set function P is closable.

Let us call an operator T E B(E) scalar in wider sense if there exists a
semisimple Boolean quasialgebra of operators W C B(E) such that T e .A(W).
By Proposition 9 and Proposition 5, an operator T is scalar in wider sense if and
only if there exist a quasialgebra of sets, S, in a space fi, a closable spectral set
function P:&-* B(E) and a P-integrable function / such that T = P(f).

Clearly, operators which are scalar in the sense of Dunford are scalar in wider
sense. Moreover, these operators can be characterized in terms introduced here.

By a Boolean <r-algebra of projection operators is understood a Boolean alge-
bra of projection operators which contains the strong limit of every monotonic
sequence of its elements.

PROPOSITION 11. An operator T € B(E) is scalar in the sense of Dunford if
and only if there exists a Boolean a-algebra of projection operators, W c B(E),
such that TeA(W).

PROOF. If the operator T € B(E) is scalar in the sense of Dunford, then there
exist a er-algebra of sets, f̂, in a space fi, a spectral measure P: (£ —* B(E) and
a function / € 5?(P) such that T = P{f). The range, W = {P{X): X e &},
of the spectral measure P is then a Boolean tr-algebra of projections such that
TeA(W).

Conversely, let W C B(E) be a Boolean u-algebra of projections such that
T € .<4(W). By the Stone representation theorem there exist a compact space
fi, an algebra & consisting to its compact and open subsets and a spectral set
function P:3l-* B(E) such that W = {P{X)\ X e £?}. Let & be the a-
algebra of sets generated by 32. Because P is in fact <r-additive and W is a
er-algebra of operators, the set function P has a strongly u-additive extension
onto £f, still denoted by P, whose range remains equal to W; see, for example,
[8]. Then P: $ —> B(E) is a spectral measure such that, by Proposition 5,
T = P(f), for some function / G

In view of this proposition, an alternative terminology suggests itself: opera-
tors scalar in wider sense could be simply called scalar and operators scalar in
the sense of Dunford could be called a-scalar.

6

Let G be a locally compact Abelian group and F its dual group. The value of
a character f e T on an element x € G is denoted by (x, f).
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Let 1 < p < oo and let E = LP(G), with respect to a fixed Haar measure on
G.

Let Jfp(T) be the family of all individual functions on F which determine
multiplier operators on E. That is, / € Jfp(T) if and only if there exists an
operator Tf e B(E) such that (Tf<p)~= ftp, for every <p € L2 DLP(G). Here, of
course, <p denotes the Fourier-Plancherel transform of an element <p of L2{G).

Functions belonging to J?P{Y) are essentially bounded. In fact, ||/||oo < \\Tf\\,
for every / € ^#P(F) , where ||/||oo is the essential supremum norm of / with
respect to the Haar measure. The operator Tf depends only on the equivalence
class of a function / . That is, if / € ^P(T) and if g is a function on F such
that g(£) = / (£) for almost every £ e F, relative to the Haar measure, then
g € ^ P ( F ) and Tg = Tf.

It is well known that an operator T € B{E) commutes with all translations
of G if and only if there exists a function / G J?P(Y) such that T = Tf. So,
{Tf: / € ^#P(F)} is a commutative algebra of operators, containing the identity
operator, which is closed in B(E). Clearly, ^P(T) is an algebra of functions and
the map / H 7 / , / €E ^#P(F), is multiplicative and linear.

Let ^ P ( F ) be the family of all sets X c F such that X e ^ P ( F ) . Let
PP{X) = Tx, for every X € <5?P(F).

PROPOSITION 12. The family 3?P{T) is an algebra of sets in F and P£:
>• B(Lp{G)) is a closable spectral set function.

PROOF. It follows from the mentioned properties of the map / •-> Tf, f €
hat ^ P ( F ) is an algebra of sets and the set function P — Pp is spectral.

Furthermore, a set Y C F is F-null if and only if it is null with respect to the
Haar measure on F. Consequently, the Haar measure equivalence classes of
functions on F are the same as the P-equivalence classes and so are their oo-
norms. Therefore, L°°(P) is a Banach subspace of L°°(r). Now, A(P) is a closed
subalgebra of the Banach algebra {Tf. f € Jfp(T)}. For every T e A{P), let
$(T) = [/], where / € J?P{T) is a function such that T - Tf. Then $ is an
unambiguously defined norm-decreasing map from A(P) into L°°(P) such that
$ ( P ( / ) ) = [/], for every / € s im(^ p (F) ) . Therefore, by Proposition 6, the set
function P is closable.

The usefulness of this proposition depends of course on how rich is the algebra
of sets &P(T). A result of T. A. Gillespie implies that it is rich enough to
permit complete spectral analysis of translation operators. Let us introduce the
necessary relevant notation.

Let T be the circle group, {z € C : \z\ = 1}, with its usual topology as a
subset of the complex plane. Connected subsets of T will be called arcs. For an
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element x of the group G and an arc Z C T , let

Let ^ ( r ) be the family of all sets Xz,x corresponding to arcs Z C T and

elements of x £ G. The classes of sets J^n{T), n = 2 , 3 , . . . , are then defined

recursively by requiring tha t J^niT) consist of all sets X C\Y such t ha t X €

LEMMA 1 3 . The inclusion < ^ ( F ) C &"(T) is valid for every p G ( l ,oo)

and every n = 1 , 2 . . . . Moreover, for every p € (1 , oo), there exists a constant

Cp > 1 such that \\P£(X)\\ < C£ , for every X € < X ( F ) , every n = 1 , 2 , . . . . and

every locally compact Abelian group F .

PROOF. For n = 1, this is a simple re-formulation of [6, Lemma 6]. (See also

[3, Lemma 20.15].) By induction, the result follows for every n = 2 ,3 ,

Let £7\ be the family of all subsets of R which contains all members of 3?\ (R)

and all intervals in R and no other sets. The families ^n, n = 2 , 3 , . . . , are

then defined recursively by requiring tha t !Tn consist of all sets X n Y such tha t

If we combine Lemma 13 with a classical theorem of M. Riesz (interpreted to

the effect tha t intervals belong to Jfp(R) and determine a bounded family of

multiplier operators, see, for example, [1, Theorem 6.3.3]) we obtain the following

COROLLARY 1 4 . The inclusion !Tn C ^ P ( R ) is valid for every p € ( l ,oo)

and every n = 1 , 2 , . . . . Moreover, for every p £ (1 , oo), there exists a constant

DP>1 such that \\P&(X)\\ < £>£, for every X e ^ and n = 1,2,....

The (total) variation of a function / of bounded variation on R or on T will
be denoted by var(/). Recall that every function, / , of bounded variation has a
decomposition, f = fi + ft + f3, such that the function /i is absolutely contin-
uous, fi is continuous and singular (its derivative vanishes almost everywhere)
and fs is a jump-function. If the function / vanishes at a point (or at —oo)
then there is only one such decomposition with all the three components, f\, fv
and fz, vanishing at that point. If the continuous singular component, fy, is
identically equal to zero, then the function / is called nonsingular.

LEMMA 15. Let a, P and b be real numbers such that a < /?. Let u be the
function on R such that u(t) = 0 for t < a, u(t) = b(t — a) for a < t < /?,
and u(t) — b(0 — a) for t > /?. Then there exist numbers Cj and sets Xj G <^,
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j = 0 , 1 , 2 , . . . , such that

and

oo

j=0

for every t G R.
PROOF. Because var(u) = \b\(/3 — a), by Corollary 14, the statement holds

with Cj = 2~jb{p - a), j = 0 ,1 ,2 , . . . , Xo = [/?, oo) and

Xj = ( ( 6 R : exp [ 2 n* - <*) A e {expst-. „. < s <• 27r}l n [a,0),

PROPOSITION 16. Let f be a real non-singular function of bounded variation
on R such that / ( -oo ) = 0. Then f G ^ ( P R ) and

(16) P & ( / ) < 3 Z ^ V a r ( / ) ,

/or every p G (l,oo).

PROOF. Let / = fi + f$ for a function g, integrable on R, such that
A W — /-oo ff(5)^s' ' e R) and a jump-function / 3 vanishing at -oo. Then
var(/) = var(/i) + var(/3). Moreover, there exist numbers Cj and intervals Xj,
j = 1,2,3, . . . , such that f3(t) = J^jLi CjXj(t), for every t e R, and var(/3) =
Yl'jLi \cj\- There also exist numbers b3 and bounded intervals Yj, j — 1,2,...,
such that, if Uj(t) = J^ bjYj(s) ds, for every ( e R and j = 1,2,..., then

f>ar(Uj) = f>J-(oo)| AT W)\ds = fvar )̂

and /i(<) = Yl'jLi ui(*) f°r every ( e R . Hence, by Lemma 15 and Proposition
4, / G - S ^ P R ) and the inequality (16) holds.

This proposition points a t the richness of the space ^f(P^). To be sure,

this space also contains functions of bounded variation which do not vanish

at —oo and many functions of unbounded variation. In fact, it also contains

many functions of unbounded r-variation, for any r > 1, because already the

characteristic functions of many sets from 5 J are such. (In this context, see [7].)

As ^ ( P R ) C Jf P ( R ) , we have a large class of multiplier operators which are

scalar in wider sense.
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LEMMA 17. Let r, a, /? and b be real numbers such that r < a < 0 <r + 2ir.
Let u be the function on T such that u(expti) — 0 for r < t < a, u(expti) —
b(t -a) fora<t<0, and u(expti) = b(/3 - a) for /? <t < r + 2n. Then there
exist numbers Cj and sets Xj € J%z(T), j = 0,1,2,.. . , such that

oo

53 M II*T(-Xi)ll < Cp var(u)

and

for every z € T.

PROOF. Let m be the largest integer such that m(/? — a) < 2w. Let 7 =
a + 2irmrl. Note that var(u) = 2|6|(/? - a), r < a < 0 < 7 < r + 2w and
m(7 — a) — 2TT. Hence, by Lemma 13, it suffices to take Co = b(ft — a), XQ =
{exptt: /? < t < r + 2TT}, CJ = 21~:'ivbm~1 and

Xj = {exp(7 - t)i: exp2j~1mti € {expsz: 0 < s < TT}} n {sxpti: a <t < (3}

for 3 = 1 , 2 , . . . .

PROPOSITION 18. Let r € R onrf let f be a real non-singular function of
bounded variation on T such that /(expn) = 0. Then f € Jz?(P%,) and

for every p € (l,oo).

PROOF. It is analogous to that of Proposition 16 just Lemma 17 is used
instead of Lemma 15.

COROLLARY 19 . Let x € G, let u be a non-singular function of bounded
variation on T and let / ( £ ) = u((x, 0), for every ( e T . Then f G ̂ ( P p ) for

every p € ( l ,oo) .

PROOF. A power of a character of a group is a character and all characters of
T are powers of a single one, namely the identity function on T . Interpreting G
as the group of characters of V we see immediately that , for every Y E ^ ( T ) ,
the set X = {£ € T: (x, £) € Y} belongs to ^n{T), n = 1 ,2 , . . . . So, Lemma 13
and Proposition 18 imply the result.

Now, each element, x, of the group G is interpreted as a function on F—the
character it generates—that is, the function f •-* (x, f) , f e F. Then x €
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and Tx is the operator of translat ion by x. By Corollary 19, x 6 . ^ ( P p ) and

(17) Tx= [
r

for every x € G. For p = 2, this is an instance of Stone's theorem (see e.g. [9],

36E).

Some observations about the Stone formula (17) could be of interest because

they could possibly have somewhat wider implications.

First , its proof shows tha t , for every x € G, there exist numbers Cj and set

Xj € o%2(F), j = 1 ,2 , . . . , which depend of course on x but not on p, such that

3 = 1

the equality

holds for every £ € F and

for every p 6 ( l , o o ) . Hence for each p € ( l ,oo) , the translation operator,

Tx, is expressed as the sum of the same multiples of the projections P£(Xj),

j = 1 , 2 , . . . . These projections too are "the same" for each p, only the space,

E = LP(G), in which they operate varies with p.

Also the fact tha t the sets Xj, j = 1 ,2 , . . . , belong to the class ^ ( F ) may

possibly be worth noting. The algebra 3lv{T) contains of course also sets of

much greater complexity than those belonging to ^ ( F ) . It seems tha t it would

contribute considerably to our understanding of multiplier operators to know

what kind of sets, besides those belonging to the classes <Wn(T), n = 1 ,2 , . . . , are

in the algebra ^ P ( F ) . The classes <5£, n = 1 ,2 , . . . , give us some indication in

the case F = R .

One can produce many multiplier operators by integration with respect to

Pp\ In fact, because £?{Ff) C ^ P ( F ) , each operator T> with / € S?{Pl) is

a multiplier operator which is scalar in wider sense. So, naturally, the question

arises whether J2?(P%) = ^ # P ( F ) . T h a t is to say, whether each multiplier oper-

ator is scalar in wider sense. Or, otherwise expressed, whether each multiplier

operator belongs to the Banach algebra generated by the idempotent multiplier

operators (Proposition 5).
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Then there is a question concerning the general theory of scalar operators.

Any finite-dimensional scalar operator, T , can be expressed in the form

where n is a positive integer, Cj are scalars and Pj, j = 1 , 2 , . . . , n , pair-wise

disjoint projections. If we admit n = oo, then every compact scalar operator

can be expressed in this form. Moreover, an arbi trary operator T which is

scalar in the sense of Dunford can too be so expressed but , besides allowing

n = oo, the projections P3, j = 1 , 2 , . . . , may be not pair-wise disjoint although

they belong to a Boolean cr-algebra of projection operators. As noted, also the

translation operators, Tx, can be expressed in this form with the projections Pj,

j = 1 ,2 , . . . , belonging to a semisimple Boolean algebra of projections. Now, the

question is whether there are operators scalar in wider sense which cannot be

so expressed. Tha t is, whether there are operators which can be approximated

by linear combinations of projections from a semisimple Boolean algebra bu t

cannot be expressed as the sum of a sequence of scalar multiples of projections

belonging to this algebra.
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