MULTIPLY HARMONIC FUNCTIONS
KOHUR GOWRISANKARAN

1. Introduction

Let 2 and £' be two locally compact, connected Hausdorff spaces having
countable bases. On each of the spaces is defined a system of harmonic func-
tions satisfying the axioms of M. Brelot [2]. The following is the description
of such a system. To each open set of @ is assigned a vector space of finite
continuous functions, called the harmonic functions, on this set. An open set
V is called regular if it is non-empty, relatively compact, and if, for any finite
continuous function f on the boundary oV of V, there exists a unique continuous
function on V, equal to f on 3V and a harmonic function on V, non-negative
if f is non-negative. The restriction to V of this function will be denoted by
Hy. For any x< V, the functional f— H%(x) is a non-negative Radon measure
o on oV. The systems of harmonic functions are assumed to satisfy the

following three fundamental axioms.
I. Axiom (1). The harmonic functions have the sheaf property.
1L AxioM (2). 2 and ' have bases consisting of their regular domains.

III. Axiom (3). On every domain of the spaces, any harmonic function w=0
has the property that either u=0 or u is nowhere zero on the domain of definition.
Further, for every point of the domain, the positive harmonic functions taking the

value 1 at this point are equi-continuous at this point.
DeriniTION. A lower semi-continuous, extended real valued function » on

an open set V is called hyperharmonic, if v never takes the value — o« and,

for any regular domain WciycCV, and x= W,

~

(%) 250(3’) oy (dy).

A hyperharmonic function on an open set is called a superharmonic function
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if it is not identically + « on any connected component. A superharmonic
function =0, is called a potential if any harmonic function #<p also satisfies
u=0.

Let there be potentials >0 on each one of the spaces £ and £'. (This as-
sumption is made to avoid trivialities.)

The object of this paper is to consider functions on £ x £ which are
superharmonic in each variable for every fixed value of the other. Let § be
an open subset of 2x &, let MH(9) [resp. MS(6)] be the class of all finite
continuous (resp. lower semi-continuous and > — o) functions on §, that are
harmonic (resp. superharmonic) in each variable for every fixed value of the
other. The paper can be divided into two parts. The first part deals with
the general properties of elements in MH and MS. It is shown that the
product of regular domains (which fo;'m a base for 2x £2') have a special role
to play in the discussions. A convergence property for any increasing directed
family of multiply harmonic functions (viz. elements of MH) is demonstrated.
This leads to the important result that any real valued function », on any open
set 0C 2% £, and hyperharmonic in each variable for every fixed value of the
other, is lower semi-continuous, if it is lower bounded on every compact set.

The second part deals with the integral representation of positive multiply
harmonic functions on 2x £'. It is proved that (MH)" (2 x 2') is a lattice for
the natural order and that it has a compact base (for the compact convergence
topology). Choquet’s theorem on integral representation then assures the exis-
tence of a unique measure vy, corresponding to each positive multiply harmonic
function #, on the compact base, charging only the extreme elements such that
U= SH vu(dH). The set of extreme elements of the compact base is shown to
be homeomorphic to 4y X 4i, where 4, (resp. 41) is the fine boundary [or
equivalently the set of minimal harmonic functions belonging to a compact
base of the positive harmonic functions] on 2 (respectively 2').

These results are true for multiply harmonic functions in any finite number
of variables; [viz. the functions that are harmonic in each variable for every
fixed value of all the other variables]. The same proofs carry ovetr without
any substantial change. @'We have considered here the case of two variables,
for the sake of simplicity.

2. For any open set wC 2x %', let MH(w) be the class of all multiply
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harmonic functions on w. That is, MH(w) is the class of all finite continuous
function on o, that are harmonic in each variable for every fixed value of the
other. Corresponding to 2x &', the class will be denoted simply by MH. It
is clear that MH(w) is a real vector space, for every w. We shall first prove
the following three fundamental properties of these classes. The first of these
three properties is an immediate consequence of the local nature of the defini-

tion of harmonic functions on 2 and £2'.

P.. (Sheaf property): If u s MH(w), then u belongs to MH(d) for every
open subset & of w. Conversely, if u is a finite continuous function on an open set
o and if ue MH(3) for some neighbourhood 8 of each point of w, then u belongs
to MH(w).

P.. (A base for open sets of 2x 2"

Let wC Q2 and o' C Q' be regular domains of the respective spaces and I' =ow
Xow'. For any finite continuous function f on I', there exists a function I's on
w X', having the following properties.

1) Iy=0 if £=0.

2) I'r=fon I and Ty is continuous on @ X '

3) I'y belongs to MH(w X o').
and

4) T's(%, ¥) is a harmonic function of xE w for every fixed y<=ow' and a
harmonic function of y <€ o' for every x< dw.

Moreover, T'y is uniquely determined by f, subject to the above four conditions.

Proof: Uniqueness. Suppose that I'y and I'f are two functions on @ X &',
corresponding to a finite continuous function f on I, verifying the above four
conditions.

For any fixed y'€dw', I'f(x, ") and I'f(x, ') are two finite continuous
functions on &, harmonic in o and further I'j(x, y') = f(x, ¥') =T'Hx, y'), for
every x< ow. Since w is a regular domain, we have, I'y(x, ¥') = 'Kz, y'), for
every x€w. This is true for all yeow'. Now, consider I'}{(x, ) and I'}{(x, »),
for any fixed x€w. By a similar argument, it can be easily seen that I'}(x, y)
=TI'}x, y), for every yeo' (and for every rw). This proves the uniqueness
of I'y.

Existence. Set, for every finité continuous function f on T,
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Ds(x, y) = ff (z, 2)p5(d2) oy (d2")  if (%, Y Ewxow.

- S Fx 2l (d2) if (x y)€d0X o,
= Sf(z, oz (dz) if (%, Y ewxdw'.
= f(x 3 if (x, ) er.

We shall show that #f meets our requirements. The conditions (1) and
(4) are obviously true, and by definition d¢=f on I. Let now g and g’ be
finite continuous functions on 2w and 2w’ respectively. Then g is equal to
GG, where G(x) = Hg (%) for x€w and G(x) = g(x) for xcow and G' defined
similarly. Hence 0g. is continuous on w X @'. It follows that @y is continuous
on X w', for any f which is a finite linear combination of elements of the
form gg’, since @r is then equal to a finite linear combination of @g... Since
every finite continuous function on I" can be approximated uniformly by func-
tions of the form f, to complete the proof of the condition (2), it is enough
to show that if {f,} is a sequence of finite continuous functions on I', converging
uniformly to f and such that @y, is continuous on w X v’ then @y is continuous.
Let M=1 be a real number such that H’<M on » and Hi"" <M on &'. Given
¢>0, there exists an integer N such that |f,— fl<

Ikelz for #n=N, uniformly

on I It is easily seen that if #=N, then for every (1, y) €w X o', |0s,(x, ¥

—0(x, y)|<e, for every (x, y)€w xd0' Udw X o', |05, (%, ) — Of(x, y)|<—f7s

eand |[f» - fI< 1164’ <eon I This shows that @ is the uniform limit on

wXx o', of Of,; and hence @y is also continuous on » X @'.
It remains to verify the condition (3). Let y,=o' and § be any regular

domaincéCw. Then

gmf(z, ) p2(d2) = Spi(dz)gs FE ) o2(dd) vy (dn)
= fottan (az @) 16 m 051t
= jpi(dz) j'@f (&, o) p5(de) (by definition)

= {olda) H31 50 ()
= Haf(., yo (%)

= fos(¢, ) o2(a2)
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= 0r(x, o) (by definition)

This .shows that @s(x, y) is harmonic in xSw for every fixed yo' and it
can be similarly proved that @s(x, y) is harmonic in yE o' for every fixed x<w.
This completes the proof.

LemMa 1. Let u be a finite valued function defined on an open subset 6 of
2x 2. If u=0 and harmonic in each variable for each fixed value of the other
variable, then u is continuous on o.

Proof: Let (xa, y») in 8 converge to (x/, y')4. For every fixed y, #(xn, y)
—>u(x',y). Let Vc 2 and V'C Q' be regular domains of the respective spaces
such that (', ) € VxV'C VxV'cs. We can assume that (xa, y») € VX V!
for all n=1. Now {(u(xs, ¥)} is a sequence of positive harmonic functions on
V' and further ulzxy, y) >u(x', y) for every y V', where u(x', y) is another
positive harmonic function on V’'. Hence #(xs, y) converges locally uniformly
to u(x', y) for ye V'. It follows that, given ¢>0, and a neighbourhood W’ of
¥y (with W/CW'c V'), there exists an integer N (depending on ¢ and W)
such that

|u(%n, 3) —u(x', ) 1< —% for =N and all ye W'

Suppose N' is an integer =N such that y,€ W' for all #=N'. Then, for all
n=N',

Iu(xm yn) = u(x', yn)]< “; (1)

Again by the continuity of #(x’, ) on V', there exists an integer N"=N' such
that

lu(x', yn) —u(x!, y) 1< % for n=N" (2)

From (1) and (2), we have the inequality
lu(x’, ) = u(xn, yn)|<e for n=N".

This proves the continuity of # at (x', 3')=4s. But this point béing arbitrary
in o, it follows that # is continuous on 4. This proves the lemma.

P;. (Convergence Property). Let 6C 2x 2' be a domain and let {u;}ic: be an
increasing directed family of functions in MH(3). Then, the upper envelope u of
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this family is ¢ither identically +  on & or u belongs to MH(3).

Proof. Let Ex={x=d : u(x) = + ©} and E, =0 — E;.. We shall show that
both E, and E: are open. '

Let (%, y) € E;. Let VC 2 and V'C 2' be regular domains of the respective
spaces such that (%, y0) € Vx VICV xV'cé. Now {ui(x, ») }ie: is an in-
creasing directed family of harmonic functions on V' and #(x, ) = ‘?’é? #i( %o,
) = + . V' being a domain, it follows that #(x, y) = + o for all ye V".
Now, fixing y & V', we can similarly prove that #(x, y) = + © on Vx V'. Hence
(%, y0 € VX V'CE,. This is true for every point of E;. This shows that
E, is an open subset of §. An exactly similar argument shows that E, is also
an open subset of &. Now, & being a domain, one of E; or E; has to be void.
This shows that either #= + « on § or #< + « everywhere on 6.

Suppose now that #< + o everywhere on §. We can assume without loss
of generality that #=0. Since # is finite at every point, it follows from the
Harnack property (axiom 3') that # is harmonic in each variable for every

fixed value of the other. Hence by the lemma 1, » is also continuous on é.
This completes the proof.

Consequences.

ProposiTioN 1. Let us (MH) " (8) where 6 is a domain. Then either u>0
everywhere on 0 or =0 on 9.

This follows immediately by considering the increasing sequence {nu} of
MH(9)-functions.

ProrosiTiON 2. Let u be a finite continuous function on an open set 6 C 2x L',
Then u is multiply harmonic on 8, if and only if, for every pair of regular domains
0 C 2 and o' C 2 such that & X o' C 0o, u satisfies the condition u =Ty in o X'

This is an easy consequence of (P,).

ToeEOREM 1. Let wC R and o' C Q' be a pair of regular domains. Then, for

any extended real valued function f on dwXdw', the py xpy summability is
independent of (x, N Ew x w'. And in the case of a summable function f, jf (2,

2) (pr X py ) (dzdz') is an element of MH(w X 0').

Proof. Let ¢> — « be any lower semi-continuous function on 2w X ow'.
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There is an increasing sequence {f} of finite continuous functions on 9w X dw'

such that ¢ is the pointwise limit of f». Then

j}zj(z, 2) (02 % o) (dzd) = lim jf,,(z, 2 (o2 x 03") (dzd2")
=limIy (%, y)

n->x

for every (x, y)Ewxo'. But, since {I's,} is an increasing sequence, we have,
by the property P, that the integral of ¢ is either = + o« or an element of
MH(w X w’_). Now, it is clear that, for any extended real valued function f on
dw X dw', S fz, 2')(p% x py’) (dzdz') is identically + o« or — < or else an element
of MH(w X w'). A similar result is true for the lower integral and moreover

Sf zS /. The proof of the theorem is now completed easily, using the Proposi-

tion 1.

LemMA 2. Let 0 be a domain contained in 2 x Q'. Let v be an extended real
valued function on 0, satisfying (1) v> — o and (ii) v is hyperharmonic in each
variable for every fixed value of the other. Then v is either identically + © on d

or v is finite on an everywhere dense subset of 9.

Proof. Let w:C £ and w: < &' be domains of the respective spaces. Assume
v= + © on a non-empty open subset V of w;Xxw,. Let p(V) be the projection
of V on 2. Suppose xop(V). Then, the hyperharmonic function »(x, ¥) on
the section of w; X w» through x, (which is homeomorphic to w;) is + « on a
non-void open set, namely VN {(x, ¥) : x=x,}. Hence v(x, y) = + =, for
every y=w,. This is true for every x»ep(V). Now, for any y=w,, the hyper-
harmonic function »(x, y) is + « on the open non-void subset p(V) Cw;; and
w; being a domain, we have v(x, y) = + ~ for every x€w,. This is true for
every yEw:.. Hence v= + © on wyX ws.

Define the subset ¢ of & as follows:

o= {(x, ») : 3 a neighbourhood of (x, y) contained in &
such that v = + c on this neighbourhood.}

Then ¢ is an open set. Let (%, y) be any boundary point in é of ¢. Then
there exists a rectangular neighbourhood N of (%, ) (where the sides are
connected open sets) such that N N=x0, and Nc§. Hence, v is + © on a
non-void open subset NN of the rectangular open (domain) N, which implies
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that v= + «© on N. That is, (%, y) €. This being true for all the boundary
points of ¢ in &, it follows that ¢ is relatively closed in 6. Hence we have
either ¢ =¢ or ¢=40. This completes the proof of the lemma.

DeriniTiON 1. Let 6 be an open subset of 2x 2. Define the class MS(3)

of multiply superharmonic functions in 4, as follows:

v> - o« and lower semi-continuous on 4

v is hyperharmonic in each variable for
MS(3) =v:
every fixed value of the other

v# + o« on any connected component of ¢

It is easy to see that (i) if v;, v»€ MS(d) and =0 and a.=0 then a;v,
+ a2v.€ MS(8) ; (ii) if v, v. € MS(3), then the function v =inf (v, v;) also
belongs to MS(8); (iii) MH(8) € MS(d) and (iv) if {vi}ie; is any increasing
directed family contained in MS(d), then v =sup v; belongs to MS(0) if it is

not identically + o on any connected component of é.

THEOREM 2. Let v be an extended real valued function on an open subset o
contained in 9 x £', satisfying (i) v> — oo, (ii) v is bounded below on every compact
subset of ¢ and (iil) v is hyperharmonic in each variable for every fixed value of

the other. Then v is lower semi-continuous on d.

Proof. Let us first prove the theorem assuming that v is superharmonic
in each variable for every fixed value of the other variable.

Let wC 2 and o' C &' be regular domains of the respective spaces such that
o X o'C¢d. Define, for any r<€w and yedo/,

¢(% 3, w) = {p(&, ») o2 (d8).

Let 2 be a real number such that v=k on wXxw'. For any fixed yew', since
v(x, ) is superharmonic in # the function ¢ (x y, w) is harmonic of rcw.

Now let x be fixed in w. Suppose y,€o0' and y.—»y<a'. Then,

hm mf @(x, yn, w) = lim. inf. Sv( Va) px (d2)

Nn->00

>Shm inf. (&, y») 0% (d2)
(Fatou's lemma)
zfoe 9 oz@

(v(&,.) is lower semi-continuous)
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(The measure p%_is totally.finite and v(%, y,)=k for all » and é=o hence the
use of Fatou’s lemma is justified.)

Hence ¢(x, y, w) is a lower semi-continuous function of y € ', for every
1€,

Let w: be any regular domain of 2 such that @;Cw. On the compact space
o X o', ¢(x, ¥y, ) is continuous in x for every fixed y< &' and lower semi-
continuous in y for every x€w@;. Hence ¢(x, y, w) is a borel measurable func-

tion on @ X @'. Moreover,
kSpSZ'(d;‘)§S0(x,y, w) Zv(x, ) (1)

for every (1, Y Em X @'

Now, define for every y€eo' and x=o,
o5y, 0, 0') = S<P(x, 7, @) o5 (dy).

Once again, by the inequality (1) and the fact that v is superharmonic for
every fixed x=w, we get that ¢(x, », 0, ©') is harmonic of y= o' for every x=w.
Now, we shall show that ¢ is a continuous function on w X w'.

Let w;C 2 be a regular domain such that @&;Cw. It is clear, from the
inequality (1), that ¢(x, ¥, ©) is lower bounded on &,x &' and it is moreover
measurable. Since the measures p;* and py are finite, by Fubini’s theorem,

we get

So(f, ¥ 0, o) px(d2) = SpZ?‘ (de)fsa(e, 7, ©) p5 (dy)
o3 (dn) [ (2, 7, w) p2(d2)

-
= S(p (x, 9, w) o5 '(dﬂ)
=gq

(%, 5 0 o).

This is true for all the points x of w; and in turn for all such regular domains.

Hence, o(x, 3, o, ') is harmonic in x for every y=w'. Suppose k(x, y) =
({1 622) 65 (@m). Then

v(x P =2a(x, y, w, o) =kh(x,y) 2)

for every (1, y)€w x o'.

Now, the function s —%% on wX e’ is =0 and is harmonic in each variable
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for every fixed value of the other. Hence, by the lemma 1, ¢ — k% is a con-
tinuous function on w X «'. It follows that ¢ =g —kk+ kh is also a continuous
function on wX «'.

Let us now take a point (x, y€wXw'. Let w;C 2 and w]C £ be regular
domains of the respective spaces such that @ Cw and @, Co' and (%, yo0)E
w1 X wy. Then

(%0, 3o, 0, 0') = («(x. ¥ o, ") o5 (dx) p5," (dy)
= jp;’; "(dy) (a(x, ¥ 0, o) p%; (dx)
gjp';; H(dy) jv(x. ) 02(dx)  [from the inequality (2)]

= Sp;)nll (dy) (P(x07 J’, wl)

= a(%, Y, w1, 0]).

Hence {s(%, y, U, U')} is an increasing directed family of real numbers (for
all the neighbourhoods Ux U’ of (o, ) where U and U’ are regular domains
such that Ux U'C9).

Define the function V on é by setting

V(x, ) =lim. o(x, 9, U, U") = supa(x,y, U, U')
u,u! U, U’

for every (x,y)eo.

We shall show that (i) V is lower semi-continuous on & and (ii) V=2 on
8, and this will prove the theorem for such functions v.

From the definition, V(x, ) <v(x y) (using inequality (2)). Let (%, y)<d
and & the lower semi-continuous regularisation of ». Suppose w X' is a

rectangular neighbourhood of (%, ) (where the sides are regular domains)
such that @ X @'<éd. Then

(%, yo) = lim inf v(x, y)= lim inf o(x, ¥, 0, )
(2, YVE»Xw’ (2 Y IEwXw!
(=, v)~>(20, vo) (2, ¥)-> (@0, Vo)

= O'(xOy yo, w, wl)»
since ¢(%, ¥, w, ®') is continuous on w X «'. This inequality
(%0, y0) Z0 (%0, Yo, 0, ')

is true for a fundamental system of regular rectangular neighbourhoods of
(x0, ¥0). Hence
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B (%0, y0) ZV (%0, 30) 3)

On the other hand, if 2<9(x, ), then there exists a neighbourhood N of
(%, ), NCd, such that »(x, y) >2 for every (x,y) € N. Now, for any pair of
regular domains »w and o' such that (%, yo) €Ewxw' CoX @' <N, we have

V%, y0) =0(x0, 3o, 0, 0') = Sp}’;(dy)gv(x, ) ow (dx)

) fa:)

Taking the limit as the regular domains shrink respectively to x, and y,, we
get.

Vizo, 30 22 lim ( fao,)({aos;)
=2 [2]

This is true for every A<®(x, y), hence V=%. This, combined with the
inequality (3), gives us that V=4%. Hence V is lower semi-continuous.
Let now (%, y))€d6. Let v and o' be regular domains such that (x, )
ewXw' CwXw Cd. Choose the following sequences of regular domains.
(1) {ws} satisfying: (i) %S wn+1CTn+1C0nCdonC 0
for every n=1;
and (ii) Nws = {x).
(2) {wh) satisfying: (i) %S wnt1C dhi1 C 0 CohC o
for every n=1;

and (ii) Nwn = {yo}.

Let us fix y=w'. Since v(x, y) is superharmonic on o,
(%, y, on) = fv (x, y)o2r (dx) /v (%0, ¥) [21
as » tends to infinity. Hence,

lim o (%, Yo, wn, 0m) = limj?’(xo, 7 wn) 05 ™(d)

~

= Yo (x, o5 (dn)

(monotone conv. theorem).

(Note that the monotone convergence theorem is applicable, as in the proof

of the earlier part). From this we get
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V(xo, yo) z lim J(xo, Yo, Wn, w;n\

n>®

= jv(xo, ) p5em™(dy).

This is evidently true whatever be the domain v (m=1). Hence

~

Vi, 30) Zlim \o(x, ) o5 (d)

= v (%, J’o)-

Thus we get V =v and this shows that v is lower semi-continuous on 4.

To complete the proof of the theorem, let us consider a v as in the hypo-
theses of the theorem. Let V>0 and V’/>0 be continuous potentials on £ and
2 respectively. Then clearly, for every positive integer N, the function vy
defined by

va(x, ¥) =Inf [v(x, ¥), NV V' (y)]

is lower semi-continuous on §. It follows that » which is the increasing limit

of vy is also lower semi-continuous on 8. The proof is complete.

3. MH-minorants
Let wC 2 be a relatively compact open set and 9w its boundary. Consider
the Dirichlet problem with the trace on w of the family of all neighbourhoods
of all points of dw. Then the finite continuous functions are resolutive for
this problem [7]. And to each point ¥ w, corresponds a positive Radon measure
©% on the compact space dw, such that the upper (Perron) solution /%, cor-
responding to any extended real valued function f on 9w satisfies the equation

H$ (%) = S f(2)pz(dz). In particular, all the borel measurable functions ¢ on

dw, that are ur-summable, are resolutive and the solution H; (%) = f(p(z) w5 (dz).

LEmMMA 3. Let wC 2 and o'C Q' be relatively compact open subsets. Let v be
a multiply-superharmonic function defined on an open set containing @X @'. Let,

Jor every xcw and y€ o',
Dy (5 ) = [0(&, Duz @ ' (dn).

Then Dy is multiply-harmonic on wx o'. Moreover, if w, and w| are open sets
such that ©,Cw and @,C o', then DY "'2Dy " in 0, X o},
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Proof. Let h(x, y) = Sd,u'}d,u}”, for every (x,y)€wXx w'. Then clearly, 2(x,y)
is harmonic in each variable for every fixed value of the other and also
2=0, hence he MH(wx w'). It follows that Sadud;}’u'y'" € MH(w X '), for every
real number a.

Let %2 be a real number such that v=k on 9w x 2ow'. For every na’, since

v(£, ) is superharmonic of & we have v(x, %) va(f, 7) ux(d8), for every x<w.

The latter function is harmonic in w. Let ¢(x, 7) = jv(f, 7 ur(ds), for every
(x, D Eewx@'. Then, by Fatou's lemma, it is easily proved that ¢(x, 7) is lower
semi-continuous on @', for every r€w. Now, if & is any regular domain such
that §'C ', then

f‘ﬁ(m 7) oy (dn) =jp§'(dn5 Sv(E, 7 i (df)
= §uz@ foce, n o @p

(Fubini’s theorem)
< [ur@oe, »
=¢(x, ¥).

It follows that ¢(x, ») is superharmonic on ', for every x€w. From this we
deduce that

5 (59) = (9 1 (dn) 205 9) <05 9).

Also, Dy is harmonic on o, for every fixed x€w. Now, by using Fubini’s
theorem and the fact that ¢(x, .) is harmonic on w, it is proved easily that
Dy is also harmonic in x for every fixed ye«'. Further Dy =kh, from
which we deduce that D;*“’ is continuous on wX o', using the lemma 1.

Suppose w; and w] are open subsets of w and o' respectively such that @
Cw and & Cw'. Then, for any ¥ € MH(w X »'), we have evidently

ul% ) = fule, n) u(de) 3" (dn).
Applying this to D;» '€ MH(w X o'), we get

Di+™ (5, y) = \ D™ (8, 7) 3 (d8) 15"l
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< [o(&, v w2 @) 13 an)
=Dy (x, ).

This proves the lemma.

Tueorem 3. Let & and §' be open subsets of 2 and Q' respectively.  For any
v MS(3x '), if there exists a multiply harmonic minorant, then there is o greatest
multiply harmonic minorant.

Proof. Suppose v=h where he MH(3X6'). Let {w,X wh}xz1 be a sequence
of relatively compact open rectangles of 2x £2' such that (i) @nX ©4C wns1X
Wnp Cax 8! for every #21 and (i) U wsX wh=08Xd.

Now, consider Dj = Dy™*'» ag d;ﬁned in the lemma 3. For every (x, »)
€8x 4", Dy(x y) is defined for all » after a certain stage and is a decreasing
sequence of real numbers. Let J,(x, yi = [im Dj(x, y). Since DJ(x, y)<v(x y)
for every (%, y)EwnX 0y and all #, we getn;;at Dy(x, y)<vix, y) for all (x, ¥)
€0x 4. For every point (x, y) 4§ x é', there exists a connected neighbourhood
V which is contained with its closure in wsX wn, for all » after a certain stage.
From the lemma 3, we have that D} is a decreasing sequence of multiply
harmonic functions on V, for all » after a certain stage. But, since v=% on
ox g, we get D3(x, ) 2Dj(x, ») = h(x y) for every (x, y) Cwnx wh. This shows
that the limit of Dj(x, y) is multiply harmonic in V. It follows that Dy is a
multiply harmonic function on ¢x ¢’ and D,<v.

Suppose u=MH(3x0') and u<v. Then D% y)=Dl(x, y)=u(x, y) for
every (1, y)€waXwn. From which, we deduce easily that D,(x, y)=u(%, )
for every element of dx . The proof is complete.

An important corollary is the following result.

Tueorem 4. The set of all non-negative multiply harmonic functions on any
Open rectangle is a lattice for the natural order. The set of all multiply harmonic
Junctions on an open rectangle is a complete lattice.

Proof. Let 6x4' be an open rectangle. Let %, and #, be any two non-
negative multiply harmonic functions on 6xé. Let »=inf(s;, v;). Then
v& MS(6xd') and v=0. Hence by the theorem 3, » has got the greatest
multiply harmonic minorant ». It is clear that « is the greatest element in
MH(x¢') such that #<u' and w<u,. On the other hand, let w = inf ( = u,
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—u). Then weMS(5x4") and w= — (uy + u:) EMH(6x8'). Let —u' be the
greatest MH-minorant of w. Then it is obvious that #'=#; and %, and #' is
the smallest element of MH13x 8') which majorises both #, and #,. This proves
that (MH)"(6x¢') is a lattice.

Let {ui}ie: be any family of multiply harmonic functions on J x ¢’ such that
there is a € MH(8x ') with Z=Zw; for every i=I. Then, 9 (the lower semi-
continuous regularisation of v = I,Ie’f u;), belongs to MS(dx¢') and 9=h. Clearly
the greatest MH-minorant of 4 is the lower bound of {#;}ie;. Now the proof
of the theorem is completed easily.

DeriniTiON 2. For any open rectangle 6 X ¢', the class MP(6x ') is defined

as follows:

MP(5x8") ={ve MS(6xd'): v=0 and the greatest MH-minorant

of v is identically zero.}

ProposiTion 3. For any pair of elements vy, vo€ MP(dx 0"), and real numbers
a1=0 and a;=0, a0 + azv; € MP\OX8') and inf (v, v) € MP(OX ).

Proof. The proof would be complete if we show that v;+ v, & MP(dxd').
This is easily deduced from the fact that Dy “' is additive in w for any pair

of relatively compact open sets » and o'.

4. The Integral Representation

Let us recall the integral representation of positive harmonic functions on
£ and £'. Let 4, be the class of all positive harmonic functions on £, taking
the value 1 at x. Let 4, be the set of all extremal or minimal harmonic
functions contaiued in 4.,. To every positive harmonic function # on £2, there
corresponds a unique Radon measure, called the canonical measure associated
to #, ux on 4, charging only 4, such that u=fh,uu(dh). Moreover, 4z, is
compact (by the axiom 3'). Let 45, 4; etc. be defined similarly for 2/, relative
to a point y, € £2'.

LemMma 4. If {ua} is a sequence of positive harmonic functions on Q and un
converges locally uniformly on 2 to a harmonic function u, then the canonical
measures pyu, of un (on dz) converge weakly to the canonical measure pu of u (on
dx,).
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Proof. Since u(%)—>u(x), it is clear that the measures u., on 4, are
strongly bounded [for tu,(dz,) = Sh( %0) L, (AR) = tn( xo)J- Hence from any
subsequence of u.,, it is possible to choose a weakly convergent subsequence.
But the limit of any such weakly convergent subsequence, is evidently uu., (by
the uniqueness of integral representation), since

tim { () 1, (@) = lim e, () = () = [ R unudl)

for every x< Q.

Hence it follows that {u,} is itself weakly convergent to px. The proof is

complete.

LemMA 5. Let >0 be a multiply harmonic function on 2x 2'. For every
ye ', let vy be the canonical measure on dx, associated to the harmonic function

u(., y) on Q. Let & be a regular domain contained in Q' and y1<06. Then,
(1) ¢ 1 QM (4y,) defined by (y) =%

is weakly continuous and (2) for any finite continuous function f on 4x,, the function
y—>§ F(h)v3(dh) is o},-integrable.

Proof. Suppose {y.} is a sequence in 2' converging to '€ £'. Since u
is a continuous function, given ¢>0, we can find a neighbourhood V of x'€ @
and V' of y' € £' such that |u(x, y) —u(x", y")|<e for (x, y"), (x,y) € VX V"
If ya= V! for =N, then |u(x, y») —u(x, y')|<e for =N and all x€ V. In
other words, #(x, y) converges locally uniformly on £ to the function #(x, ').
Hence by the lemma 4, »}, coverges weakly to »y.. That is, y »»% is continuous
for the weak topology on M*(4,,). Now, the second part follows immediately.

CoroLLARY. In particular, the mapping y—vy is ps.-adequate [1]1 for every
regular domain 6 C Q' and all points yi in o.

Lemma 6. The measures vy depend harmonically on y< Q'. That is, for any

regular domain 9,
if %= ju’f‘; os(dn), then 25" =% for every yeo.

Proof. Because of the lemma 5, we have, for any A} “-summable function

fon 4y, fis vj-summable for p3-almost every =95 and
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(romag=cam = osan {r(n wicany. [

In particular, if we take for f the characteristic function of the set 4., — 4,

we get 15 “(dx, — 41) = 0, since v} (dy,— 4y) = 0 for every y'. Now, for any r< 2,

(nix 25 %an = (e3an [ro) i(an)
=j0§(dr)) ulx, 7)
since % is the canonical measure of the harmonic function «(., ). Hence
[0 3 (an) = [ o3(an uiz, )
=ulx, y) (u#(x, .) is harmonic).

This is true for every x= 2. Hence, by the uniqueness of the measure on 4.,
charging only 4, corresponding to the harmonic function #(., y), we conclude
that 25 =»5. The same is true whatever be the point y=4& and any regular
domain 6 2'. The lemma is proved.

Lemma 7. The vy-summability and the sets of v'-measure zero are independent
of y=8'. Further, for any vy-summable function f on dx,, S FRY5(dR) is har-

monic on 2'.
Proof. For every finite continuous function f on 4x,, consider S (B v5(dh).
If § is any regular domain contained in £', then

[obuCan [£ ) vitan) = [ ) o3, (am)

by the lemma 6. This being true for every point in 4, and in turn for all the
regular domains, we conclude that S f (k) vyt dh) is harmonic on £'. Now, by
standard arguments (using the convergence property of any directed family of

harmonic functions on 2'), we deduce that for any extended real valued func-

tion f on 4., S F(R)vy(dh) is identically + © or — o« or else a harmonic
function on 2'. A similar result is true for S f(h) v5(dh). Further S f(h)v¥(dh)

;Sf (B)vy(dh). The proof of the lemma is now completed easily.

CoroLLARY. In particular, if f is any vy-summable function on 4x, then
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Flx, 3) = (b hx) v3(dh) belongs to MH.

Proof. It is clear that for any »j-summable function f on 4y, the function
F(x, ¥) is harmonic in each variable when the other is fixed. If f=0, then
Fz0 and FeMH. Since any p»y-summable function is the difference of two
non-negative functions each one of which is u?-summabie, the corollary is

proved.

Remark. When we are concerned with »5-summation, it is enough to consider

the values of functions on 4;.

DerFINITION 3. An element z & (MH)" is said to be minimal if, for any
function # & (MH)" satisfying A<u, there exists a real number a; such that

0Zax<1 and % = axu.

TueoreM 5. Let (MH){ ={uc (MH)" : u(x%, ) =1}. An element u s (MH);
is minimal, if and only if, there exists elements h, h' belonging respectively to 4,
and 43, such that u(x, ) = h(x) A'(y).

Proof : Sufficient. Let he 4, and h'e4di. Suppose ve (MH)" and v<hh'.
For any x= 8, v(x, y)<h(x)k(y), and since /' is a minimal harmonic function
on 2, there is a constant a., depending on x, such that v(x, y) = a2(x)A'(y),
for every y= &', (where 0Sa,<1). Similarly, we can find real numbers By,
lying between 0 and 1, for every y= ', such that v(x, ¥) =By 2(x)A'(y) for all
x€f. From this we easily see that ax= 8y =, where » is some real number
between 0 and 1; and »(x, y) = ph(x) 2'ty) for all (x, y)e2x 2. That is, 2k’
is a minimal element.

Necessary. Let u = (MH)y be a minimal element. Consider the measures
vy on 4y, corresponding to #, as introduced in the lemma 5, Suppose f is any
finite continuous function on 4, such that 0<f<1. Then, by the lemma 7

and its corollary, F(x, ») =-j‘f(h)h(x) vy dh) is an element of (MH)*. Also

Fix, y)ggh(x) vy(dh) = ulx, y). By the minimality of #, we have a constant
ays such that (i) 0Sar<1 and F(x, y) = asu(xy). But asu(x, y), for any fixed
y< 2, has the integral representation asu(x, y) = Safh(x)vﬁ(dh). Hence, by the
uniqueness of integral representation, we have, as= f v%-almost everywhere on

dy,. Since sets of measure zero are same for all the measures vy(y= @,
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(lemma 6), there exists a set EfC 4., of »j-measure zero, for all y=2', such
that as = f except on Ey. The same is true for all such continuous functions
fon 4y. From this we deduce that, for each y=2', vy is a constant multiple
of the Dirac measure at some point of 4;. Otherwise, for some y< 2', suppose
that the support of »y contains two distinct elements z and z'. Then, there
exist disjoint compact neighbourhoods K of z and K' of 2. The »y-measure of
each one of K and K'is >0. But by Urysohn’s lemma, we can find a continuous
function ¢ : 4,,--[0, 1], such that ¢=0 on K and ¢=1 on K'. This is a con-
tradiction to the fact that ¢ is a constant vy-almost everywhere on 4,,. Again,
since sets of measure zero are identical for all the measures »y (for y=2'),
we conclude that »% = e, 8y, for some %= 4y, and By is a real number depending
on y. But »¥(4y,— 4:) = 0, and hence this element %, necessarily belongs to 4;.

Now
u(x, ) = | x) vian)

= jh(x) Byen,(dh)
= ho( x) B_v.

In particular, it follows that, for every fixed y=®', x~>ulx, y) is a minimal

harmonic function. By similarity, we deduce that y>u(x, y) is also a minimal
harmonic function on £'. That is, y > B, is a2 minimal harmonic function, say
(%, 3o)

hy on £'. Further, e = 1. Hence hi=4i. So we have proved that « =

hohy where ke 4; and hyed4;. The proof of the theorem is complete.

THEOREM 6. The set of all elements of (MH)", taking the value 1 at any

point of 2x @', is equi-continuous at that point.

Proof. Consider (xm, yo) € 2x 2. Let (MH), ={uec (MH)" : u(x, y,) =1}.
Let e (MH);. Consider the measures vy on 4y, associated to x, by the

lemma 5. Let F.(y) =Su’y‘(dh). Then, by the lemma 7, F,(y) is a positive

harmonic function on 2', and further Fu.(y) = Su?o(dh) = Sh(xo) v5,(dh) = u(x,
) =1. Hence F,e 4;,. This is true for every u= (MH); .

Given ¢>0, we can find a neighbourhood N’ of y, such that (i) N'is com-
pact, and (ii) for every element we 45, the inequality | w(y) — w(y)| <e/2 is

valid for all y= N’. (This is axiom 3’ for harmonic functions on 2'.) Moreover,
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there are real numbers m and M such that, for all ye N' and we 45,
0<m=w(y)sM [3]

Again, the Harnack property (axiom 3') for positive harmonic functions on 2,
assures us of a neighbourhood N of %y, such that whatever be x& N and v € 4s,,
the inequality

lo(x) —v(0)| < ﬁ

is valid.
Now, for all u€ (MH),, since Fy € 4),, we have

[Fu(y) — Fu(y)|<e/2  for every ye N' 1)
and
m=<F.,(y) <M  for every ye N' (2)
Now
u(x, y) — ulx, ) = Sh(x) vy(dh) — Sh(xo) vl (dh)
= {cr - nG 108 an)
+ ) 3tan) — (nix) o (am).
Hence

lu(x, 3) — u(%, y0) | éjlh(x) = h(x%)| v5(dh) + ISu&‘(dk) - fv_’v‘ddh)l
as h(x) =1
= {1200 = B 105@R) +1 Fuy) = Ful30) |

< quu(y)+lFu(y)—Fu(yo)l if xe N

2
<5+ §=s if x& N and ye N".

This is true for all the elements #» = (MH);. Thatis, (MH); is equicontinuous
at (%, yo). It is clear that the same is valid whatever be the point (%, yo)
chosen in 2% £'. The theorem is proved.

Let us now consider the vector space X = (MH)" — (MH)". X provided
with the topology of uniform convergence on compact subsets of 2% 2’ is a
locally convex topological vector space. The positive cone on X, for the natural
order is (MH)". The theorem 4 asserts that (MH)" is a lattice for the natural
order. Moreover, since 2x £ has a countable base for open sets, (MH)" is
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metrizable. Let (%, %) € 2x 2'. Consider (MH)s ={uc (MH"* 1 u(x, y) =1}.
(MH){ is a base for the cone (MH)*. From tbe above theorem, we deduce that
(MH){ is compact, as in [3]. Hence by Choquet’s theorem [4], every element
# in (MH)" is the centre of gravity of a uniquely determined measure on (MH);,
charging only the extreme elements of this base. But, it can be easily seen
that the extreme elements of this base are precisely the minimal elements of
(MH)", belonging to this base.

Let us now consider 4, and 4y, with the topology of uniform convergence
on compact subsets of 2 and 2'. Both 4., and 4), are compact spaces. Consider
the mapping

dz, X 45, (MH)¢

defined by (u, »') »uu' It is easy to verify that this mapping is one-one. Let
us prove the continuity of this mapping. Let KC2x @ be any compact set
and €<0. Let (#n, 2#n) - (2, %) in the product topology. Then u»->u, and
up—>u,. Let Ky and K| be the projections of K on £ and £ respectively.
Then, there exists M >0 and an integer N=0 such that
(i) #(x)=M and «'(») =M for all xe K;, y= K| and all u € 45, and u' € 4y,,
(i) lan(x) —ug(x)] < ésﬁ for =N and uniformly for r€ K,
and

%I for n=N and uniformly for y € KJ.
Hence, if (1, y) € K;x KD K, then

(iii) lun(y) — u{,(y) | < )

Lotn( %) () — 20(2%) 200 Y| Z | en( )] 26n( ) = 2e(9) | + s00(3) | 260 (%) = 200(2) |

e e
<MW +M-2—M»—-e.

That is, for =N, uniformly on the compact set K,
|unul. - uou{.l <e.

This is true for every ¢>0 and all the compact sets of 2x 2. Hence, unun
converges to #,%; in the compact convergence topology. Now 4, x 4y, being a
compact space, the above n'1apping is, in fact, a homeomorphism of 4z, X 45,
onto a compact subset of (MH),. The theorem 5 states that the minimal
elements of (MH)", belonging to this base are precisely the elements belonging
to the image of 4:x 4; (under the above homeomorphism:). We shall identify

the minimal elements of (MH), with 4,x4;. Thus we have proved the
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following result.

TueoreM 7. To every u<s (MH)" corrvesponds a unique measure vy on (MH);,
charging only the set 4,X 4i such that

w(z,3) = (R0 W () vuldhd?)

for every (x, y) € 2% 2",

Remark. The above results (regarding the integral representation) hold
good, as well, for multiply harmonic functions on any open set of the form
dX d', where §C @ and ¢’ Q' are connected open sets.
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