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Abstract

We analyse the asymptotic behaviour of a biological system described by a stochastic
competition model with n species and k resources (chemostat model), in which the
species mortality rates are influenced by the fractional Brownian motion of the extrinsic
noise environment. By constructing a Lyapunov functional, the persistence and extinc-
tion criteria are derived in the mean square sense. Some examples are given to illustrate
the effectiveness of the theoretical result.
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1. Introduction

A class of resource competition biology species system (RCBSS) models have been
developed [3, 11]. Consider a well-known competition model with n species and k
resources. The dynamical behaviour of the phytoplankton species depends on the
availability of resources. On the other hand, the availability of the resources depends
on the amount of resource provision and the quantity of resources used by the species.
A competition model for n species and k resources can be written as [3]

dNi(t)
dt

= Ni(t)(µi(R1,R2, . . . ,Rk) − mi), i = 1, 2, . . . , n,

dR j(t)
dt

= D(S j − R j(t)) −
n∑

i=1

C jiµi(R1,R2, . . . ,Rk)Ni(t), j = 1, 2, . . . , k,
(1.1)
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where Ni(t) is the population abundance of species i, R j(t) is the availability of resource
j, mi is the specific mortality rate of species i, D is the system’s turnover rate, S j is
the supply concentration of resource j, c ji is the content of resource j in species i, and
µi(R1,R2, . . . ,Rk) is the specific growth rate of species i as a function of the resource
availabilities. Here µi(R1,R2, . . . ,Rk) is given by the model [3, 11]

µi(R1,R2, . . . ,Rk) = min
( riR1(t)

K1i + R1(t)
, . . . ,

riRk(t)
Kki + Rk(t)

)
,

where ri is the maximum specific growth rate of species i, and K ji is the half-saturation
constant for resource j of species i.

Applications of model (1.1) have been reported in the literature [1, 5, 9]. While
the Monod model [9] has been widely used for steady-state growth rates, Li and
Smith [7] used the Lotka–Volterra model for a system with two competing species
and two limiting resources. A simple model was used to describe the competition
between two microbial species [2, 11]. It was shown that in normal oligotrophic soil
conditions, oscillatory phenomena are always observed. In the existing literature, most
researchers have not considered fractional Brownian motion (FBM) with extrinsic
noise for persistence and extinction analysis.

Taking into account the effect of a randomly fluctuating environment, we introduce
randomness into model (1.1). We assume that the specific mortality rate mi is disturbed
with mi → mi + αiḂH

i (t), where BH
i is FBM with Hurst parameter H ∈ (0, 1), and

BH
i and BH

j are independent (i , j). The parameter α2
i is nonnegative and denotes

the intensity of the stochastic noise which is used to depict the volatility of random
perturbations. Then we replace mi in system (1.1) by mi + αiḂH

i (t) to obtain the
following model with stochastic perturbation:

dNi(t) = Ni(t)(µ(R1,R2, . . . ,Rk) − mi) dt − αiNi(t) dBH
i (t), i = 1, 2, . . . , n,

dR j(t) = D(S j − R j(t)) dt −
n∑

i=1

C jiµ(R1,R2, . . . ,Rk)Ni(t) dt, j = 1, 2, . . . , k.
(1.2)

We investigate the new stochastic RCBSS model (1.2). Using the Lyapunov functional,
we conduct a persistence and extinction analysis to derive sufficient conditions for this
model. The rest of the paper is organized as follows. Section 2 derives the sufficient
conditions for persistence and extinction after choosing an appropriate Lyapunov
functional. Section 3 provides examples to investigate the persistence and extinction
of the RCBSS model. Some concluding remarks are given in Section 4.

2. Persistence and extinction

To investigate the stochastic resource competition dynamics (1.2), we need to show
that this model has a unique global positive solution. Let (Ω, F, P) be a complete
probability space with filtrations {Ft}t≥0 satisfying the usual conditions.
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Theorem 2.1. For any initial value (Ni(0),R j(0)) ∈ Rn+k, a solution (Ni(t),R j(t)) ∈ Rn+k
+

exists with probability one, namely, Ni(t) ∈ Rn
+, i ∈ (1, 2, . . . , n), and R j(t) ∈ Rk

+, j ∈
(1, 2, . . . , k).

Proof. Note that the coefficients in equation (1.2) do not satisfy the linear growth
condition, thus, there exists a unique local solution t ∈ [0, τe), where τe is the explosion
time. Assume that m0 > 0 is sufficiently large, such that Ni(0) and R j(0), i = 1,2, . . . ,n,
j = 1, 2, . . . , k, all lie in the interval [1/m0,m0]. For each integer m ≥ m0, we define the
stopping time

τm = inf
{
t ∈ [0, τe)

∣∣∣∣∣ min
1≤i≤n,1≤ j≤k

(Ni(t),R j(t)) ≤
1
m

or max
1≤i≤n,1≤ j≤k

(Ni(t),R j(t)) ≥ m
}
.

As usual, we set inf ∅ = ∞, where ∅ denotes the empty set. Clearly, τm is increasing.
Set τ∞ = limm→∞ τm, where 0 ≤ τ∞ ≤ τe almost surely (a.s.). If we show that τ∞ =∞

a.s., then τe =∞ and the solution remains in Rn+k
+ for all t ≥ 0 a.s. If this statement is

false, then there is a pair of constants T > 0 and 0 < ε < 1, such that P{τ∞ ≤ T } > ε.
Hence there is an integer m1 ≥ m0 such that

P{τm ≤ T } ≥ ε for all m ≥ m1. (2.1)

By the comparison principle [10], it easy to obtain that for all t ≤ τe,

Ni(t) ∨ R j(t) ≤ C1, (2.2)

where C1 is a positive constant.
Define a Lyapunov functional for model (1.2) as

V(Ni(t),R j(t)) =

n∑
i=1

[
Ni(t) − bi − bi log

(Ni(t)
bi

)]
+

k∑
j=1

[
R j(t) − a j − a j log

(R j(t)
a j

)]
,

where a j (1 ≤ j ≤ k), bi (1 ≤ i ≤ n) are positive constants.
By Itô’s formula [6],

dV ≤
n∑

i=1

bimi dt +

n∑
i=1

Ni(t)µi(R1,R2, . . . ,Rk) dt −
n∑

i=1

Ni(t)mi dt

−

n∑
i=1

biµi(R1,R2, . . . ,Rk) dt +

k∑
j=1

DS j dt −
n∑

i=1

k∑
j=1

C jiµi(R1,R2, . . . ,Rk)Ni(t) dt

+

k∑
j=1

Da j dt +

n∑
i=1

k∑
j=1

a j

R j(t)
C jiµi(R1,R2, . . . ,Rk)Ni(t) dt

−

n∑
i=1

Ht2H−1α2
i dt −

n∑
i=1

(
1 −

bi

Ni(t)

)
αiNi(t) dBH

i (t). (2.3)
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Let

LV =

n∑
i=1

bimi +

n∑
i=1

Ni(t)µi(R1,R2, . . . ,Rk) −
n∑

i=1

Ni(t)mi

−

n∑
i=1

biµi(R1,R2, . . . ,Rk) +

k∑
j=1

DS j −

n∑
i=1

k∑
j=1

C jiµi(R1,R2, . . . ,Rk)Ni(t)

+

k∑
j=1

Da j +

n∑
i=1

k∑
j=1

a j

R j(t)
C jiµi(R1,R2, . . . ,Rk)Ni(t) −

n∑
i=1

Ht2H−1α2
i .

Choose ai and b j such that, for 1 ≤ i ≤ n, 1 ≤ j ≤ k,

n∑
i=1

Ni(t)µi(R1,R2, . . . ,Rk) −
n∑

i=1

biµi(R1,R2, . . . ,Rk) ≤ 0

and

−

n∑
i=1

k∑
j=1

C jiµi(R1,R2, . . . ,Rk)Ni(t) +

n∑
i=1

k∑
j=1

a j

R j(t)
C jiriµi(R1,R2, . . . ,Rk)Ni(t) ≤ 0.

When t ≤ τe, using condition (2.2), we have

LV ≤ C2, (2.4)

where C2 is a positive constant. For 1 ≤ i ≤ n and 1 ≤ j ≤ k, (2.3) and (2.4) yield∫ τm∧T

0
dV(Ni(t),R j(t)) ≤

∫ τm∧T

0
C2 ds −

n∑
i=1

∫ τm∧T

0

(
1 −

bi

Ni(s)

)
αiNi(s) dBH

i (s).

(2.5)

By the property of the standard FBM BH
i (t), evaluating the means of the both sides of

inequality (2.5) for 1 ≤ i ≤ n, 1 ≤ j ≤ k, yields

E[V(Ni(τm ∧ T ),R j(τm ∧ T ))] ≤ V(Ni(0),R j(0)) + C2T.

We set Ωm = {τm ≤ T } for m ≥ m1, and by (1.2) we have P(Ωm) ≥ ε. Note that for
every ω ∈ Ωm, at least one of Ni(τm, ω), Ri(τm, ω), 1 ≤ i ≤ n, 1 ≤ j ≤ k, equals either m
or 1/m. Consequently,

V(Ni(τm ∧ T ),R j(τm ∧ T ), 1 ≤ i ≤ n, 1 ≤ j ≤ k)

≥ min
1≤ j≤k

{
m − a j − a j log

m
a j
,

1
m
− a j − a j log

1
ma j

}
∧ min

1≤i≤n

{
m − bi − bi log

m
bi
,

1
m
− bi − bi log

1
mbi

}
. (2.6)
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It follows from (2.1) and (2.6) that

V(Ni(0),R j(0), 1 ≤ i ≤ n, 1 ≤ j ≤ k) + C2T

≥ min
1≤ j≤k

{
m − a j − a j log

m
a j
,

1
m
− a j − a j log

1
ma j

}
∧ min

1≤i≤n

{
m − bi − bi log

m
bi
,

1
m
− bi − bi log

1
mbi

}
,

where IΩm (ω) is the indicator function of Ωm. Letting m→∞ leads to the contradiction
that V(Ni(0),R j(0), 1 ≤ i ≤ n, 1 ≤ j ≤ k) + C2T =∞. So τ∞ =∞ a.s. �

We mainly investigate the asymptotic behaviour of the stochastic model (1.2). In an
analogous way to the corresponding proof presented by Li and Zhu [8],

lim
t→∞

∫ t
0 R j(s) ds

t
≤ M, j = 1, 2, . . . , k, (2.7)

when Hurst parameter H ≤ 1/2, and M is a positive constant.

Theorem 2.2. If S j > {
∫ t

0 R j(s) ds}/t and 0 < H ≤ 1/2, for any given initial value
(Ni(0),R j(0)) ∈ Rn+k

+ , the solution of stochastic model (1.2) satisfies the condition

lim inf
t→∞

1
t

∫ t

0
ENi(s) ds ≥ −

D
C̄m

(S j − M) > 0 a.s. 1 ≤ i ≤ n,

where m = max1≤i≤n mi and C̄ = maxi=1,...,n, j=1,...,k C ji. That is, the population is
persistent in the mean with probability one.

Proof. Define the function V(Ni(t)) =
∑n

i=1 Ni(t). By Itô’s formula,

dV =

n∑
i=1

(µi(R1,R2, . . . ,Rk)Ni(t) − miNi(t)) dt −
n∑

i=1

αiNi(t) dBH
i (t). (2.8)

Integrating both sides of equation (2.8) from 0 to t, and dividing by t, we get

n∑
i=1

Ni(t)
t
−

n∑
i=1

Ni(0)
t

=

n∑
i=1

∫ t
0 µi(R1,R2, . . . ,Rk)Ni(s) ds

t

−

n∑
i=1

mi

∫ t
0 Ni(s) ds

t
−

∑n
i=1 αi

∫ t
0 Ni(s) dBH

i (s)

t
, (2.9)

and integrating both sides of the second equation in equation (1.2) from 0 to t yields

R j(t) − R j(0) = D
(
S jt −

∫ t

0
R j(s) ds

)
−

n∑
i=1

C ji

∫ t

0
µ(R1,R2, . . . ,Rk)Ni(s) ds.

Note that
n∑

i=1

∫ t

0
µ(R1,R2, . . . ,Rk)Ni(s) ds ≥ −

1
C̄

R j(t) +
D
C̄

S jt −
D
C̄

∫ t

0
R j(s) ds, (2.10)
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where C̄ = maxi=1,...,n, j=1,...,k C ji. From (2.9) and (2.10) we get

n∑
i=1

mi

∫ t
0 Ni(s) ds

t
≥ −

D
C̄

∫ t
0 R j(s) ds

t
−

1
C̄

R j(t)
t

+
D
C̄

S j −

n∑
i=1

Ni(t)
t

+

n∑
i=1

Ni(0)
t
−

∑n
i=1 αi

∫ t
0 Ni(s) dBH

i (s)

t
.

Using [4, Lemma 5.1],

lim inf
t→∞

n∑
i=1

∫ t
0 ENi(s) ds

t
≥ −

DM
C̄m

+
DS j

C̄m
> 0,

where m = max1≤i≤n mi, C̄ = maxi=1,...,n, j=1,...,k C ji and M is as given in (2.7). �

Theorem 2.3. If riM < max1≤ j≤k K jimi and 0 < H ≤ 1/2, 1 ≤ i ≤ n, then for any given
initial value (Ni(0),R j(0)) ∈ Rn+k, the solution of stochastic model (1.2) satisfies the
condition

lim sup
t→∞

log Ni(t)
t

< 0 a.s. 1 ≤ i ≤ n,

namely, the species go extinct with probability one.

Proof. Define the function V(Ni(t)) =
∑n

i=1 log Ni(t). By Itô’s formula,

dV =

n∑
i=1

(µi(R1,R2, . . . ,Rk) − mi) −
n∑

i=1

Ht2H−1α2
i . (2.11)

Integrating both sides of equation (2.11) from 0 to t, and dividing by t, yields
n∑

i=1

log(Ni(t))
t

−

n∑
i=1

log(Ni(0))
t

=

n∑
i=1

∫ t
0 µi(R1,R2, . . . ,Rk) ds

t

−

n∑
i=1

mi −

n∑
i=1

α2
i

2
t2H−1 −

n∑
i=1

αi
∫ t

0 dBH
i (s)

t
.

Notice that µi(R1,R2, . . . ,Rk) ≤ riRi(t)/{K ji + Ri(t)}, for all i ∈ 1, 2, . . . , n, and
n∑

i=1

log(Ni(t))
t

−

n∑
i=1

log(Ni(0))
t

≤

n∑
i=1

ri

tK ji

∫ t

0
Ri(s) ds

−

n∑
i=1

mi −

n∑
i=1

α2
i

2
t2H−1 −

n∑
i=1

αi
∫ t

0 dBH(s)

t
.

Using the assumption condition
n∑

i=1

log(Ni(t))
t

≤

n∑
i=1

log(Ni(0))
t

+

n∑
i=1

riM
K ji
−

n∑
i=1

mi −

n∑
i=1

αi
∫ t

0 dBH
i (s)

t
,
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and letting t→∞, when H < 1/2, by the law of large numbers [6], we have

lim sup
t→∞

n∑
i=1

αi
∫ t

0 dBH
i (s)

t
= 0 a.s.

which yields

lim sup
t→∞

log Ni(t)
t

≤

n∑
i=1

riM
K ji
−

n∑
i=1

mi < 0 a.s. �

3. Illustrative examples

Example 3.1. This example involves six species and three resources. We use ri = 1,
mi = D = 0.25, S 1 = 6, S 2 = 10, S 3 = 14, H = 1/4, αi = 0.3, i = 1, 2, 3, and matrices
K and C used in the competition model are given by

K =

1.00 0.90 0.30 1.04 0.34 0.77
0.30 1.00 0.90 0.71 1.02 0.76
0.90 0.30 1.00 0.46 0.34 1.07

 ,

C =

0.04 0.07 0.04 0.10 0.03 0.02
0.08 0.08 0.10 0.10 0.05 0.17
0.14 0.10 0.10 0.16 0.06 0.14

 ,
where ki j and ci j are elements of matrices K and C, respectively. The initial conditions
are R j = S j at t = 0 and Ni = 0.1 + i/100 for all species i present at t = 0. Figure 1 plots
the time series of species abundance and demonstrates the persistence behaviours of
the six species while the species coexist; the concentrations of species 4–6 are higher
than those of species 1–3.

Example 3.2. This example also involves six species and three resources. We use
r = (0.87, 0.88, 0.85, 0.90, 0.86, 0.88), ri is in vector r, mi = 0.60, D = 0.25, S i = 1,
N(0) = (0, 5, 0.4, 0.6, 0.3, 0.2, 0.1), H = 1/4, αi = 0.4, i = 1, 2, 3, and

K =

1.52 1.49 1.46 1.52 1.59 1.44
1.47 1.55 1.42 1.53 1.58 1.56
1.48 1.45 1.61 1.51 1.50 1.54

 .
The initial conditions are R j = 30 at t = 0. Figure 2 plots the time series of species
abundance and demonstrates the extinction behaviours.

4. Conclusions

We derive the persistence and extinction criteria for new resources for a
stochastic competition model by the fractional Brownian motion of the extrinsic noise
environment. The mathematical derivation of the asymptotic behaviour for random
factors becomes significantly more challenging than the determinate resources for a
competition model in the existing literature.
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Figure 1. Time series of six species with three resources (colour available online).

Figure 2. Time series of six species with three resources (colour available online).
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