
J. Fluid Mech. (2024), vol. 987, A42, doi:10.1017/jfm.2024.330

On the selection of Saffman–Taylor viscous
fingers for divergent flow in a wedge

Cecilie Andersen1,†, Christopher J. Lustri2, Scott W. McCue3

and Philippe H. Trinh1,4,†
1Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
2School of Mathematics and Statistics, The University of Sydney, Sydney NSW 2006, Australia
3School of Mathematical Sciences, Queensland University of Technology, Brisbane QLD 4001, Australia
4Theoretical Sciences Visiting Program (TSVP), Okinawa Institute of Science and Technology Graduate
University, Onna 904-0495, Japan

(Received 12 October 2023; revised 9 January 2024; accepted 18 March 2024)

We study self-similar viscous fingering for the case of divergent flow within a
wedge-shaped Hele-Shaw cell. Previous authors have conjectured the existence of a
countably infinite number of selected solutions, each distinguished by a different value
of the relative finger angle. Interestingly, the associated solution branches have been
posited to merge and disappear in pairs as the surface tension decreases. For the first
time, we demonstrate how the selection mechanism can be derived based on exponential
asymptotics. Asymptotic predictions of the finger-to-wedge angle are additionally given
for different sized wedges and surface-tension values. The merging of solution branches
is explained; this feature is qualitatively different to the case of classic Saffman–Taylor
viscous fingering in a parallel channel configuration. Moreover, because the asymptotic
framework does not highly depend on specifics of the wedge geometry, the proposed
theory for branch merging in our self-similar problem likely relates much more widely to
tip-splitting instabilities in time-dependent flows in circular and other geometries, where
the viscous fingers destabilise and divide in two.

Key words: bubble dynamics, fingering instability, Hele-Shaw flows

1. Introduction

In their now classic work on viscous fingering, Saffman & Taylor (1958) consider the
situation of a single finger of air – or an otherwise less viscous substance – steadily
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Figure 1. (a) The bifurcation diagram for the classic Saffman–Taylor problem in a channel showing the first
10 branches of selected λ values against the surface-tension parameter ε2. Labels are shown for the first four
branches: λ1, λ2, λ3, λ4. This is equivalent to the results of Chapman (1999). (b) The solid lines show the
bifurcation diagram which we calculate using exponential asymptotics for wedge angle θ0 = 20◦. This shows
the permitted λ(ε) values that are selected by the selection mechanism. Details of the derivation of this selection
mechanism follow in the rest of the paper. The circles show the numerically calculated values extracted from
Ben Amar (1991b). Notice that λ1 and λ2 merge at ε ≈ 0.3 and λ3 and λ4 merge at ε ≈ 0.07.

penetrating a Hele-Shaw cell filled with a viscous fluid. A key quantity of interest is
the proportion of the channel occupied by the width of the finger, denoted λ ∈ (0, 1).
Experimentally, Saffman and Taylor observed that λ ≈ 1/2. However, their asymptotic
analysis, valid at small values of the non-dimensional surface-tension parameter ε → 0,
did not seem to restrict the value of λ. Today, it is known that for a fixed ε there exists a
countably infinite number of possible values of λ = λi with the property that

1/2 < λ1(ε) < λ2(ε) < · · · < 1. (1.1)

In the limit ε → 0, every element in the family converges to 1/2 (see e.g. Vanden-Broeck
2010). The resultant plot of the eigenvalue, λ, vs the surface-tension parameter, ε, is shown
in figure 1(a). The resolution of the Saffman–Taylor problem, including the asymptotic
derivation of (1.1), is obtained using exponential asymptotics; today, it is a prototypical
example of such beyond-all-orders asymptotics (see e.g. works by McLean & Saffman
1981; Combescot et al. 1986, 1988; Hong & Langer 1986; Tanveer 1987, 2000; Chapman
1999; Pullin & Meiron 2013).

In this paper, we are interested in deriving a similar selection law to (1.1) but for an
analogue problem where fluid is injected at the corner of a Hele-Shaw cell limited by side
walls consisting of a wedge of specified angle. Although this wedge scenario is interesting
in its own right, it gains further importance as a partial model for the fingering seen
where fluid is injected into a Hele-Shaw cell from a central source. As the injected fluid
moves outwards, the interface destabilises and fingering occurs in the manner illustrated in
figure 2. Thus, the limited wedge configuration considered in this work serves as a model
for each sector of the full source problem.

Consider the wedge problem characterised by a wedge angle, θ0, measured at the corner.
The key parameter, λ, now describes the angular proportion, λθ0, of the cell occupied by
the finger. In comparison with the previous figure 1(a) for classic Saffman–Taylor viscous
fingering, in figure 1(b) we plot the bifurcation diagram for the case of a wedge of angle
θ0 = 20◦. The solid lines correspond to the new asymptotic predictions developed in this
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Exponential asymptotics for Saffman–Taylor in a wedge

Source
θ0

Figure 2. Sketch of the free surface for viscous fingering in the full circular geometry, where a central source
injects fluids outwards in all directions. Assuming axisymmetry, a single finger from this free surface can be
considered as arising due to injecting fluid in the corner of the Hele-Shaw cell limited by sidewalls consisting
of a wedge of angle θ0.

work, while the circles correspond to the previous numerical results of Ben Amar (1991b).
The figure shows the existence of distinct solution families, λ = λi(ε, θ0).

In addition to the expected solution families, λi, there is now an additional phenomenon
for the wedge-limited configurations. As seen in figure 1(b), there exist certain critical
values of the surface-tension parameter, ε, where each solution family, λi, reaches a turning
point connected to the adjacent family, i.e. λi = λi+1. In this work, we will explain how
this merging of eigenvalues can be understood from the perspective of the exponential
asymptotics. As noted by Ben Amar (1991b), the merging of eigenvalue pairs causes a loss
of existence of the solutions for sufficiently small ε. Physically, in connection with the
full geometry in figure 2, this results in the finger splitting into two through a tip-splitting
instability. One should then consider two wedges of half the angle to continue to follow
the finger profiles. It is then interesting to consider the consequences of the exponential
asymptotic analysis towards the more complicated problem of time-dependent tip-splitting
instabilities in the unrestricted planar domain. This will be further discussed in § 10.

1.1. Background and open challenges of the wedge problem
The literature on Hele-Shaw flows and viscous fingering problems is extensive; here, we
provide a review of selected papers, primarily focused on wedge configurations or closed
bubbles in channels.

Experimental observations and initial analysis for the wedge geometry can be found
in the works of Paterson (1981) and Thomé et al. (1989). Then, in the early 1990s, a
number of works appeared on the beyond-all-orders aspects of the wedge configuration
(Brener et al. 1990; Ben Amar 1991a,b; Tu 1991; Combescot 1992; Levine & Tu
1992). Combescot (1992) identified the singularities in the complex plane that are
responsible for the selection mechanism. The solvability condition was found exactly
by Brener et al. (1990) for the case with a 90◦ separation angle, where the solution
reduces to a closed analytic form. Both Combescot (1992) and Tu (1991) used WKBJ
(Wentzel-Kramers-Brillouin-Jeffreys or Liouville–Green) methods to make analytical

987 A42-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

33
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.330


C. Andersen, C.J. Lustri, S.W. McCue and P.H. Trinh

progress on the problem with a general wedge angle whilst numerical results were obtained
by Ben Amar (1991b). More recently, there has been additional experimental works,
showing clear photographs, of the tip-splitting instabilities in the wedge problem by
Lajeunesse & Couder (2000).

This paper is most strongly motivated by the work of Tu (1991) and Ben Amar (1991b).
Tu (1991) had linearised the free-surface problem with a general wedge angle to obtain
a model differential equation. For this new equation, a WKBJ approximation was used
to derive a solvability condition that can predict the theoretical zero-surface-tension limit
for λ, as well as a condition that finds the point in the bifurcation diagram where branch
merging occurs.

Ben Amar (1991b) produced accurate numerical results for parts of the bifurcation
diagram. However, on account of the challenges in numerical computations of the
eigenvalue problem, Ben Amar (1991b) noted that:

Our predictions concerning levels [branches] higher than the first two require confirmation by a
very careful WKB analysis, which is the most suitable treatment at extremely low surface tension.
Probably, the results of analytic solutions without surface tension will make this analysis possible.

At this point (and until the present) we do not believe any group has managed to derive the
exact selection mechanism (i.e. the missing analysis referenced above).

Modern techniques of exponential asymptotics allow us to study the wedge problem
in the small-surface-tension limit without the need to linearise in the same fashion as
previous practitioners (Chapman, King & Adams 1998). In this paper, we will use these
techniques to address the open problem identified by Ben Amar (1991b) and obtain an
analytic solvability condition for the selected eigenvalues.

Because the approach presented here combines a hybrid asymptotic–numerical insight,
it is likely that the methods can be extended to much more general flow configurations.
More recently, further work has been done on closely related problems in Hele-Shaw
channels. There is particular interest in Hele-Shaw channels with a central raised
rail, which can change the stability of the finger (Thompson, Juel & Hazel 2014;
Franco-Gómez, Thompson & Hazel 2016). Further, there have been many recent
experimental (Franco-Gómez et al. 2017; Gaillard et al. 2021; Lawless et al. 2023),
numerical (Franco-Gómez et al. 2017; Keeler et al. 2019; Thompson 2021) and analytical
(Keeler et al. 2019; Booth, Griffiths & Howell 2023) developments concerning closed
bubbles propagating along Hele-Shaw channels. We will return at the end of the paper to
discuss the connection of our work with these newer problems.

2. Mathematical formulation

A traditional Hele-Shaw cell consists of two parallel plates separated by a small distance,
b, and filled with viscous fluid with viscosity, μ. For the case of a circular geometry,
like that depicted in figure 2, an inviscid fluid is injected at a point, and this drives an
outwards-expanding interface between viscous and inviscid fluids.

We now consider the related wedge-shaped geometry, as shown in figure 3(a). Here, the
inviscid fluid is injected at the wedge corner at some prescribed flow rate. The viscous fluid
is constrained to lie between the wedge walls separated by an internal angle θ0. As can be
observed experimentally (Thomé et al. 1989), a self-similar shape is reached eventually,
where the inviscid fluid occupies an angle λθ0, with 0 < λ < 1. This set-up is referred to
as divergent flow in Ben Amar (1991a). For the case of zero-surface-tension, a prototypical
solution is shown in figure 3(a), and we observe the petal-shaped interface between viscous
fluid and inviscid fluid.
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Figure 3. (a) A numerical plot of the top-down view of the self-similar physical profile in the ẑ-plane is shown
for the zero-surface-tension case, with parameter values θ0 = 20◦ and λ = 0.6. The free surface was computed
using (3.7). The Hele-Shaw cell is bounded by the thick black lines and is filled with a viscous fluid, shown in
grey. An inviscid fluid is injected from the corner of the wedge and forms a finger with angle λθ0. The corner of
the wedge lies at ẑ = 0 (BF) and the tip of the finger lies at ẑ = 1 (CE). (b) A sketch of the z-plane, computed via
the conformal map z = (2/θ0) log ẑ. This configuration is analogous to the traditional Saffman–Taylor finger
(McLean & Saffman 1981).

The classic problem of Saffman–Taylor viscous fingering in a channel is typically
studied in a travelling frame corresponding to a steady-state finger. In the wedge geometry,
the analogue of a travelling wave frame of reference is a self-similar solution. In
Appendix A, we demonstrate how the original equations of potential flow for a Hele-Shaw
cell, with boundary conditions on the channel walls and free boundary, and an injection
condition can be reposed in the self-similar framework. The key idea relates to a
transformation of the original dimensional lengths, x̄ and ȳ, which are scaled via

(x̂, ŷ) = (x̄, ȳ)
R0A(t)

, (2.1)

where R0 is a length scale (chosen to be the distance between the corner of the wedge
and the tip of the finger at t = 0) and A(t) is a dimensionless scaling factor that depends
on dimensionless time, t. As shown in Appendix A, two possible choices of A(t) result in
effectively the same self-similar problem, given by (A6), in dimensionless variables with
a time-independent effective surface-tension parameter σ . This σ , when rescaled, then
gives us our small parameter ε, defined below in (2.10); see Ben Amar (1991b) for further
details.

We thus have the governing set of potential-flow equations in (A6) corresponding
to a scaled velocity potential, φ̂, and self-similar physical-plane coordinates, written in
complex form as ẑ = x̂ + iŷ (figure 3a). Note that the free surface is now stationary.
We introduce the complex potential, f̂ = φ̂ + iψ̂ , with harmonic conjugate given by the
streamfunction ψ̂ . Within the f̂ -plane, fluid is located in the infinite strip bounded by
ψ̂ ∈ [−1, 1].

Finally, the flow domain is mapped to a channel geometry via

z = 2
θ0

log ẑ, (2.2)

so that the walls BA and FG lie on Im z = ±1, respectively, and the tip CE is fixed to the
origin z = 0. This is shown in figure 3(b).

Following § 3B of Ben Amar (1991b), we review the procedure for developing a set of
boundary-integral equations for the potential-flow problem. First, the velocity potential is
shifted as

f ∗ = φ∗ + iψ∗ = f̂ − H(z)
(1 − λ)Q0/λ

. (2.3)
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Figure 4. The fluid region (grey) is mapped to the upper-half-ζ -plane. The key points from figure 3 are labelled
here. Within the ζ -plane, there is a branch cut from the point D (ζ = i). Here, the branch cut is taken vertically
up the imaginary axis from ζ = i.

Above, 2Q0 is the dimensionless flux of fluid across the wedge at infinity in the self-similar
frame (cf. later (2.8)). The function H(z) is implicitly defined so that the free surface lies on
ψ∗ = constant (cf. (3.10) of Ben Amar 1991b). For the case of the classic Saffman–Taylor
viscous fingering problem in a parallel channel, H(z) = z, as shown by McLean & Saffman
(1981).

As in Chapman (1999), it is convenient for later analysis to map the fluid region to the
upper-half-ζ -plane via

ζ 2 = eπf ∗ − 1. (2.4)

The mapped fluid domain for the configuration in figure 3 is shown in figure 4. Thus we
see that, under the map (2.4), the free surface (BCEF) lies on the real ζ -axis while the tip
of the finger (CE) is at ζ = 0.

In the governing equations to follow, we shall seek to solve for the unknown free-surface
location and fluid velocities along the interface, ζ = ξ ∈ R. It is convenient to introduce
quantities q and τ via

q
1 − λe−iτ = d f ∗

d z
= ∂φ∗

∂x
+ i
∂φ∗

∂y
, (2.5)

which are analogues of speed and streamline angle, respectively (and reduce to the actual
fluid speed and streamline angle in the limit θ0 → 0). Therefore, we require a set of
governing equations for the unknowns (x(ξ), y(ξ), q(ξ), τ (ξ)).

With the various conformal maps now established, at this point, we may follow the same
procedures as found in § 3B of Ben Amar (1991b). We find on the free surface, where
ζ = ξ is real, that continuity of pressure yields Bernoulli’s equation

ε2 P(ξ)
4

∂

∂ξ

(
r(x)

[
−P(ξ)q(ξ)

∂τ

∂ξ
+ �

2
sin τ(ξ)

])

= Q0

1 − λ − 2
π
(1 + ξ2)−

∫ 0

−∞
K(ξ̃ ) d ξ̃

P(ξ̃ )(ξ2 − ξ̃2)
, (2.6)

which can be compared with (3.10) of Ben Amar (1991b). In (2.6), we have defined a
number of functions for convenience. Firstly, we have written

P(ξ) = (1 + ξ2)/ξ, r(x) = exp(−θ0x(ξ)/2), K(ξ) = sin[τ(ξ)]
q(ξ)[r(x(ξ))]2 . (2.7a–c)
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Exponential asymptotics for Saffman–Taylor in a wedge

Note that r is a function of x which, in turn, depends on ξ . In (2.6), we have defined Q0 to
be

Q0 = 2(1 − λ)
π

∫ 0

−∞
K(ξ̃ )

P(ξ̃ )
dξ̃ , (2.8)

which, as mentioned above, represents a dimensionless constant describing the fluid flux.
It is also convenient to define a scaled value for the interior wedge angle θ0

� = �(λ) = θ0

π
(1 − λ), (2.9)

where λ is the proportional finger angle parameter. Finally, we have introduced the key
non-dimensional parameter, ε, by

ε2 = 4π2σ̂

(1 − λ)2 , (2.10)

where σ̂ is the modified surface-tension parameter presented in (A9a–c) in Appendix A.
We consider ε2 to be a small parameter, corresponding to the small-surface-tension
regime, and we will therefore study the problem in the asymptotic limit ε → 0.

Analyticity of qe−iτ in the upper-half-ζ -plane gives, by the Hilbert transform,

log q(ξ) = H[τ ](ξ) where H[τ ](ξ) = 2
π

−
∫ 0

−∞
τ(ξ̃ ) ξ̃

ξ2 − ξ̃2
dξ̃ , (2.11)

where we have defined the operator, H. Finally, we close the system by integrating the
free-surface velocity relationships (2.5). This yields

x(ξ)+ iy(ξ) = 2(1 − λ)
π

∫ 0

ξ

eiτ(ξ̃ )

q(ξ̃ )P(ξ̃ )
dξ̃ . (2.12)

Thus, the full system consists of (2.6), (2.11) and (2.12) for the unknowns (x, y, q, τ ) in
addition to the boundary conditions

x(±∞) = −∞, y(±∞) = ∓λ, (2.13a,b)

q(±∞) = 1, τ (−∞) = 0, τ (∞) = −π. (2.13c,d,e)

Above, the first set of boundary conditions corresponds to imposing the geometrical
constraints while the second set corresponds to the velocity and streamline angle
constraints. In total, the equations and boundary conditions are equivalent to those of Ben
Amar (1991a). In the next section, we shall examine the zero-surface-tension solutions of
these equations.

3. Zero-surface-tension solutions

We first discuss the zero-surface-tension solutions, (x0(ξ), y0(ξ), q0(ξ), τ0(ξ)), which
correspond to setting ε = 0 in the governing equations (2.6), (2.11) and (2.12).
We thus approximate x ∼ x0, y ∼ y0, q ∼ q0 and τ ∼ τ0 in the limit ε → 0.
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The zero-surface-tension equations are given by

0 = Q0

1 − λ − 2
π
(1 + ξ2)−

∫ 0

−∞
K0(ξ̃ )

P(ξ̃ )(ξ2 − ξ̃2)
dξ̃ , (3.1a)

log q0(ξ) = H[τ0](ξ), (3.1b)

x0(ξ)+ iy0(ξ) = −2(1 − λ)
π

∫ 0

ζ

eiτ0(ξ̃ )

q0(ξ̃ )P(ξ̃ )
dξ̃ , (3.1c)

where

K0(ξ) = sin[τ0(ξ)]
q0(ξ)[r(x0(ξ))]2 . (3.2)

The corresponding boundary conditions are

q0(0) = 0, q0(±∞) = 1, τ0(−∞) = 0, τ0(0) = −π

2
, τ0(∞) = −π. (3.3a–e)

As shown by Ben Amar (1991a) and Tu (1991), the leading-order system (3.1) can be
re-arranged so as to obtain a Riccati equation

dG
dξ

= G2(ξ)
ξ

1 + ξ2 + G(ξ)
(

2�
ξ

1 + ξ2 − 1
ξ

)
+ �

(
1

(1 − λ)2 − 1
)

1 + ξ2

ξ
, (3.4)

with boundary conditions
G(±∞) = 0, (3.5)

where the new unknown is defined by

G(ξ) = eiτ0(ξ)

q0(ξ)
− 1. (3.6)

It was shown by Ben Amar (1991a) and Tu (1991) that the leading-order
(zero-surface-tension) solutions can then be written in terms of the hypergeometric
function F (Abramowitz & Stegun 1972)

x0 = (1 + ξ2)−�/2 × F
(
θ0(2 − λ)

2π
,−λθ0

2π
,

1
2
,

ξ2

1 + ξ2

)
, (3.7a)

y0 = Ã ξ (1 + ξ2)(1−�)/2 × F
(

1
2

+ θ0(2 − λ)
2π

,
1
2

− λθ0

2π
,

3
2
,

ξ2

1 + ξ2

)
, (3.7b)

where we have also defined the constant

Ã = 2 tan
(
λθ0

2

) Γ

(
1 − θ0(2 − λ)

2π

)
Γ

(
1 + λθ0

2π

)

Γ

(
1
2

− θ0(2 − λ)
2π

)
Γ

(
1
2

+ λθ0

2π

) . (3.7c)

By differentiating and rearranging (3.1c) we also obtain expressions for q0(ξ) and τ0(ξ)

q0 = �
ξ

1 + ξ2

√√√√√√
x2

0 + y2
0(

dx0

dξ

)2

+
(

dy0

dξ

)2 , cos τ0 = −q0

�

1 + ξ2

ξ

x0
dx0

dξ
+ y0

dy0

dξ
x2

0 + y2
0

.

(3.8a,b)
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Figure 5. Plots of the leading-order (zero-surface-tension) solutions for the four variables (x0, y0, q0, τ0)

on the free surface, ζ = ξ ∈ R. These plots show the solutions for parameter values θ0 = 20◦ and λ = 0.6
generated using (3.7) and (3.8a,b). The tip of the finger lies at ξ = 0. In figure 3 we plot this solution in the
physical plane.

In figure 5, we plot example profiles for the leading-order solutions, (x0, y0, q0, τ0), along
the free surface for parameter values θ0 = 20◦ and λ = 0.6. These solutions are generated
using (3.7) and (3.8a,b).

4. Analytic continuation of the free surface

The leading-order profiles, as evaluated on the physical free surface, ζ = ξ ∈ R, were
shown in the previous section. The analytic continuation of these profiles to the complex
plane contains square-root singularities. We shall see that such singularities form one of
the key ingredients in the exponential asymptotics procedure of § 6; these points cause
the asymptotic expansion to diverge, and will be crucial in determining the eventual
selection mechanism. In this section, we discuss the numerical procedure for generating
the analytic continuation of the leading-order solutions (x0, y0, q0, τ0), as well as the
analytic continuation of the governing equations (2.6), (2.11) and (2.12).

4.1. Analytic continuation of the leading-order solutions
In the analytic continuation, we allow the previously real-valued ξ to take complex values.
Keeping in mind the potential for confusion with the previously introduced ζ , we write
ξ = ξr + iξc 
→ ζ ∈ C. Note that, under this notational choice, q(ζ ) is complex valued
within the fluid region, and it is rather the combination Re[qe−iτ /(1 − λ)] that is identified
with the fluid speed (cf. (2.5)).

In theory, one can replace ξ with ζ , and evaluate the special-function solution (3.7)
using standard built-in packages (e.g. Mathematica) to obtain an analytically continued
leading-order solution. However, the branch structure of the solutions is complicated
and standard software does not easily allow fine-tune control of the branch placement;
generation of the full Riemann surface is subsequently difficult. In order to develop the
results later in the paper, we must implement a scheme that allows for better control over
the generation of the Riemann surface and placement of branches.
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path of analytic continuationPath of analytic continuation

Re(ζ)

Im(ζ)

Re(q0)

Re(ζ)

Im
(ζ

)

ζ = ζ1

ζ = 0

ζ = i
ζ = ζC

–0.6

2

1

0

–1

2.0

1.5

1.0

0.5

0
–0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0

(b)(a)

Figure 6. Illustrations of the analytic continuation corresponding to θ0 = 20◦ and λ = 0.6 shown via (a) the
(Re ζ, Im ζ,Re q0)-space; and (b) a top-down view of the ζ -plane. In both, a prototypical path of analytic
continuation from the physical free surface is shown with an arrow; branch cuts are shown wavy. Singularities
(white circles) lie at ζ1 = 0.59 + 1.32i and ζC = 0.96i; these both correspond to square-root singularities.
There is an additional square-root branch point at i. The leading-order solution q0 on the free surface lies on
the real ζ axis.

For this analytic continuation scheme we first split the Riccati equation (3.4) into its real
and imaginary parts

dq0

dζ
= −C(ζ )

ζ

1 + ζ 2 q2
0 cos τ0 + q0

ζ
− �

ζ

1 + ζ 2 cos τ0, (4.1a)

dτ0

dζ
= −C(ζ )

ζ

1 + ζ 2 q0 sin τ0 + �

q0

ζ

1 + ζ 2 sin τ0, (4.1b)

where

C(ζ ) = −�+ 1
ζ 2

(
1 + ζ 2 + θ0λ

π

(
2 − λ
1 − λ

))
. (4.1c)

Recall that � is the rescaled angle parameter introduced in (2.9). Here, we prefer to use ζ ,
as we are now working with the complexified version of the Riccati equation (3.4).

We may now solve the above system along a chosen parameterised path in the complex
ζ -plane by using the exact solution on the free surface as an initial condition. More
specifically, we first pre-solve for (x0(ζ ), y0(ζ ), q0(ζ ), τ0(ζ )) on the free surface using
(3.7) and (3.8a,b) and setting ζ = ξ ∈ R. Then, we parameterise a path into the complex
plane that starts on the free surface. For example

ζpath(s) = ζIC + is, s ∈ [0,∞), where ζIC ∈ R. (4.2)

We can then solve (4.1) along the parameterised path using any standard ordinary
differential equation integrator (we use MATLAB’s ode113 with absolute and relative
tolerances set to 10−10) and the initial condition ζIC.

The solution consists of eight complexified components (the real and imaginary parts of
each of the four variables, (x0, y0, q0, τ0)). In figure 6, we show the analytically continued
surface for one of these components, Re(q0). The figure shows one possible path of
analytic continuation. By repeatedly solving along a mesh of different paths, the primary
Riemann sheet is generated.

Next, we find the location of the singularities in the complex plane numerically.
Numerical analytic continuation along a closed loop around a branch point demonstrates
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ζ = –i
ζ = –i

ζ = –i

ζ = 0 ζ = 0 ζ = 0

ζ = i ζ = i ζ = i

ζ = ζ1

ζ = ζ
–

1

ζ = ζ
–
C

ζ = ζ2

ζ = ζ
–
2

ζ = ζC

Re(ζ) Re(ζ) Re(ζ)

Im
(ζ

)
(b)(a) (c)

Figure 7. Plots of the locations of the three complex conjugate pairs of singularities in the ζ -plane: (a) {ζ1, ζ1},
(b) {ζC, ζC}, (c) {ζ2, ζ2}. These plots are for parameter values θ0 = 20◦ and λ = 0.6. The branch cuts at ±i are
chosen to show the relevant branches of the Riemann surface which the singularities lie on. The free surface
lies on the real ζ axis, ζ = ξ ∈ R.

that the start and end points of the solution differ. Hence, continuation around smaller and
smaller loops allows the branch point location to be identified. The singularities in this
problem are all square-root singularities. Their locations can be found using the method
described above; the singularity strength can be further confirmed by verifying the rate of
blow up of the solution as the singularity is approached.

Using this scheme, we find three pairs of complex conjugate singularities, which we
denote as {ζ1, ζ1}, {ζC, ζC} and {ζ2, ζ2}. The central singularities, {ζC, ζC}, lie on the
imaginary axis and the non-central singularities {ζ1, ζ1} and {ζ2, ζ2} lie equidistant from
the imaginary axis. The conformal map introduces branch points at ±i in the ζ -plane.
Consequently, the {ζ1, ζ1} singularities do not lie on the same Riemann sheet of the
complex ζ -plane as the {ζ2, ζ2} singularities. The three groupings of singularity locations
are shown in figure 7 panels (a–c) for the specific case of θ0 = 20◦ and λ = 0.6.

We can track the locations of the singularities as we vary the parameters θ0 (the wedge
angle) and λ (the proportion of the wedge angle occupied by the finger). If θ0 > 0 and
λ > 0.5, the non-central singularities {ζ1, ζ1, ζ2, ζ2} lie off the imaginary axis. In the limit
θ0 → 0 the two singularities ζ1 and ζ2 converge to the same point on the imaginary axis,
but one will be directly above the other on a separate sheet. A reflection of this behaviour
occurs for singularities ζ1 and ζ2 in the lower-half-ζ -plane. The singularity locations in the
limit θ0 → 0 agree with those found by Chapman (1999) in the classic Saffman–Taylor
problem with parallel channel walls. A summary of the locations of these non-central
singularities, for varying values of θ0 and λ, is shown in figure 8.

Finally, the central singularity, ζC, remains on the imaginary axis between the origin and
i for all parameter values. It moves closer to i as either λ decreases towards 0.5, or as θ0
decreases towards zero. A reflection of this behaviour occurs for ζC in the lower-half-plane.
Example locations of the singularity ζC as θ0 and λ are varied are listed in table 1.

4.2. Analytic continuation for the full problem
If the variable ζ is analytically continued into the upper-half-ζ -plane, the Bernoulli
equation (2.6) becomes

ε2 P(ζ )
4

∂

∂ζ

(
r(x)

[
P(ζ )q(ζ )

∂τ

∂ζ
− � sin τ(ζ )

])
= 2

π

∫ 0

−∞
K(ζ̃ ) ζ̃

ζ 2 − ζ̃ 2
dζ̃ + iK(ζ ). (4.3a)
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Line on which
Re(χ1(0)) = Re(χC(0))

(see § 8)

Figure 8. Complex ζ -plane showing how the location of the non-central singularities {ζ1, ζ1}, {ζ2, ζ2} vary
with the parameters θ0 and λ. The ζ1 singularity is shown in the top right quadrant with corresponding θ0 and
λ values. The locations of the ζ2, ζ2 and ζ1 singularities are shown in the top left, bottom left and bottom right
quadrants, respectively.

θ0

λ 0◦ 5◦ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦

0.55 1i 0.9985i 0.9660i 0.9168i 0.8676i 0.8205i 0.7754i 0.7320i 0.6900i
0.60 1i 1.0000i 0.9985i 0.9847i 0.9550i 0.9169i 0.8755i 0.8330i 0.7903i
0.65 1i 1.0000i 1.0000i 0.9986i 0.9913i 0.9744i 0.9485i 0.9164i 0.8802i
0.70 1i 1.0000i 1.0000i 0.9999i 0.9988i 0.9945i 0.9845i 0.9680i 0.9451i
0.75 1i 1.0000i 1.0000i 1.0000i 0.9999i 0.9991i 0.9964i 0.9905i 0.9802i

Table 1. The locations of the central singularity, ζC (to 4 significant figures) for different values of θ0 and λ.

Here, the principal-value integral becomes a normal integral and can then be combined
with the Q0 term in (2.6) to simplify the right-hand side. Recall that P(ζ ), r(x(ζ )), �,K(ζ )
were introduced in (2.7a–c) for convenience.

To analytically continue the boundary-integral equation (2.11) we must consider the
complexification of the Hilbert transform

H[τ ] = Ĥ[τ ] + iτ, (4.3b)

where Ĥ[τ ] is the complex-valued Hilbert transform

Ĥ[τ ](ξ) = 2
π

∫ 0

−∞
τ(ξ̃ ) ξ̃

ξ2 − ξ̃2
dξ̃ . (4.3c)

987 A42-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

33
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.330


Exponential asymptotics for Saffman–Taylor in a wedge

The boundary-integral equation (2.11) then becomes

log q(ζ )− iτ(ζ ) = Ĥ[τ ](ζ ), (4.3d)

and hence the integrated equation for the surface position (2.12) becomes

x(ζ )+ iy(ζ ) = 2(1 − λ)
π

∫ 0

ζ

exp
(
−Ĥ[τ ](ζ̃ )

)
P(ζ̃ )

dζ̃ . (4.3e)

This results in a set of analytically continued governing equations (4.3) that hold in the
upper-half-ζ -plane.

5. Exponential asymptotics

Our procedure for the exponential asymptotic analysis follows similar work by Tanveer
(1987) and Chapman (1999), using the methodology established in Chapman et al. (1998).
In essence, the goal is to derive the behaviour of the late terms in the asymptotic series.
After, in § 6, these late terms are used to study the exponentially small terms via the
Stokes-line switching.

As ε → 0, we expand the dependent variables as

x(ζ ) ∼
∞∑

n=0

ε2nxn(ζ ), y(ζ ) ∼
∞∑

n=0

ε2nyn(ζ ),

q(ζ ) ∼
∞∑

n=0

ε2nqn(ζ ), τ (ζ ) ∼
∞∑

n=0

ε2nτn(ζ ).

(5.1)

We substitute the above into the analytically continued governing equations (4.3) and this
yields, at O(ε2n) for Bernoulli’s equation (4.3a),

P
4
∂

∂ζ

(
r(x0)

[
Pqn−1

∂τ0

∂ζ
+ Pq0

∂τn−1

∂ζ
− �τn−1 cos τ0

−θ0xn−1

2

(
Pq0

∂τ0

∂ζ
− � sin τ0

)
+ . . .

])

= . . .+ i
r2(x0) q0

(
τn cos τ0 − qn

q0
sin τ0 + . . .

)
, (5.2a)

while for (4.3d) and (4.3e) we have

qn

q0
+ . . .− iτn = Ĥ[τn], (5.2b)

xn + iyn = 2(1 − λ)
π

∫ 0

ζ

exp(−Ĥ[τ0])Ĥ[τn] + . . .

P
dζ̃ . (5.2c)

At these later orders we see that the nth terms in the power series for q and τ are obtained
by differentiating the (n − 1)th terms twice. Any singularities in the leading-order solution
will grow in strength with each successive differentiation. This means that later terms in
the power series will have singularities at the same locations as earlier terms, but with
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increasing strength. We therefore follow the method of Chapman et al. (1998) and predict
a factorial-over-power form for the late-order terms

qn(ζ ) ∼ Q(ζ )Γ (2n + γ )

χ(ζ )2n+γ , τn(ζ ) ∼ Θ(ζ)Γ (2n + γ )

χ(ζ )2n+γ , as n → ∞, (5.3)

where Q andΘ are prefactors and χ is a singulant function, which is zero at the singularity.
The singulant ensures that each series term has singularities with the correct locations and
γ ensures they have the correct strengths. The gamma function (Abramowitz & Stegun
1972) is a consequence of the factorial behaviour caused by repeated differentiation. The
late-order terms are a sum of such factorial-over-power terms – one associated with each
distinct complex singularity. Note that the prototypical factorial-over-power divergence of
singular asymptotic expansions is a consequence of Darboux’s theorem (cf. p. 4 of Dingle
1973; Crew & Trinh 2023).

In the limit n → ∞, the behaviour of the asymptotic expansion will be dictated by
the divergence caused by the singularities driving (5.3) (Chapman et al. 1998). From § 4
we know that the singularities lie in the complex plane away from the free surface. The
complex Hilbert transform, Ĥ[τn], involves the integrand evaluated along the free surface.
Once the ansatzes for qn and τn via (5.3) are substituted into the Hilbert transform, we
may observe that the contribution of Ĥ[τn] will be subdominant in the limit that n → ∞,
compared with qn and τn. This follows from the increasing nature of |χ | along Stokes
lines, as explained on p. 526 of Chapman (1999). The combination of xn + iyn will also
be subdominant in this limit, although the individual components may still diverge. We
will assume in this analysis that the individual components do not diverge, and this
assumption will be validated a posteriori, as is done in similar asymptotic analyses of
boundary-integral problems (Shelton & Trinh 2022).

Using these assumptions gives the dominant behaviour from the boundary-integral
equation (5.2b)

qn

q0
− q1qn−1

q2
0

∼ iτn as n → ∞. (5.4)

The Bernoulli equation (5.2a) can then be simplified to

q′′
n−1

qn
+
[
(r(x0)P)′

r(x0)P
− q′

0
q0

+ iτ ′
0 − �

cos τ0

Pq0

]
q′

n−1

qn
= 4(sin τ0 + i cos τ0)

P2q2
0r(x0)3

. (5.5)

Here, and for the rest of the paper, we use primes (′) to denote differentiation with respect
to ζ . Substitution of the factorial-over-power ansatz (5.3) and matching terms in the limit
that n → ∞ gives at leading order an equation for the singulant, χ ,

(χ ′)2 = 4(sin τ0 + i cos τ0)

P2q2
0r(x0)3

, (5.6)

which can be solved to obtain

χ = −
∫ ζ

ζ∗

2
√

sin τ0 + i cos τ0

P q0 r(x0)3/2
dζ̃ . (5.7)

In this expression, ζ∗ is the singularity location and the integration limits are chosen so
that χ(ζ∗) = 0. There will be a singulant function χ for each complex singularity. The
negative sign is selected when taking the square root so that the Stokes line intersects the
free surface, which lies on the real ζ axis.
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Exponential asymptotics for Saffman–Taylor in a wedge

Matching terms in (5.5) at the next order as n → ∞ shows that γ is constant, and at the
following order we obtain

Q′

Q
= −1

2

[
χ ′′

χ ′ + (r(x0)P)′

r(x0)P
− q′

0
q0

+ iτ ′
0 − �

cos τ0

Pq0

]
, (5.8)

which can be solved to give an expression for the prefactor

Q = Λi

⎛
⎜⎜⎜⎝

q0 e−iτ0 exp
[∫ ζ

0
�

cos τ0

Pq0
dζ̃
]

χ ′r(x0)P

⎞
⎟⎟⎟⎠

1/2

, (5.9)

whereΛ is a constant that remains to be determined. From the boundary-integral equation
(5.4) we find

Θ = −i
Q
q0
. (5.10)

By definition, � → 0 (see (2.9)) and r(x0) → 1 (see (2.7a–c)) in the limit θ0 → 0. This
means that these results are consistent with those found by Chapman (1999) for the
Saffman–Taylor problem in a channel geometry.

The late-order series terms in the divergent power series solution for q(ζ ) therefore have
the form

qn ∼ Λi

⎛
⎜⎜⎜⎝

q0e−iτ0 exp
[∫ ζ

0
�

cos τ0

Pq0
dζ̃
]

χ ′r(x0)P

⎞
⎟⎟⎟⎠

1/2

Γ (2n + γ )

χ2n+γ , as n → ∞. (5.11)

6. Optimal truncation and Stokes lines

In the previous section, we noted that complex singularities cause the power series to
become divergent and so they will need to be truncated. We will truncate the divergent
power series at some to be determined optimal point N, and introduce the remainder terms

x =
N−1∑
n=0

ε2nxn + Rx, y =
N−1∑
n=0

ε2nyn + Ry, (6.1a)

q =
N−1∑
n=0

ε2nqn + Rq, τ =
N−1∑
n=0

ε2nτn + Rτ . (6.1b)

We can substitute these into the governing equations (4.3). Given that the first N orders
must exactly satisfy the relationships in (5.2), we derive leading-order relationships
between the remainder terms.

From the boundary-integral equation (5.4), we derive at leading order as ε → 0 that

Rq

q0
∼ iRτ . (6.2)

Using this in the x + iy equation (5.2c) we see that Rx and Ry are subdominant compared
with the leading orders of Rq and Rτ in the limit ε → 0.

987 A42-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

33
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.330


C. Andersen, C.J. Lustri, S.W. McCue and P.H. Trinh

We substitute these relationships into the Bernoulli equation (4.3a) and derive a single
ordinary differential equation for Rq, which we now rename as RN for consistency with
other works, including Chapman (1999). This ordinary differential equation, known as the
remainder equation, reduces to

ε2R′′
N + ε2

[
(r(x0)P)′

r(x0)P
− q′

0
q0

+ iτ ′
0 − �

1
Pq0

cos τ0

]
R′

N = (χ ′)2(RN − ε2NqN), (6.3)

as ε → 0, where the terms that do not appear at the leading or second order in this limit
have been omitted. Changing the independent variable to χ (primes will continue to denote
differentiation with respect to ζ ) gives

ε2 d2RN

dχ2 + ε2 1
χ ′

[
χ ′′

χ ′ + (r(x0)P)′

r(x0)P
− q′

0
q0

+ iτ ′
0 − �

1
Pq0

cos τ0

]
dRN

dχ
− RN = −ε2NqN .

(6.4)
Using the definition for the prefactor (5.9), this can be simplified to

ε2 d2RN

dχ2 − 2ε2 Q′

Qχ ′
dRN

dχ
− RN = −ε2NqN . (6.5)

To solve (6.5) we pose a Liouville–Green or WKBJ-style ansatz for the form of the
remainder given by

RN = B(χ)eb(χ)/ε. (6.6)

Then equating the coefficients at different powers of ε for the homogeneous version of the
remainder equation (6.5), we find that b = ±χ + const. and B ∼ Q. The arbitrary constant
in b is equivalent to multiplying the entire expression (6.6) by an arbitrary constant that is
not determined by the WKBJ analysis.

To solve the full inhomogeneous remainder equation (6.5) we apply the method of
variation of parameters and permit the arbitrary constant to vary in ζ . This quantity is
known as the Stokes multiplier, and we denote it by A(χ). The remainder becomes

RN = AQe−χ/ε, (6.7)

where the negative sign in the exponent ensures the remainder is exponentially small. The
inhomogeneous equation (6.5) gives

−2ε
dA
dχ

Qe−χ/ε = −ε2N QΓ (2N + γ )

χ2N+γ , (6.8)

where we have substituted in the late-order expression for qN from (5.3).
The next step involves truncating the series at an optimal point. We define this optimal

truncation point, N, to be where successive terms in the divergent series are approximately
equal in magnitude, so ∣∣∣∣ε2N+2qN+1

ε2NqN

∣∣∣∣ ≈ 1. (6.9)

This condition gives N ≈ |χ |/2ε. As N must be an integer we let N = |χ |/2ε + β, where
β is bounded as ε → 0. This form motivates the transformation to polar coordinates, so
we define χ = |χ |eiη.
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Exponential asymptotics for Saffman–Taylor in a wedge

By the chain rule we have
dA
dη

= dA
dχ

iχ. (6.10)

We substitute the optimal value of N into (6.8) and note that N is large, which allows us
to use Stirling’s formula (Abramowitz & Stegun 1972) to approximate N! in the large N
limit. Then using (6.10) we obtain

dA
dη

∼ iε2N−1

2

exp
( |χ |
ε

eiη
)√

2π (2N + γ )2N+γ−1/2

e2N+γ |χ |2N+γ−1eiη(2N+γ−1) . (6.11)

We substitute in the optimal value of N to give

dA
dη

∼ i
√

π√
2c

|χ |1/2
εγ+1/2

e2β+γ

exp
(

iη
( |χ |
ε

+ 2β + γ

)) exp
( |χ |
ε

eiη
)

exp
( |χ |
ε

+ 2β + γ

) as ε → 0.

(6.12)

The right-hand side of (6.12) is exponentially small in ε unless η = 2πk, k ∈ Z, in which
case it will be algebraic in the limit that ε → 0. Therefore, the greatest change in the
Stokes multiplier A will occur across curves, or Stokes lines, on which η = 2πk, and so

Re(χ) > 0, Im(χ) = 0. (6.13a,b)

This recovers the classic result of Dingle (1973). We compute the Stokes lines numerically,
with the results shown in figure 9.

When Stokes lines intersect the free surface (the real axis in the ζ -plane) then an
exponentially small term will be smoothly switched on across this intersection point in
the solution. We can see from figure 9 that there are three points on the free surface where
such exponentially small terms will be switched on.

To find the jump in solution behaviour across a Stokes line, we rescale η and A and
consider the behaviour in the neighbourhood of the Stokes line. We apply the rescaling

η = ε2η̃ and A = Ãε−γ−1. (6.14a,b)

We let k = 0 and then (6.12) becomes

dÃ
dη̃

∼ i
√

π√
2

|χ |1/2 exp
(

−1
2
|χ |η̃2

)
as ε → 0. (6.15)

Integrating this gives

Ã = const. + i
√

π

∫ η̃
√|χ |/2

−∞
e−ξ̃2

dξ̃ , (6.16)

and hence the jump in the Stokes multiplier across the Stokes line is

lim
η→0+

A(η)− lim
η→0−

A(η) = i
√

π

εγ+1

∫ ∞

−∞
e−ξ̃2

dξ̃ = iπ
εγ+1 . (6.17)
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Figure 9. Complex ζ -plane showing the Stokes lines emanating from the singularities (circles) and
intersecting the free surface (real axis). In this figure, the wedge angle is θ0 = 20◦ and λ = 0.6. Branch cuts
(shown wavy) lie up and down the imaginary axis from ±i. Stokes lines are shown with dashed when they lie
on a different Riemann sheet to the free surface. The three points where the Stokes lines intersect the real axis
are labelled S1, SC and S2.

That is, upon crossing a Stokes line at its intersection with the real axis, a contribution in
the q variable is switched on. This has the form

iπ
εγ+1 Q exp

(
−χ
ε

)
+ c.c., (6.18)

where c.c. represents the complex conjugate expression, which arises from the singularity
located at the complex conjugate location in the complex plane (figure 9). Similarly, by
(5.10), the contribution that is switched on in the τ variable has the form

π

εγ+1
Q
q0

exp
(
−χ
ε

)
+ c.c.. (6.19)

In the next section, we show how these terms switched on across Stokes lines will
determine the selection mechanism.

7. Selection mechanism

In figure 9 we see that there are three points on the free surface (ζ = ξ ∈ R) that
are intersected by Stokes lines. We will continue the notation from the singularities
(introduced in § 4.1) and use the subscripts ‘1’, ‘C’ and ‘2’ to label the Stokes lines, i.e.
each subscript matches the respective label of the associated Stokes-line singularity. We
denote the three intersection points as S1, SC and S2. Each Stokes line will have different
corresponding values forΛ, γ and χ , which will also be labelled with the same subscripts.
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At each intersection point an exponentially small asymptotic contribution of the form
(6.19) will be switched on or off. The far-field conditions τ(−∞) = 0 and τ(∞) = −π
imply there are no exponentially small contributions present on the free surface as
τ → ±∞, so the exponential terms must only be present in the region of the free surface
between the Stokes-line intersection points; that is, in the range ζ = ξ ∈ (S1, S2).

To check for existence of a solution, we can check that the conditions in both far fields
are satisfied. However, due to the symmetry of the problem, it is equivalent to consider
half the domain and impose symmetry conditions at the origin: q(0) = 0, τ (0) = −π/2.
A similar symmetry condition is used in Chapman et al. (2023). Enforcing the condition
on τ implies

τ0(0) = −π

2
, τn(0) = 0 for n � 1, Rτ (0) = 0. (7.1)

Requiring that the solution satisfies the far field conditions as ξ → −∞ and the conditions
at the origin from (7.1) will result in a selection condition that must be satisfied for
solutions to exist.

At the point S1, a contribution of the form (6.19) is switched on as the Stokes line
is crossed from left to right. And then to reach the origin we switch on half of another
contribution of the form (6.19) (as we have only crossed half the boundary layer about the
‘C’ Stokes line). That is, the integral in (6.16) will only range from −∞ to η̃ = 0. The
symmetry condition from (7.1) says that the sum of these contributions must be zero at the
origin. This means

πε−γ1−1Λ1√
2

e−iτ0/4I(ζ )r(x0)
1/4e3iπ/8 exp

(
−χ1

ε

)
+ c.c.

+ 1
2
πε−γC−1ΛC√

2
e−iτ0/4I(ζ )r(x0)

1/4e3iπ/8 exp
(
−χC

ε

)
+ c.c.

∣∣∣∣
ζ=0

= 0, (7.2)

where I(ζ ) := exp[
∫ ζ

0 �(cos τ0/2Pq0) dζ̃ ]. We simplify this expression using the
conditions at the origin, τ0(0) = −π/2 and x0(0) = 0. Noting that the origin lies on
the ‘C’ Stokes line, we use the definition for a Stokes line obtained in (6.13a,b), i.e.
Im(χC(0)) = 0. Then

|Λ1|
|ΛC|ε

−γ1+γC e−Re(χ1(0))/ε+Re(χC(0))/ε cos
(

arg(Λ1)+ π

2
− Im(χ1(0))

ε

)

+ 1
2

cos
(

arg(ΛC)+ π

2

)
= 0.

(7.3)

By the symmetry of the problem, this condition could also be obtained by calculating the
values that appear across the ‘2’ and ‘C’ Stokes lines. Note that, for this problem, we
always have symmetry of q0 at the origin and so q0(0) = q′

0(0) = 0. This means that the
possible selection condition, q′(0) = 0, is automatically satisfied. We therefore use the τ
variable to derive the selection mechanism.

The constants γ1 and γC are derived by an inner matching of the local singularity
strengths at lower orders in the asymptotic series. The details of the derivation can be
found in Appendix B. We find that γ1 = γC = 1/14 and thus we can simplify the selection

987 A42-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

33
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.330


C. Andersen, C.J. Lustri, S.W. McCue and P.H. Trinh

0.5

0.6

0.7

0.8

0.9

1.0
θ0 = 0° θ0 = 5°

θ0 = 10° θ0 = 20°

0 0.1 0.2 0.3 0.4

ε2

0 0.1 0.2 0.3 0.4

0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4

ε2

λ

0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0

λ

(b)(a)

(d )(c)

Figure 10. Bifurcation diagrams produced using (7.4). The first ten selected values of λ as functions of ε are
shown. Panel (a) shows the bifurcation diagram for the channel geometry. The other panels (b–d) show the
bifurcation diagram for different values of the wedge angle θ0.

condition to
|Λ1|
|ΛC|e−Re(χ1(0))/ε+Re(χC(0))/ε cos

(
arg(Λ1)+ π

2
− Im(χ1(0))

ε

)

+ 1
2

cos
(

arg(ΛC)+ π

2

)
= 0. (7.4)

Above, the constants Λ1 and ΛC are derived in Appendix C by using an asymptotic
matching process to connect the late-order term behaviour (5.3) with a local expansion
of the solution in a neighbourhood of the relevant singularity. We perform this matching
numerically, and find that the values of Λ1 and ΛC depend on both the parameters θ0
and λ. For example, when θ0 = 20◦ and λ = 0.6 then Λ1 ≈ −0.48 − 0.15i and ΛC ≈
−0.49 − 0.24i.

8. Results

For each ε value we now use a numerical root finding scheme to find the corresponding
family of λ values that satisfy the selection condition (7.4). The dependence on λ in
the selection condition (7.4) appears through the constants Λ1 and ΛC, as shown in
Appendix C, and also through χ1(0) and χC(0), as given in (5.7). The selected solution
families, for different values of θ0, are shown in figures 10(a)–10(d).

The figure shows that the bifurcation diagram differs qualitatively between the channel
geometry with θ0 = 0◦ and the general wedge geometry with θ0 > 0. For the channel
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Figure 11. (a) Relative sizes of the real parts of χ1(0) and χC(0) for different values of λ in the θ0 = 20◦ case.
The λ value where Re(χC(0)) = Re(χ1(0)) is denoted λlim. Above this value the selection condition (7.4) can
be satisfied. (b) The limiting λ value, λlim, in the small-surface-tension limit as a function of the wedge angle.

geometry, each branch, λn(ε), continues to exist as ε → 0. However, for the wedge
geometry, we see that the branches merge and disappear in pairs and no solutions will
exist when ε = 0. The lowest two branches, λ1(ε) and λ2(ε), merge at the greatest value
of ε and then merging continues to happen between higher branches as ε → 0. Each time
such a merge happens, the solutions corresponding to those two branches will cease to
exist. In practice, we hypothesise that the existence of the self-similar solution is lost due
to a tip-splitting instability which occurs when the flow rate or surface tension reaches a
critical value. In figure 10 we see that, for smaller wedge angles, the tip-splitting will occur
at a smaller value of the effective surface tension ε. In the limit θ0 → 0, the surface-tension
value at which the branch merging occurs approaches zero.

As noted in e.g. Ben Amar (1991b), it is expected that, as is the case in the channel
geometry, only the λ1 branch is stable. Then the merging of the λ1 and λ2 branches as
ε → 0 is associated with a loss of stable solutions, resulting in a tip-splitting instability.

The key observation is that the relative size of the terms in the selection condition (7.4)
provides an approximate criterion for the existence of solutions. We recall that, as ε → 0,
the classic Saffman–Taylor fingering in a channel involves λ = λi → λlim = 0.5 for all
indices i. It can be asked whether a similar limiting value of λ is reached as ε → 0 and
i → ∞ for general θ0.

In figure 11 we plot the real parts of χ1(0) and χC(0) for the θ0 = 20◦ case. As indicated
in the figure, for λ > λlim, then 0 < Reχ1(0) < ReχC(0). Therefore, from the selection
condition, the contribution from the central Stokes line is exponentially dominated by the
contribution from the ‘1’ Stokes line(s).

When Re(χ) is smaller, the corresponding exp(−Re(χ)/ε) term dominates in the
selection condition. As figure 11 shows, in the small ε limit, for smaller λ values, the
contribution from the ‘C’ Stokes line dominates; while for larger λ values, the contribution
from the ‘1’ Stokes line dominates. When the contribution from the ‘1’ Stokes line
dominates, then the exponentially small oscillations can be switched off by the symmetric
‘2’ Stokes line and solutions will exist, similarly to the channel case. However, when the
‘C’ Stokes line dominates, then in the small ε limit it becomes impossible to satisfy
the selection condition and no solutions will exist. The λ value at which Re(χ1(0)) =
Re(χC(0)) gives the limiting λ value, λlim. The λlim values as a function of θ0 are shown
in figure 11.
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9. Conclusion

We have used exponential asymptotics to derive the selection mechanism in the
small-surface-tension limit for the divergent Saffman–Taylor fingers in a wedge of an
arbitrary angle. The selection mechanism is based on the requirement for the exponentially
small contributions, which are switched on at Stokes lines, to satisfy the far-field boundary
conditions. This Stokes-line structure in the complex plane relies on an understanding of
the singularities in the analytic continuation of the leading-order solution. Here, we must
obtain this using a numerical scheme for the analytic continuation. We find the countable
family of λ(ε) values and associated selected solutions that satisfy the selection condition.
The bifurcation diagrams are plotted in figure 10 and show the merging of branches of λ
values as the surface-tension parameter, ε, is decreased. We hypothesise that the loss of
existence of solutions through this branch merging relates to the tip-splitting instability
observed in the time-dependent flows in a circular geometry.

10. Discussion

There are a number of interesting extensions to the work in this paper in the fields of
exponential asymptotics and Hele-Shaw problems.

In order to verify the correctness of the asymptotic predictions, we have used some of
the early numerical work of Ben Amar (1991b). As it turns out, there are a few aspects of
numerical computations of the governing equations (2.6), (2.11) and (2.12) that render it
more challenging. In a forthcoming work, we will present a specialised scheme that solves
for the free-surface profile of the fingers.

One of the main difficulties with the analysis in this paper arises from the form
of the leading-order solutions. Traditionally, in problems considered with exponential
asymptotics, the leading-order solution will have a simple closed form; then, locations and
strengths of the singularities in the complex plane are easily identified. For this problem,
the leading-order solution is written in terms of special functions (cf. (3.7) and (3.8a,b));
however, the singularities of these expressions are not so easily obtained. In practice,
we use a numerical scheme to analytically continue the leading-order solutions into the
complex ζ -plane and search for singularities. This numerical scheme could equally be
used to analytically continue a fully numerical leading-order solution into the complex
plane. Similar numerical analytic continuation schemes can be found in Chandler & Trinh
(2018) and Crew & Trinh (2016). With the advancement of such schemes, in the field of
exponential asymptotics we are no longer restricted only to problems with a simple analytic
leading-order solution.

To complete the understanding of the tip-splitting behaviour in the circular geometry it
will be necessary to check the stability of the branches plotted in the bifurcation diagram
(figure 10). For the Saffman–Taylor problem in the channel geometry, Tanveer (1987)
showed that only the lowest branch, λ1, is linearly stable. We conjecture that the same will
be true for the wedge geometry and so the merging of branches λ1 and λ2 will correspond
to the loss of existence of any solutions which could be observed physically. We have
written a time-dependent code for the circular geometry based on the numerical method
described in Dallaston & McCue (2014) and we hope that this will provide an insight into
the stability of the branches observed in the bifurcation diagram for the wedge problem.

Finally, there are many recent experimental and numerical results for different
Hele-Shaw problems, some of which appear to have similar selected branches of permitted
solutions (Gaillard et al. 2021; Keeler et al. 2022). We expect that the techniques used
here can also be applied to these problems to derive selection conditions, governed by
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exponentially small components of the solutions. In particular, the ability to do exponential
asymptotics without a simple analytic leading-order solution will be necessary to make
progress in these problems.
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Appendix A. Further details on governing equations

In this section, we briefly present the details for deriving the governing equations. The
fluid within the Hele-Shaw cell is governed by Stokes flow, and we consider the setup as
shown in figure 3(a). We shall use bars for dimensional quantities, including Cartesian
coordinates (x̄, ȳ) and polar coordinates (r̄, θ). Let q̄ be the dimensional velocity averaged
over the gap. The fluid pressure, p̄, is given by Darcy flow, q̄ = −(b2/12μ)∇̄p̄, where
b is the Hele-Shaw cell gap thickness and μ is the viscosity. We introduce a potential
via φ̄ = −(b2/12μ)p. Then, following the standard derivation via Stokes flow (Ockendon
& Ockendon 1995), we see the viscous fluid within the Hele-Shaw cell is governed by
Laplace’s equation, ∇2φ̄ = 0, for a velocity potential with q̄ = ∇̄φ̄.

Inviscid fluid is injected at the origin and the interface between viscous and inviscid
fluids is given by r̄ = R̄(θ, t̄). The full set of governing equations, including interfacial
and flux conditions are

∇̄2φ̄ = 0 in the fluid, (A1a)

v̄n = ∂φ̄

∂ n̄
on r̄ = R̄(θ, t̄), (A1b)

φ̄ − φ̄0 = −b2σ

12μ
κ̄ on r̄ = R̄(θ, t̄), (A1c)

∂φ̄

∂ n̄
= 0 on ȳ = ±x̄ tan(θ0/2), (A1d)

∂φ̄

∂ r̄
∼ Q̄

2πbr̄
as r̄ → ∞, (A1e)

where σ is the dimensional surface tension, v̄n is the velocity normal to the interface, κ̄ is
the curvature of the interface and φ̄0 an arbitrary shift of the potential. Equations (A1b) and
(A1d) correspond to kinematic conditions on the interface and wall, respectively, (A1c) to
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the dynamic boundary condition on the interface and (A1e) the fluid injection condition
for a dimensional source strength Q̄.

A.1. Temporal scaling and non-dimensionalisation
We scale time by a yet-to-be-specified time scale, T , so that dimensionless time is t = t̄/T
and introduce a length scale, R0, which is the initial distance (t = 0) between the tip of the
bubble and the apex. We shall apply a time-dependent stretching of the domain via

R̄(θ, t̄) = A(t)R̄(θ, 0) = A(t)R0R̂(θ), (A2)

where A(t) is to be specified. Our dimensionless variables are now denoted without the
overbar and we write

(x̂, ŷ) = (x̄, ȳ)
R0A(t)

, r̂ = r̄
R0A(t)

, φ = Tφ̄

R2
0
, (A3a–c)

and so forth. The governing equations are now

∇̂2φ = 0 in the fluid, (A4a)

∇̂φ · n̂ = A(t)A′(t)R̂ · n̂ on r̂ = R̂(θ), (A4b)

φ − φ0 = − b2Tσ

12μR3
0A(t)

κ̂ on r̂ = R̂(θ), (A4c)

∂φ

∂ n̂
= 0 on ŷ = ±x̂ tan(θ0/2), (A4d)

∂φ

∂ r̂
∼ Q̄ T

2πbR2
0r̂

as r̂ → ∞. (A4e)

We review two ways to further reduce the above set of equations via the choice of A.
The first is to define φ̂ = A(t)(φ − φ0) and

A(t)2A′(t) = 1, σ̂ = b2Tσ

12μR3
0
,

Q̄TA(t)

bR2
0

= 1. (A5a–c)

Then, the governing equations (A4) become

∇̂2φ̂ = 0 in the fluid, (A6a)

∇̂φ̂ · n̂ = R̂ · n̂ on the interface, (A6b)

φ̂ = −σ̂ κ̂ on the interface, (A6c)

∂φ̂

∂ n̂
= 0 on ŷ = ±x̂ tan(θ0/2), (A6d)

∂φ̂

∂ r̂
∼ 1

2πr̂
as r̂ → ∞. (A6e)

In this way, our domain stretching function and time scale become

A(t) = (3t + 1)1/3 and T = bR2
0

Q̄(0)
, (A7a,b)
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our surface-tension parameter σ̂ is a constant and the flow rate must be

Q̄(t) = Q̄(0)
(3t + 1)1/3

. (A8)

This way of reducing the equations has the attraction of keeping the surface tension
constant (which is what happens in reality), while also requiring a non-constant flow rate
with a t1/3 scaling. Such a flow rate is perfectly realisable in practice (Li et al. 2009).

The other way of reducing the equations is to set φ̂ = φ − φ0 and define

A(t)A′(t) = 1, σ̂ = b2Tσ

12μR3
0A(t)

,
Q̄T

bR2
0

= 1, (A9a–c)

so the governing equations (A4) are the same as above (A6). This time, we have

A(t) = (2t + 1)1/2 and T = bR2
0

Q̄
. (A10a,b)

This approach has the advantage of keeping the flow rate, Q̄, constant; this is the most
common realisation in an experimental set-up, but has the consequence of requiring
the consideration of a time-dependent surface-tension parameter σ̂ – conceptually, we
may consider σ as slowly varying, and even treated as constant within the context of a
simulation (see further discussion in Ben Amar 1991b).

Appendix B. Deriving the power γ

In this section we derive the constants γ1 and γC, which arise in (7.4), by matching the
strengths of the singularities in the inner region. Firstly, we introduce a new variable,
Y = ζ − ζ∗, where ζ∗ is one of the singularities, ζ1 or ζC.

It can be verified, either through dominant balance or via the numerical continuation of
§ 4, that all the complex plane singularities of the leading-order speed, q0, are square-root
singularities. Hence, q0 ∼ Y−1/2 as Y → 0. Close to the singularity, the Hilbert transform
in the boundary-integral equation will be subdominant and so we can use q0 − iτ0 =
H[τ0] and the behaviour of q0 to derive the local τ0 behaviour

τ0 ∼ i
2

log Y as Y → 0, (B1)

and hence eiτ0 ∼ Y−1/2 in this limit. The asymptotic singular behaviour for other key
variables is given as Y → 0 by

x0 + iy0 ∼
∫ −ζ∗

Y
1 dỸ = O(Y), P = O(1), (B2a)

I(ζ ) = O(1), Q = O
(

Y−3/8
)
. (B2b)

The local expression for the singulant equation (5.6) is given by

χ ′ = 2
√

i exp(−iτ0/2)
q0P

exp(3θ0x0/4) = O
(

Y3/4
)

as Y → 0. (B3)
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Integrating this expression gives χ = O(Y7/4) as Y → 0. The factorial-over-power ansatz
(5.3) then gives the strength of the singularity in the later-order terms

qn ∼ QΓ (2n + γ )

χ2n+γ = O
(

Y−3/8Y−(2n+γ )7/4
)

as Y → 0. (B4)

Now we take n = 0 and choose γ so that the correct predicted singularity strength is
given for q0. Although the factorial-over-power ansatz was posed for the limit n → ∞,

the singularity strength at lower orders still needs to match for the two expressions to be
consistent. The γ that satisfies this condition is

γ = 1
14 . (B5)

This analysis is valid for each singularity, so γ1 = γC = 1/14, irrespective of the wedge
angle θ0.

Appendix C. Deriving the pre-factor Λ

To find Λ, which appears in the late-order expression (5.11) and also the exponential
switching (7.4) we consider the solution in an inner region near the singularity at ζ = ζ ∗.
We define a new inner variable ν such that ζ − ζ∗ = εαν. The value of α determines the
width of the inner region. From (B4) with γ = 1/14, the local behaviour of the late terms
near the singularity is given by

qn = O
((
εαν

)−3/8−(2n+1/14)7/4
)

as ε → 0. (C1)

We locate the inner region by identifying where terms in the power series (5.1) reorder,
and the power series expansion is therefore no longer valid. This occurs when ε2nqn is
approximately O(q0) as n → ∞. That is

2n + α

(
−3

8
− 7n

2
− 1

8

)
= −α

2
, (C2)

which gives α = 4/7. The correct scaling for the inner region is thus

ζ = ζ∗ + ε4/7ν, (C3)

which is identical to the scaling for the channel geometry (Chapman 1999).
We also require the local behaviour of the dependent variables near the singularities.

This is done numerically using the analytic continuation scheme of § 4. Beginning from
the free surface, we solve for the analytic continuation along a path that approaches
the singularity, ζ∗. Once done, the local behaviour of the dependent variables can be
determined by numerical fitting to log–log plots. In particular, we find

x0 ∼ b1∗ + b2∗ε2/7ν1/2 + O
(
ε4/7

)
, (C4a)

q0 ∼ c1∗ε−2/7ν−1/2 + c2∗ε2/7ν1/2 + O
(
ε6/7

)
, (C4b)

eiτ0 ∼ d1∗ε−2/7ν−1/2 + d2∗ε2/7ν1/2 + O
(
ε6/7

)
. (C4c)

Here, the coefficients b1∗, b2∗, c1∗, c2∗, d1∗, d2∗ are constant with respect to the
independent variables, but they depend on the parameters θ0 and λ and also vary between
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0.55

0.60

0.65

0.70

0.75

(1 – 0.03i,

0.58 + 0.49i,

1.06 + 1.16i)

(0.99 – 0.04i,

0.67 + 0.37i,

1.12 + 1.04i)

(0.97 – 0.05i,

0.79 + 0.27i,

1.21 + 0.94i)

(0.93 – 0.05i,

0.92 + 0.17i,

1.34 + 0.83i)

(1,

0.61 + 0.61i,

1.22 + 1.22i)

(1,

0.55 + 0.55i,

1.11 + 1.11i)

(1 – 0.03i,

0.68 + 0.56i,

1.29 + 1.28i)

(0.98 – 0.05i,

0.74 + 0.47i,

1.28 + 1.23i)

(0.96 – 0.06i,

0.85 + 0.37i,

1.35 + 1.13i)

(0.92 – 0.06i,

0.98 + 0.27i,

1.47 + 1.03i)

(1,

0.68 + 0.68i,

1.36 + 1.36i)

(0.99 – 0.03i,

0.76 + 0.63i,

1.45 + 1.39i)

(0.97 – 0.05i,

0.83 + 0.56i,

1.49 + 1.39i)

(0.95 – 0.06i,

0.93 + 0.48i,

1.53 + 1.34i)

(0.91 – 0.07i,

1.05 + 0.39i,

1.64 + 1.25i)

(1,

0.76 + 0.76i,

1.53 + 1.53i)

(0.98 – 0.03i,

0.84 + 0.71i,

1.61 + 1.54i)

(0.96 – 0.05i,

0.92 + 0.66i,

1.68 + 1.55i)

(0.94 – 0.06i,

1.02 + 0.59i,

1.75 + 1.53i)

(0.90 – 0.07i,

1.13 + 0.52i,

1.84 + 1.48i)

(1,

0.87 + 0.87i,

1.73 + 1.73i)

(0.98 – 0.02i,

0.94 + 0.82i,

1.82 + 1.74i)

(0.96 – 0.04i,

1.03 + 0.77i,

1.90 + 1.75i)

(0.93 – 0.06i,

1.12 + 0.72i,

1.98 + 1.75i)

(0.89 – 0.07i,

1.23 + 0.66i,
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Figure 12. Locations of the ‘1’ singularity for different values of λ and θ0. At each singularity we have
included the corresponding triplet of complex constants for the leading-order inner behaviour around the ‘1’
singularity, (b1, c1, d1).

θ0

λ 10◦ 20◦ 30◦ 40◦

0.55 (1.04 + 0.01i,
0.27 + 0.27i,
0.62 + 0.60i)

(1.05 + 0.00i,
0.30 + 0.30i,
0.73 + 0.73i)

(1.05 + 0.00i,
0.29 + 0.29i,
0.73 + 0.73i)

(1.05 + 0.00i,
0.26 + 0.27i,
0.71 + 0.71i)

0.60 (1.04 + 0.09i,
0.07 + 0.01i,
0.17 + 0.02i)

(1.08 + 0.01i,
0.21 + 0.21i,
0.54 + 0.53i)

(1.07 + 0.00i,
0.24 + 0.24i,
0.66 + 0.65i)

(1.07 + 0.00i,
0.24 + 0.24i,
0.69 + 0.68i)

0.65 (0.98 + 0.06i,
0.02 − 0.04i,
0.06 − 0.11i)

(1.13 + 0.05i,
0.09 + 0.08i,
0.26 + 0.22i)

(1.12 + 0.01i,
0.17 + 0.16i,
0.49 + 0.48i)

(1.10 + 0.01i,
0.20 + 0.19i,
0.60 + 0.60i)

0.70 (0.98 + 0.05i,
0.01 − 0.03i,
0.03 − 0.10i)

(1.04 + 0.20i,
0.03 − 0.00i,
0.11 − 0.00i)

(1.18 + 0.05i,
0.09 + 0.08i,
0.29 + 0.26i)

(1.16 + 0.02i,
0.13 + 0.13i,
0.45 + 0.44i)

0.75 (0.98 + 0.05i,
0.00 − 0.02i,
0.01 − 0.08i)

(0.93 + 0.14i,
0.01 − 0.02i,
0.06 − 0.07i)

(1.22 + 0.22i,
0.03 + 0.02i,
0.14 + 0.08i)

(1.24 + 0.05i,
0.07 + 0.07i,
0.28 + 0.27i)

Table 2. The triplet of complex constants for the leading-order inner behaviours in the inner region about the
‘C’ singularity for different values of θ0 and λ.

the different singularities. We indicate the choice of singularity using the ∗ subscript. The
constants are typically complex. Selected values of the constants as θ0 and λ vary are
tabulated in figure 12 and table 2 for the ‘1’ and ‘C’ singularities, respectively.
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From the expansions given above it follows that τ can be written in terms of q

log q − iτ = Ĥ[τ0] + O(ε2) = log q0 − iτ0 + O(ε2)

= log
(

c1∗
d1∗

)
+
(

c2∗
c1∗

− d2∗
d1∗

)
ε4/7ν + O

(
ε8/7

)
, (C5)

and r can be expanded

r(x) = r(x0)+ O(ε2) = r(b1∗)− r(b1∗)
θ0

2
ε2/7ν1/2 + O(ε4/7). (C6)

Next, we will derive the inner equation from the Bernoulli equation in terms of the inner
variable for q, which is defined as

q = c1∗ε−2/7ν−1/2qin. (C7)

The analytically continued Bernoulli equation (4.3a) is

ε2 P
4
∂

∂ζ

(
r(x)

[
Pq
∂τ

∂ζ
− � sin τ

])
= 2

π

∫ 0

−∞
K(ζ̃ )ζ̃

ζ 2 − ζ̃ 2
dζ̃ + iK(ζ ), (C8)

where P, r(x), �,K(ζ ) are as defined in (2.7a–c) and (2.9). The left-hand side and second
term on the right-hand side can be straightforwardly expanded using the expressions above.
The integral term on the right-hand side needs to be treated more carefully. Firstly, we
expand using the asymptotic series

2
π

∫ 0

−∞
K(ζ̃ )ζ̃

ζ 2 − ζ̃ 2
dζ̃ = 2

π

∫ 0

−∞
K0(ζ̃ )ζ̃

ζ 2 − ζ̃ 2
dζ̃ + O(ε2), (C9)

where K0(ζ ) is the leading-order part of K as defined in (3.2). Then we apply the residue
theorem to the leading-order contribution by deforming the contour to a semicircular
contour in the upper-half-ζ -plane and noting the symmetry between the negative and
positive real axes. At the first two orders the contribution from the integral cancels with the
contribution from the second term on the right-hand side of Bernoulli’s equation (4.3a).
The leading-order inner equation therefore becomes

− i
1
4

P2(ζ∗)r(b1∗)c1∗
d2

dz2

(
ν−1/2qin

)
= ν

2c1∗d1∗r2(b1∗)

(
1 − 1

q2
in

)
. (C10)

It is natural to change variables

ν = A2/7
∗ νin =

(
− iP2(ζ∗)r3(b1∗)c2

1∗d1∗
2

)2/7

νin, (C11)

so then the inner equation becomes

− 1
νin

d2

dν2
in

(
ν

−1/2
in qin

)
= 1

qin
− 1, (C12)

which is the same as the inner equation for the classic Saffman–Taylor problem in a
channel (Chapman 1999). In the outer limit (as ν̃ → ∞) we thus derive the same relation
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as in the channel

qin =
∞∑

n=0

Anν
−7n/2
in , (C13)

where the constants An satisfy the recurrence relation

n∑
m=1

(
7m
2

− 3
)(

7m
2

− 2
)

Am−1

n−m∑
k=0

An−m−kAk =
n∑

m=0

An−mAm, n � 1, (C14a)

A0 = 1. (C14b)

Then the inner expansion gives

q = c1∗ε−2/7ν−1/2
∞∑

n=0

Anν
−7n/2An

∗, (C15)

which means the nth term is

ε2nqn ∼ c1∗ε−2/7ν−1/2Anν
−7n/2

(
− iP2(ζ∗)r3(b1∗)c2

1∗d1∗
2

)n

, as n → ∞. (C16)

Now, writing the outer expansion (5.7) in terms of the inner variable, we find

χ = −
∫ ζ

ζ∗

2eiπ/4e−iτ0/2

Pq0r(x0)3/2
dζ̃

∼ −
∫ ν

0

2eiπ/4d−1/2
1∗ ε1/7ν̃1/4

P(ζ∗)r(b1∗)3/2c1∗ε−2/7ν̃−1/2 ε
4/7 dν̃

= 8
7

e−3iπ/4d−1/2
1∗

c1∗P(ζ∗)r(b1∗)3/2
εν7/4, (C17)

and so from the factorial over power ansatz (5.3)

ε2nqn ∼ Λ∗

(
64
49

i
d1∗c2

1∗P2(ζ∗)r3(b1∗)

)−n

ν−7n/2

(
8e−3iπ/4d−1/2

1∗ ε

7c1∗P(ζ∗)r(b1∗)3/2

)−1/14

× ν−1/8e7iπ/82−1/2d−1/4
1∗ ε−3/14ν−3/8c1∗r(b1∗)1/4Γ (2n + γ ), (C18)

where the ∗ subscript on the Λ labels the corresponding singularity. Then equating the
inner and outer expansions gives

Λ∗ = 25/7

71/14 exp(−13iπ/14)c−1/14
1∗ d3/14

1∗ P(ζ∗)−1/14r(b1∗)−5/14 lim
n→∞

An

Γ (2n + γ )

(
32
49

)n

.

(C19)

Using the large n solution to the recurrence relation from Chapman (1999) we obtain a
final expression for the constant

Λ∗ ≈ 0.46048 × 2−1/7 exp(−13iπ/14)

(
d3

1∗
c1∗P(ζ∗)r(b1∗)5

)1/14

. (C20)
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