BULL. AUSTRAL. MATH. SOC. VOL. 18 (1978), 45-54.

Normal and invertible composition operators

R.K. Singh and D.K. Gupta

Let N denote the set of natural numbers and let ϕ be a mapping from N into itself. Then the composition transformmation C_{ϕ} on the weighted l^2 space with weights a^{2n} , where $n \in N$ and 0 < a < 1 is defined by $C_{\phi}f = f \circ \phi$. If C_{ϕ} is a bounded operator, then it is called a composition operator. The adjoint of the composition operator C_{ϕ} is computed, and it is used to characterise normal, unitary, isometric, and co-isometric composition operators. Not every invertible ϕ induces an invertible composition operator, as is shown by examples. At the end of this note all invertible composition operators are characterised.

1. Preliminaries

Let N denote the set of non-zero positive integers and let λ be the measure on N defined by $\lambda(\{n\}) = \lambda_n = a^{2n}$ for every $n \in N$, where 0 < a < 1. Let l_a^2 denote the space of all complex sequences such that

$$l_a^2 = \left\{ g \mid g : N \neq C \text{ and } \sum_{n=1}^{\infty} \lambda_n |g(n)|^2 < \infty \right\} .$$

Then l_a^2 is a Hilbert space under pointwise addition and scalar multiplication with the inner product defined by

$$\langle f, g \rangle = \sum_{n=1}^{\infty} \lambda_n f(n) \overline{g}(n)$$
.

Received 14 October 1977.

If ϕ is a mapping from N into itself, we define a composition transformation C_{ϕ} on L_a^2 into the space of all complex valued functions on N by

 $C_{\phi}f = f \circ \phi$ for all $f \in l_a^2$.

If the range of C_{ϕ} is in l_a^2 and C_{ϕ} is bounded, then we call C_{ϕ} a composition operator induced by ϕ . By $B\left[l_a^2\right]$ we mean the Banach algebra of bounded linear operators on l_a^2 .

In Section 2 of this paper we compute the adjoint of C_{ϕ} and, using this, we characterise normal, unitary, and isometric composition operators. In Section 3 of this paper invertible composition operators are characterised.

If ϕ is a mapping on N into itself such that $C_{\phi} \in B\left[l_{a}^{2}\right]$, then the measure $\lambda \phi^{-1}$ is absolutely continuous with respect to λ . We denote the Radon-Nikodym derivative of $\lambda \phi^{-1}$ with respect to λ by f_{0} . In the case of l^{2} there is a ϕ such that ϕ is not the identity map, but $f_{0} = 1$ (for example any bijection other than the identity). In the case of l_{a}^{2} , it is not so, as is proved in the following lemma.

LEMMA 1.1. Let ϕ be a mapping from N into itself and f_0 be the Radon-Nikodym derivative of the measure $\lambda \phi^{-1}$ with respect to λ . Then $f_0 = 1$ if and only if ϕ is the identity.

Proof. Let ϕ be the identity. Then $\phi(n) = n$ for all $n \in \mathbb{N}$. Hence $f_0(n) = d\lambda \phi^{-1}(n)/d\lambda n = d\lambda n/d\lambda n = 1$ for all $n \in \mathbb{N}$.

The converse is proved by induction. We first prove that $\phi(1) = 1$. Since $f_0(n) = d\lambda \phi^{-1}(n)/d\lambda n = 1$, we get $\lambda \phi^{-1}(n) = \lambda n$ for all $n \in N$. If $\phi(1) \neq 1$, let $\phi(1) = m$ where $m \neq 1$. Then $1 \in \phi^{-1}(m)$. Hence

 $\lambda_1 \leq \lambda \phi^{-1}(m) = \lambda_m$, which is impossible, for λ is a decreasing measure. Thus $\phi(1) = 1$.

Let us suppose that this result is true for 1, 2, ..., k, that is $\phi(j) = j$ for j = 1, 2, ..., k; we prove $\phi(k+1) = k + 1$. If this is not so, then $\phi(k+1) = m$, where $m \neq k + 1$.

CASE I. If m > k + 1, then $k + 1 \in \phi^{-1}(m)$. Therefore $\lambda_k + 1 \le \lambda \phi^{-1}(m) = \lambda_m$, which is a contradiction, since $\lambda_m < \lambda_{k+1}$.

CASE II. If m < k + 1, then $\phi(m) = m$. Thus $\{m, k+1\} \subset \phi^{-1}(m)$. Hence $\lambda_m + \lambda_{k+1} \leq \lambda \phi^{-1}(m) = \lambda_m$, which is again a contradiction, since $\lambda_{k+1} \neq 0$. Therefore $\phi(k+1) = k + 1$, and hence the induction process is complete. Thus the proof of the lemma is finished.

2. Normal and unitary composition operators

For the characterisation of normal composition operators we need a familiarity with the nature of the adjoint of such operators. The computation of the adjoint of a composition operator C_{ϕ} on the L^2 of a general measure space is very hard. But in the case of L_{α}^2 , the adjoint C_{ϕ}^4 is computable. The following theorem computes the adjoint of C_{ϕ} .

THEOREM 2.1. Let $C_{\phi} \in B\left[\mathcal{I}_{a}^{2}\right]$ and C_{ϕ}^{*} be defined by $\left(C_{\phi}^{*}g\right)(n) = \frac{1}{\lambda_{n}}\int_{\phi^{-1}(n)} gd\lambda$

for all $g \in l_a^2$ and $n \in \mathbb{N}$. Then $\langle C_{\phi}f, g \rangle = \langle f, C_{\phi}^*g \rangle$ for all $f, g \in l_a^2$.

Proof. Since

$$\langle C_{\phi}f, g \rangle = \int_{N} (C_{\phi}f)(m)\overline{g}(m)d\lambda$$

$$= \sum_{n=1}^{\infty} \int_{\phi^{-1}(n)} (f \circ \phi)(m)\overline{g}(m)d\lambda$$

$$= \sum_{n=1}^{\infty} \int_{\phi^{-1}(n)} f(n)\overline{g}(m)d\lambda$$

$$= \sum_{n=1}^{\infty} f(n) \int_{\phi^{-1}(n)} \overline{g}(m)d\lambda$$

$$= \sum_{n=1}^{\infty} f(n)\lambda_{n}\overline{(C^{*}g)}(n)$$

$$= \langle f, C_{\phi}^{*}g \rangle ,$$

 C_{ϕ}^{*} is the adjoint of C_{ϕ} .

On l^2 there are plenty of normal composition operators other than the identity operator, as every invertible composition operator in this is normal [4]. But strangely enough on l_a^2 there is no non-trivial normal composition operator. This is shown in the following theorem.

THEOREM 2.2. Let $C_{\phi} \in B\left(l_{a}^{2}\right)$. Then C_{ϕ} is normal if and only if ϕ is the identity.

In order to prove this theorem we need the following lemma.

LEMMA 2.3. Let $\phi : N \to N$ be a one-to-one and onto mapping. Then $\phi(m) + \phi^{-1}(m) = 2m$ for all $m \in N$ implies that ϕ is the identity.

Proof. Let $\phi(1) = n$. Then $\phi(n) = 2n - 1$. Let $\phi^{-1}(1) = m$. Now since $\phi(1) + \phi^{-1}(1) = 2$, we have n + m = 2 which is possible only when n = m = 1. Thus $\phi(1) = 1$. Let us suppose that the result is true for 1, 2, ..., k. We prove it for k + 1. Let $\phi(k+1) = n$; then $\phi(n) = 2n - (k+1)$. Let $\phi^{-1}(k+1) = m$. Then since $\phi(k+1) + \phi^{-1}(k+1) = 2(k+1)$, n + m = 2(k+1). Since n and m are not less than or equal to k, we conclude $\phi(k+1) = k + 1$ and $\phi^{-1}(k+1) = k + 1$. Hence, by induction, $\phi(n) = n$ for all $n \in N$, which implies that ϕ is the identity.

Proof of Theorem 2.2. The sufficiency is obvious. To prove the necessary part, let C_{ϕ} be normal and e^m be the sequence defined by $e^m(p) = \delta_{mp}$ (the Kronecker delta). Then $\left\|C_{\phi}^* e^m\right\|^2 = \left\|C_{\phi}e^m\right\|^2$ for all $m \in \mathbb{N}$. Now $\left\|C_{\phi}^* e^m\right\|^2 = \sum_{n=1}^{\infty} \lambda_n \left|\left(C_{\phi}^* e^m\right)(n)\right|^2$. But since $\left(C_{\phi}^* e^m\right)(p) = 1/\lambda_p \int_{\phi^{-1}(p)} e^m(p)d\lambda$ and $m \in \phi^{-1}(p)$ for only one value of p, we get

$$\begin{pmatrix} C_{\phi}^{*}e^{m} \end{pmatrix}(p) = 1/\lambda_{p} \int_{\{m\}} e^{m}(m)d\lambda = \lambda_{m}/\lambda_{p} .$$

Therefore $\left\|C_{\phi}^{*}e^{m}\right\|^{2} = \lambda_{p}\lambda_{m}^{2}/\lambda_{p}^{2} = \lambda_{m}^{2}/\lambda_{p}$, where $m \in \phi^{-1}(p)$. Also

$$\left\|C_{\phi}e^{m}\right\|^{2} = \left\|C_{\phi}X_{\{m\}}\right\|^{2} = \sum_{n=1}^{\infty} \lambda_{n} \left|C_{\phi}X_{\{m\}}(n)\right|^{2} = \sum_{n=1}^{\infty} \lambda_{n} \left|X_{\phi^{-1}(m)}(n)\right|^{2},$$

where X_E stands for the characteristic function of the set E. But if ϕ is not onto, $\phi^{-1}(m)$ is empty for some $m \in N$, and hence $X_{\phi^{-1}(m)}(n) = 0$ for every $n \in N$, which implies that $\left\|C_{\phi}e^{m}\right\|^{2} = 0$. But $\left\|C_{\phi}^{*}e^{m}\right\|^{2} > 0$ for all $m \in N$, so that

$$C_{\phi}^{*}e^{m} \neq C_{\phi}e^{m}$$
,

which is a contradiction to the normality of C_{ϕ} . Hence C_{ϕ} is normal implies that ϕ is onto. By Corollary 2.3 of Theorem 2.1 of [6], C_{ϕ} is one-to-one. Since C_{ϕ} is normal it has dense range. Thus by Corollary 2.6 of Theorem 2.4 of [6], ϕ is one-to-one. Now since ϕ is one-to-one, a simple computation shows that

$$\left\|C_{\phi}e^{m}\right\|^{2} = \lambda\phi^{-1}(m) \ .$$

By normality of C_{ϕ} and left invertibility of ϕ we have

$$\lambda \phi^{-1}(m) = \lambda_m^2 / \lambda \phi(m)$$

This after further simplication reduces to

$$\phi(m) + \phi^{-1}(m) = 2m .$$

Hence by the above lemma, ϕ is the identity.

COROLLARY 1. Let $C_{\phi} \in B\left[l_{a}^{2}\right]$. Then C_{ϕ} is an isometry if and only if ϕ is the identity.

Proof. The sufficiency is obvious. To prove the necessary part, suppose C_{ϕ} is an isometry. Then we have, by [2],

$$M_{f_{j}} = C_{\phi}^{*}C_{\phi} = I$$

From this we conclude that

$$f_0(n) = 1$$
 for every $n \in N$,

and hence by Lemma 1.1, ϕ is the identity.

COROLLARY 2. Let $C_{\phi} \in B\left(l_{a}^{2}\right)$. Then C_{ϕ} is unitary if and only if ϕ is the identity.

THEOREM 2.4. Let $C_{\phi} \in B\left[t_a^2\right]$. Then C_{ϕ} is a co-isometry if and only if ϕ is the identity.

Proof. The sufficiency is again obvious. To prove the necessary part, let C_{ϕ} be a co-isometry. Then

$$\left\|C_{\phi}^{\star}e^{m}\right\| = \left\|e^{m}\right\| \text{ for all } m \in \mathbb{N}.$$

But $\left\|C_{\phi}^{*}e^{m}\right\|^{2} = \lambda_{m}^{2}/\lambda_{p}$, where $m \in \phi^{-1}(p)$ and $\|e^{m}\|^{2} = \lambda_{m}$. Therefore we have $\lambda_{m} = \lambda_{p}$, which implies that $m = \phi(m)$ for all $m \in N$.

This shows that ϕ is the identity.

3. Invertible composition operators

The invertibility of ϕ is a necessary and sufficient condition for the invertibility of C_{ϕ} on l^2 [4, Theorem 2.2]. But this is not true in the case of l_{α}^2 , as is shown in the next example.

EXAMPLE. Let ϕ be a mapping from N into itself defined as

$$\phi(n) = \begin{cases} n/3 \text{ when } n = p_n \text{ where } p_n = 3(p_{n-1}+1) \text{ with } p_0 = 0 \text{ ,} \\ \\ n+1 \text{ otherwise.} \end{cases}$$

Then ϕ is invertible. But since

$$\frac{\|C_{\phi}^{X}\{p_{n/3}\}\|^{2}}{\|x_{\{p_{n/3}\}}\|^{2}} = \frac{\|x_{\phi^{-1}}\{p_{n/3}\}\|^{2}}{\|x_{\{p_{n/3}\}}\|^{2}}$$
$$= \frac{\|x_{\{p_{n}\}}\|^{2}}{\|x_{\{p_{n/3}\}}\|^{2}}$$
$$= \frac{\frac{a^{2p_{n}}}{a^{(2/3)p_{n}}} = a^{(4/3)p_{n}} ,$$

which goes to zero as n goes to infinity, we have that C_{ϕ} is not bounded away from zero, and consequently C_{ϕ} is not invertible.

It is clear from the above example that characterization of invertibility of C_{ϕ} in terms of invertibility of ϕ (and *vice versa*) is not possible in this case. But the invertibility of ϕ together with an extra condition characterises the invertibility of C_{ϕ} , as is shown in the following theorem.

THEOREM 3.1. Let $C_{\phi} \in B\left[l_{a}^{2}\right]$. Then C_{ϕ} is invertible if and only if ϕ is invertible and there exists an integer $k \geq 0$ such that

$$\phi^{-1}(n) \leq k + n$$
 for all $n \in \mathbb{N}$.

In order to prove the theorem we need the following lemma.

LEMMA 3.2. Let $\phi : N \neq N$ be a mapping. Then $C_{\phi} \in B\left[l_{a}^{2}\right]$ if and only if there exists an integer M > 0 such that $\lambda(\phi^{-1}(n)) \leq M\lambda(\{n\})$ for all $n \in N$.

Proof. Proof of this lemma follows from Theorem 1 of [3].

Proof of Theorem 3.1. Let C_{ϕ} be invertible. If ϕ is not one-toone, then $\phi(n) = \phi(m)$ for at least two distinct m and n in N, and hence $g_n = g_m$ for all g in the range of C_{ϕ} . This shows that C_{ϕ} is not onto, which is a contradiction. If ϕ is not onto, then there exists a positive integer m such that $m \notin \phi(N)$. Hence $C_{\phi} X_{\{m\}} = X_{\phi}^{-1} I_{\{m\}} = 0$

which shows that C_{ϕ} is not one-to-one. This is again a contradiction.

Further let there exist no integer $k \ge 0$ such that $\phi^{-1}(n) \le k + n$ for every $n \in \mathbb{N}$. This implies that for each integer $p \ge 0$ there exists an integer n_p such that

$$\phi^{-1}(n_p) > p + n_p \quad [p = 1, 2, 3, \ldots]$$

Consider the sequence $\langle X_{\{n_n\}} \rangle$. Then

$$\frac{\|C_{\phi}X_{\{n_{p}\}}\|^{2}}{\|X_{\{n_{p}\}}\|^{2}} = \frac{\|X_{\phi}^{-1}(n_{p})\|^{2}}{\|X_{\{n_{p}\}}\|^{2}}$$
$$= \frac{a^{2\phi^{-1}(n_{p})}}{a^{2n_{p}}}$$
$$< \frac{a^{2(p+m_{p})}}{a^{2n_{p}}}$$
$$= a^{2p} \neq 0 \text{ as } p \neq \infty .$$

This implies that C_{ϕ} is not bounded away from zero and hence it is not invertible. This is a contradiction. Hence there exists an integer $k \ge 0$ such that $\phi^{-1}(n) \le k + n$.

Conversely, suppose ϕ is invertible and there exists an integer $k \ge 0$ such that $\phi^{-1}(n) \le k + n$ for every $n \in N$. Then there exists a function ψ such that

$$(\phi \circ \psi)(n) = (\psi \circ \phi)(n) = n ,$$

and $\phi(n) \ge n - k$ for every $n \in \mathbb{N}$. From this it follows that

$$\lambda \psi^{-1}(n) = \lambda (\phi(n)) = a^{2\phi(n)}$$
$$\leq a^{-2k} \lambda (\{n\})$$

Hence by Lemma 1.1 we conclude that C_{ϕ} is bounded. Since

$$C_{\psi}C_{\phi} = C_{\phi\circ\psi} = I = C_{\psi\circ\phi} = C_{\phi}C_{\psi} ,$$

 C_{ϕ} is invertible.

This completes the proof of Theorem 3.1.

References

- [1] Paul R. Halmos, Introduction to Hilbert space and the theory of spectral multiplicity (Chelsea, New York, New York, 1951).
- [2] Raj Kishor Singh, "Normal and hermitian composition operators", Proc. Amer. Math. Soc. 47 (1975), 348-350.
- [3] R.K. Singh, "Composition operators induced by rational functions", Proc. Amer. Math. Soc. 59 (1976), 329-333.
- [4] R.K. Singh and B.S. Komal, "Composition operator on l^p and its adjoint", Proc. Amer. Math. Soc. (to appear).
- [5] R.K. Singh and Ashok Kumar, "Multiplication operators and composition operators with closed ranges", Bull. Austral. Math. Soc. 16 (1977), 247-252.

[6] R.K. Singh and Ashok Kumar, "Invertible composition operators", preprint.

Department of Mathematics, University of Jammu, Jammu, India.