Normal and invertible composition operators

R.K. Singh and D.K. Gupta

Abstract

Let N denote the set of natural numbers and let ϕ be a mapping from N into itself. Then the composition transformmation C_{ϕ} on the weighted l^{2} space with weights $a^{2 n}$, where $n \in N$ and $0<a<1$ is defined by $C_{\phi} f=f \circ \phi$. If C_{ϕ} is a bounded operator, then it is called a composition operator. The adjoint of the composition operator C_{ϕ} is computed, and it is used to characterise normal, unitary, isometric, and co-isometric composition operators. Not every invertible ϕ induces an invertible composition operator, as is shown by examples. At the end of this note all invertible composition operators are characterised.

1. Preliminaries

Let N denote the set of non-zero positive integers and let λ be the measure on N defined by $\lambda(\{n\})=\lambda_{n}=a^{2 n}$ for every $n \in N$, where $0<a<1$. Let l_{a}^{2} denote the space of all complex sequences such that

$$
z_{a}^{2}=\left\{g \mid g: N \rightarrow C \text { and } \sum_{n=1}^{\infty} \lambda_{n}|g(n)|^{2}<\infty\right\}
$$

Then τ_{a}^{2} is a Hilbert space under pointwise addition and scalar multiplication with the inner product defined by

$$
(f, g)=\sum_{n=1}^{\infty} \lambda_{n} f(n) \vec{g}(n)
$$

Received 14 October 1977.

If ϕ is a mapping from N into itself, we define a composition transformation C_{ϕ} on τ_{a}^{2} into the space of all complex valued functions on N by

$$
C_{\phi} f=f \circ \phi \text { for all } f \in z_{\alpha}^{2}
$$

If the range of C_{ϕ} is in τ_{a}^{2} and C_{ϕ} is bounded, then we call C_{ϕ} a composition operator induced by ϕ. By $B\binom{2}{a}$ we mean the Banach algebra of bounded linear operators on τ_{a}^{2}.

In Section 2 of this paper we compute the adjoint of C_{ϕ} and, using this, we characterise normal, unitary, and isometric composition operators. In Section 3 of this paper invertible composition operators are characterised.

If ϕ is a mapping on N into itself such that $C_{\phi} \in B\left(z_{a}^{2}\right)$, then the measure $\lambda \phi^{-1}$ is absolutely continuous with respect to λ. We denote the Radon-Nikodym derivative of $\lambda \phi^{-1}$ with respect to λ by f_{0}. In the case $\varphi \boldsymbol{f} z^{2}$ there is a ϕ such that ϕ is not the identity map, but $f_{0}=1$ (for example any bijection other than the identity). In the case of Z_{a}^{2}, it is not so, as is proved in the following lemma.

LEMMA 1.7. Let ϕ be a mapping from N into itself and f_{0} be the Radon-Nikodym derivative of the measure $\lambda \phi^{-1}$ with respect to λ. Then $f_{0}=1$ if and only if ϕ is the identity.

Proof. Let ϕ be the identity. Then $\phi(n)=n$ for all $n \in N$. Hence $f_{0}(n)=d \lambda \phi^{-1}(n) / d \lambda n=d \lambda n / d \lambda n=1$ for all $n \in N$.

The converse is proved by induction. We first prove that $\phi(1)=1$. Since $f_{0}(n)=d \lambda \phi^{-1}(n) / d \lambda n=1$, we get $\lambda \phi^{-1}(n)=\lambda n$ for all $n \in N$. If $\phi(1) \neq 1$, let $\phi(1)=m$ where $m \neq 1$. Then $1 \in \phi^{-1}(m)$. Hence
$\lambda_{1} \leq \lambda \phi^{-1}(m)=\lambda_{m}$, which is impossible, for λ is a decreasing measure. Thus $\phi(1)=1$.

Let us suppose that this result is true for $1,2, \ldots, k$, that is $\phi(j)=j$ for $j=1,2, \ldots, k ;$ we prove $\phi(k+1)=k+1$. If this is not so, then $\phi(k+1)=m$, where $m \neq k+1$.

CASE I. If $m>k+1$, then $k+1 \in \phi^{-1}(m)$. Therefore $\lambda_{k}+1 \leq \lambda \phi^{-1}(m)=\lambda_{m}$, which is a contradiction, since $\lambda_{m}<\lambda_{k+1}$.

CASE II. If $m<k+1$, then $\phi(m)=m$. Thus $\{m, k+1\} \subset \phi^{-1}(m)$. Hence $\lambda_{m}+\lambda_{k+1} \leq \lambda \phi^{-1}(m)=\lambda_{m}$, which is again a contradiction, since $\lambda_{k+1} \neq 0$. Therefore $\phi(k+1)=k+1$, and hence the induction process is complete. Thus the proof of the lemma is finished.

2. Normal and unitary composition operators

For the characterisation of normal composition operators we need a familiarity with the nature of the adjoint of such operators. The computation of the adjoint of a composition operator C_{ϕ} on the L^{2} of a general measure space is very hard. But in the case of τ_{a}^{2}, the adjoint C_{ϕ}^{*} is computable. The following theorem computes the adjoint of C_{ϕ}.

THEOREM 2.1. Let $C_{\phi} \in B\left(\tau_{2}^{2} a\right.$ and C_{ϕ}^{*} be defined by

$$
\left(C_{\phi}^{*} g\right)(n)=\frac{1}{\lambda_{n}} \int_{\phi^{-1}(n)} g d \lambda
$$

for all $g \in \tau_{a}^{2}$ and $n \in N$. Then $\left\langle C_{\phi} f, g\right\rangle=\left\langle f, C_{\phi}^{*} g\right\rangle$ for all $f, g \in Z_{a}^{2}$.

Proof. Since

$$
\begin{aligned}
\left\langle c_{\phi} f, g\right\rangle & =\int_{N}\left(c_{\phi} f\right)(m) \vec{g}(m) d \lambda \\
& =\sum_{n=1}^{\infty} \int_{\phi^{-1}(n)}(f \circ \phi)(m) \bar{g}(m) d \lambda \\
& =\sum_{n=1}^{\infty} \int_{\phi^{-1}(n)} f(n) \bar{g}(m) d \lambda \\
& =\sum_{n=1}^{\infty} f(n) \int_{\phi^{-1}(n)} \bar{g}(m) d \lambda \\
& =\sum_{n=1}^{\infty} f(n) \lambda_{n} \overline{\left(C^{*} g\right)}(n) \\
& =\left\langle f, c_{\phi}^{*} g\right\rangle,
\end{aligned}
$$

C_{ϕ}^{*} is the adjoint of C_{ϕ}.
On l^{2} there are plenty of normal composition operators other than the identity operator, as every invertible composition operator in this is normal [4]. But strangely enough on τ_{a}^{2} there is no non-trivial normal composition operator. This is show in the following theorem.

THEOREM 2.2. Let $C_{\phi} \in B\left(z_{a}^{2}\right)$. Then c_{ϕ} is normal if and only if ϕ is the identity.

In order to prove this theorem we need the following lemma.
LEMMA 2.3. Let $\phi: N \rightarrow N$ be a one-to-one and onto mapping. Then $\phi(m)+\phi^{-1}(m)=\Omega m$ for all $m \in N$ implies that ϕ is the identity.

Proof. Let $\phi(1)=n$. Then $\phi(n)=2 n-1$. Let $\phi^{-1}(1)=m$. Now since $\phi(1)+\phi^{-1}(1)=2$, we have $n+m=2$ which is possible only when $n=m=1$. Thus $\phi(1)=1$. Let us suppose that the result is true for $1,2, \ldots, k$. We prove it for $k+1$. Let $\phi(k+1)=n$; then $\phi(n)=2 n-(k+1)$. Let $\phi^{-1}(k+1)=m$. Then since $\phi(k+1)+\phi^{-1}(k+1)=2(k+1), n+m=2(k+1)$. Since n and m are not less than or equal to k, we conclude $\phi(k+1)=k+1$ and
$\phi^{-1}(k+1)=k+1$. Hence, by induction, $\phi(n)=n$ for all $n \in N$, which implies that ϕ is the identity.

Proof of Theorem 2.2. The sufficiency is obvious. To prove the necessary part, let c_{ϕ} be normal and e^{m} be the sequence defined by $e^{m}(p)=\delta_{m p}$ (the Kronecker delta). Then $\left\|C_{\phi}^{*} e^{m}\right\|^{2}=\left\|C_{\phi} e^{m}\right\|^{2}$ for all $m \in N$. Now $\left\|C_{\phi}^{*} e^{m}\right\|^{2}=\sum_{n=1}^{\infty} \lambda_{n}\left|\left\{C_{\phi}^{*} e^{m}\right\}(n)\right|^{2}$. But since $\left(C_{\phi}^{*} e^{m}\right)(p)=1 / \lambda_{p} \int_{\phi^{-1}(p)} e^{m}(p) d \lambda$ and $m \in \phi^{-1}(p)$ for only one value of p, we get

$$
\left(C_{\phi}^{*} e^{m}\right)(p)=1 / \lambda_{p} \int_{\{m\}} e^{m}(m) d \lambda=\lambda_{m} / \lambda_{p}
$$

Therefore $\left\|C_{\phi}^{\star} e^{m}\right\|^{2}=\lambda_{p} \lambda_{m}^{2} / \lambda_{p}^{2}=\lambda_{m}^{2} / \lambda_{p}$, where $m \in \phi^{-1}(p)$. Also

$$
\left\|C_{\phi} e^{m}\right\|^{2}=\left\|C_{\phi} X_{\{m\}}\right\|^{2}=\sum_{n=1}^{\infty} \lambda_{n}\left|C_{\phi} X_{\{m\}}(n)\right|^{2}=\sum_{n=1}^{\infty} \lambda_{n}\left|X_{\phi^{-1}(m)}(n)\right|^{2}
$$

where X_{E} stands for the characteristic function of the set E. But if ϕ is not onto, $\phi^{-1}(m)$ is empty for some $m \in N$, and hence $X_{\phi^{-1}(m)}(n)=0$ for every $n \in N$, which implies that $\left\|C_{\phi} e^{m}\right\|^{2}=0$. But $\left\|C_{\phi}^{*} e^{m}\right\|^{2}>0$ for all $m \in N$, so that

$$
\left\|C_{\phi}^{*} e^{m}\right\| \neq\left\|C_{\phi} e^{m}\right\|
$$

which is a contradiction to the normality of C_{ϕ}. Hence C_{ϕ} is normal implies that ϕ is onto. By Corollary 2.3 of Theorem 2.1 of [6], C_{ϕ} is one-to-one. Since C_{ϕ} is normal it has dense range. Thus by Corollary 2.6 of Theorem 2.4 of [6], ϕ is one-to-one. Now since ϕ is one-to-one, a simple computation shows that

$$
\left\|C_{\phi} e^{m}\right\|^{2}=\lambda \phi^{-1}(m)
$$

By normality of C_{ϕ} and left invertibility of ϕ we have

$$
\lambda \phi^{-1}(m)=\lambda_{m}^{2} / \lambda \phi(m)
$$

This after further simplication reduces to

$$
\phi(m)+\phi^{-1}(m)=2 m
$$

Hence by the above lemma, ϕ is the identity.
COROLLARY 1. Let $C_{\phi} \in B\left(l_{a}^{2}\right)$. Then C_{ϕ} is an isometry if and only if ϕ is the identity.

Proof. The sufficiency is obvious. To prove the necessary part, suppose C_{ϕ} is an isometry. Then we have, by [2],

$$
M_{f_{\jmath}}=C_{\phi}^{*} C_{\phi}=I
$$

From this we conclude that

$$
f_{0}(n)=1 \text { for every } n \in N
$$

and hence by Lerma 1.1, ϕ is the identity.
COROLLARY 2. Let $C_{\phi} \in B\left[l_{a}^{2}\right]$. Then C_{ϕ} is unitary if and on l_{y} if ϕ is the identity.

THEOREM 2.4. Let $c_{\phi} \in B\left(z_{a}^{2}\right)$. Then c_{ϕ} is a co-isometry if and only if ϕ is the identity.

Proof. The sufficiency is again obvious. To prove the necessary part, let C_{ϕ} be a co-isometry. Then

$$
\left\|C_{\phi}^{*} e^{m}\right\|=\left\|e^{m}\right\| \quad \text { for all } \quad m \in N
$$

But $\left\|C_{\phi}^{*} e^{m}\right\|^{2}=\lambda_{m}^{2} / \lambda_{p}$, where $m \in \phi^{-1}(p)$ and $\left\|e^{m}\right\|^{2}=\lambda_{m}$. Therefore we have $\lambda_{m}=\lambda_{p}$, which implies that $m=\phi(m)$ for all $m \in N$.

This shows that ϕ is the identity.

3. Invertible composition operators

The invertibility of ϕ is a necessary and sufficient condition for the invertibility of C_{ϕ} on τ^{2} [4, Theorem 2.2]. But this is not true in the case of z_{α}^{2}, as is shown in the next example.

EXAMPLE. Let ϕ be a mapping from N into itself defined as

$$
\phi(n)=\left\{\begin{array}{l}
n / 3 \text { when } n=p_{n} \text { where } p_{n}=3\left(p_{n-1}+1\right) \text { with } p_{0}=0 \\
n+1 \text { otherwise. }
\end{array}\right.
$$

Then ϕ is invertible. But since

which goes to zero as n goes to infinity, we have that C_{ϕ} is not bounded away from zero, and consequently C_{ϕ} is not invertible.

It is clear from the above example that characterization of invertibility of C_{ϕ} in terms of invertibility of ϕ (and vice versa) is not possible in this case. But the invertibility of ϕ together with an extra condition characterises the invertibility of C_{ϕ}, as is shown in the following theorem.

THEOREM 3.1. Let $C_{\phi} \in B\left(z_{\alpha}^{2}\right)$. Then c_{ϕ} is invertible if and on $l y$ if ϕ is invertible and there exists an integer $k \geq 0$ such that

$$
\phi^{-1}(n) \leq k+n \text { for all } n \in N .
$$

In order to prove the theorem we need the following lemma.
LEMMA 3.2. Let $\phi: N \rightarrow N$ be a mapping. Then $C_{\phi} \in B\left(l_{a}^{2}\right)$ if and only if there exists an integer $M>0$ such that $\lambda\left(\phi^{-1}(n)\right) \leq M \lambda(\{n\})$ for all $n \in N$.

Proof. Proof of this lema follows from Theorem 1 of [3].
Proof of Theorem 3.1. Let C_{ϕ} be invertible. If ϕ is not one-toone, then $\phi(n)=\phi(m)$ for at least two distinct m and n in N, and hence $g_{n}=g_{m}$ for all g in the range of C_{ϕ}. This shows that C_{ϕ} is not onto, which is a contradiction. If ϕ is not onto, then there exists a positive integer m such that $m \notin \phi(W)$. Hence $C_{\phi} X_{\{m\}}=X_{\phi^{-1}\{m\}}=0$ which shows that C_{ϕ} is not one-to-one. This is again a contradiction. Further let there exist no integer $k \geq 0$ such that $\phi^{-1}(n) \leq k+n$ for every $n \in N$. This implies that for each integer $p \geq 0$ there exists an integer n_{p} such that

$$
\phi^{-1}\left(n_{p}\right)>p+n_{p} \quad[p=1,2,3, \ldots]
$$

Consider the sequence $\left\langle X_{\left\{n_{p}\right\}}\right\rangle$. Then

$$
\begin{aligned}
\frac{\left\|C_{\phi} X_{\left\{n_{p}\right\}}\right\|^{2}}{\left\|X_{\left\{n_{p}\right\}}\right\|^{2}} & =\frac{\left\|{ }_{\phi^{-1}\left(n_{p}\right)^{X}}\right\|^{2}}{\| X_{\left\{n_{p}\right\}^{\prime} \|^{2}}} \\
& =\frac{a^{2 \phi^{-1}\left(n_{p}\right)}}{a^{2 n_{p}}} \\
& <\frac{a^{2\left(p+n_{p}\right)}}{a^{2 n_{p}}} \\
& =a^{2 p \rightarrow 0} \text { as } p \rightarrow \infty
\end{aligned}
$$

This implies that C_{ϕ} is not bounded away from zero and hence it is not invertible. This is a contradiction. Hence there exists an integer $k \geq 0$ such that $\phi^{-1}(n) \leq k+n$.

Conversely, suppose ϕ is invertible and there exists an integer $k \geq 0$ such that $\phi^{-1}(n) \leq k+n$ for every $n \in N$. Then there exists a function ψ such that

$$
(\phi \circ \psi)(n)=(\psi \circ \phi)(n)=n,
$$

and $\phi(n) \geq n-k$ for every $n \in N$. From this it follows that

$$
\begin{aligned}
\lambda \psi^{-1}(n)=\lambda(\phi(n)) & =a^{2 \phi(n)} \\
& \leq a^{-2 k} \lambda(\{n\})
\end{aligned}
$$

Hence by Lemma 1.1 we conclude that C_{ϕ} is bounded. Since

$$
C_{\psi} C_{\phi}=C_{\phi \circ \psi}=I=C_{\psi \circ \phi}=C_{\phi} C_{\psi}
$$

C_{ϕ} is invertible.
This completes the proof of Theorem 3.1.

References

[1] Paul R. Halmos, Introduction to Hilbert space and the theory of spectral multiplicity (Chelsea, New York, New York, 1951).
[2] Raj Kishor Singh, "Normal and hermitian composition operators", Proc. Amer. Math. Soc. 47 (1975), 348-350.
[3] R.K. Singh, "Composition operators induced by rational functions", Proc. Amer. Math. Soc. 59 (1976), 329-333.
[4] R.K. Singh and B.S. Komal, "Composition operator on ${ }_{2}{ }^{p}$ and its adjoint", Proc. Amer. Math. Soc. (to appear).
[5] R.K. Singh and Ashok Kumar, "Multiplication operators and composition operators with closed ranges", Bull. Austral. Math. Soc. 16 (1977), 247-252.
[6] R.K. Singh and Ashok Kumar, "Invertible composition operators", preprint.

Department of Mathematics, University of Jammu, Jammu, India.

